ON THE REDUCTION OF AN IWASAWA MODULE

Jangheon Oh

Abstract

A finitely generated torsion module M for $\mathbb{Z}_{p}\left[\left[T, T_{2}, \cdots, T_{d}\right]\right]$ is pseudonull if $M / T M$ is pseudo-null over $\mathbb{Z}_{p}\left[\left[T_{2}, \cdots, T_{d}\right]\right]$. This result is used as a tool to prove the generalized Greenberg's conjecture in certain cases. The converse may not be true. In this paper, we give examples of pseudo-null Iwasawa modules whose reduction are not pseudo-null.

1. Introduction

Fix a prime number p and let k be a number field. Suppose that K_{d} is a \mathbb{Z}_{p}^{d} extension of k, so $K_{d}=\cup_{n \geq 0} k_{n}$ with $k_{n} \subset k_{n+1}$ and $\operatorname{Gal}\left(k_{n} / k\right) \simeq\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{d}$. Denote by L_{n} the p-Hilbert class field of k_{n} and write $L_{K_{d}}=\cup_{n \geq 0} L_{n}$. Then let

$$
Y_{K_{d}}=\operatorname{Gal}\left(L_{K_{d}} / K_{d}\right) .
$$

It is well-known that $Y_{K_{d}}$ is a finitely generated torsion module for $\Lambda_{d}=\mathbb{Z}_{p}\left[\left[G a l\left(K_{d} / k\right)\right]\right]$. A finitely generated torsion Λ_{d}-module M is called pseudo-null(written by $M \sim 0$) if M has two relatively prime annihilators in Λ_{d}. Denote by \tilde{k} the composite of all \mathbb{Z}_{p}-extensions of k. Generalized Greenberg's conjecture claims that $Y_{\tilde{k}} \sim 0$. In certain cases, generalized Greenberg's conjecture is proved by some authors $[1,3]$. In those cases, the following theorem is a basic tool to attack the conjecture:

$$
\text { If } Y_{K_{d}} / T Y_{K_{d}} \sim 0 \text { then } Y_{K_{d}} \sim 0
$$

Here $Y_{K_{d}} / T Y_{K_{d}}$ is viewed as a $\mathbb{Z}_{p}\left[\left[G a l\left(K_{d-1} / k\right)\right]\right]$-module where $k \subset K_{d-1} \subset K_{d}, \gamma$ is a topological generator of $\operatorname{Gal}\left(K_{d} / K_{d-1}\right)$, and $T=\gamma-1$. In this paper, we give explicit number fields k such that the converse of the above theorem does not hold. In other words, we give examples of k such that

$$
Y_{K_{d}} \sim 0, \quad \text { but } Y_{K_{d}} / T Y_{K_{d}} \nsim 0 .
$$

2. Proof of Theorems

Denote by k_{c} the cyclotomic \mathbb{Z}_{p}-extension of a number field k. When k is an imaginary quadratic field, a theorem of Minardi assures us to find easily k which we are looking for.

[^0]Theorem 2.1. Let k be an imaginary quadratic field with the class number h_{k} not divisible by p. Moreover assume that $\lambda_{p}(k) \geq 1$ when only one prime of k exists above p or $\lambda_{p}(k) \geq 2$ when p splits in k. Then the cyclotomic \mathbb{Z}_{p}-extension k_{c} satisfies the followings:

$$
\begin{gathered}
\text { (1) } Y_{\tilde{k}} \sim 0 \\
(2) Y_{\tilde{k}} / T Y_{\tilde{k}} \nsim 0
\end{gathered}
$$

where γ is a topological generator of $\operatorname{Gal}\left(\tilde{k} / k_{c}\right)$.
Proof. By Minardi [3, Proposition 3.A], since $p \not \backslash h_{k}$, we see that

$$
Y_{\tilde{k}} \sim 0
$$

Note that the fixed field of $T Y_{\tilde{k}}$ is the maximal subfield L_{0} of $L_{\tilde{k}}$ which is abelian over k_{c} and $Y_{\tilde{k}} / T Y_{\tilde{k}} \simeq \operatorname{Gal}\left(L_{0} / \tilde{k}\right)$. By the assumption on λ-invariant, $Y_{\tilde{k}} / T Y_{\tilde{k}}$ is not finite, i.e., not pseudo-null.

Example 1. When $k=\mathbb{Q}(\sqrt{-3})$ and $p=13, p \nmid h_{k}, p$ splits in k and $\lambda_{p}=2$.
Next, we give an example of k with $[k: \mathbb{Q}]>2$. We state theorems needed for our construction. When k is a real quadratic field, Taya gives a necessary and sufficient condition for triviality of $Y_{k_{c}}$.

Theorem 2.2. $(=[4$, Theorem1]) Let d be a square-free integer with $d \equiv 1(\bmod 3)$ and $d>0$. Put $k+=\mathbb{Q}(\sqrt{d})$ and $k-=\mathbb{Q}(\sqrt{-3 d})$. For the cyclotomic \mathbb{Z}_{3}-extension $k+{ }_{c}$ of $k+$, denoted by $k+_{n}$ the n-th layer in $k+_{c} / k+$ and by $A+_{n}$ the 3-Sylow subgroup of the ideal class group of $k+_{n}$. Then $A+{ }_{n}$ is trivial for all integers $n \geq 0$ if and only if the class number h_{k-} of $k-$ is not divisible by 3 .

Fujii proves that generalized Greenberg conjecture holds for certain CM fields.
Theorem 2.3. (= [1, Theorem1]) Let k be a CM-field of degree greater than or equal to 4 . Let p be an odd prime which splits completely in k / \mathbb{Q}. Suppose that Leopoldt's conjecture holds for p and $k^{+}, p \nmid h_{k}$ and that all of Iwasawa invariants of the cyclotomic \mathbb{Z}_{p}-extension of k^{+}are trivial. Then $Y_{\tilde{k}}$ is pseudo-null.

For $i \geq 2$, if $Y_{K_{i+1}} \sim 0$, then $Y_{K_{i}} \sim 0$ for infinitely many subextensions $K_{i} \subset$ $K_{i+1}($ See [2]). Here we need more subtle theorem for our purpose.

Theorem 2.4. ($=$ [3, Corollary 2 in chapter 4]) Suppose that k is a complex abelian extension of \mathbb{Q} with $[k: \mathbb{Q}]>2$. If $Y_{\tilde{k}} \sim 0$, then there is an infinite number of \mathbb{Z}_{p}^{2}-extensions K / k with $k_{c} \subset K$ and $Y_{K} \sim 0$.

Now, by following idea of Minardi [3], we prove that $k=\mathbb{Q}(\sqrt{7}, \sqrt{-2})$ is the desired number field. From now on $p=3$.

Theorem 2.5. Let $k=\mathbb{Q}(\sqrt{7}, \sqrt{-2})$. Then there exists a \mathbb{Z}_{p}^{2}-extension K_{2} of k satisfying the followings:

$$
\begin{gathered}
\text { (1) } k \subset K_{1} \subset K_{2} \\
\text { (2) } Y_{K_{2}} \sim 0 \\
\text { (3) } Y_{K_{2}} / T Y_{K_{2}} \nsim 0
\end{gathered}
$$

where γ is a topological generator of $\operatorname{Gal}\left(K_{2} / K_{1}\right)$.

Proof. Note that \tilde{k} is a \mathbb{Z}_{p}^{3}-extension of k. Denote by $k+=\mathbb{Q}(\sqrt{7})$ the maximal real subfield of k. By Theorem 2.2, $A+_{n}$ is trivial for all integers $n \geq 0$ since the class number $h_{k-}=h_{\mathbb{Q}}(\sqrt{-21})$ is 4 . The quadratic subfields of k are $\mathbb{Q}(\sqrt{7}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-14})$. The prime p splits completely in each quadratic subfields of k, hence p splits completely in k The product of class numbers of quadratic subfields is 4 , so h_{k} is not divisible by p. Therefore, by Theorem 2.2 and Theorem 2.3, we see that

$$
Y_{\tilde{k}} \sim 0
$$

By Theorem 2.4, we can choose a \mathbb{Z}_{p}^{2}-extension K_{2} / k with $K_{1}\left(=k_{c}\right) \subset K_{2}$ and $Y_{K_{2}} \sim 0$. Since p splits completely in k and primes above p are totally ramified in K_{1} / k, the extension \tilde{k} / K_{1} is unramified everywhere. Therefore the fixed field of $T Y_{K_{2}}$ contains \tilde{k}. So $Y_{K_{2}} / T Y_{K_{2}}$ is not finite, i.e., not pseudo-null. This completes the proof.

References

[1] S.Fujii, On Greenberg's generalized conjecture for CM-fields, J.Reine Angew. Math. 731 (2017), 259-278.
[2] T.Kataoka, A consequence of Greenberg's generalized conjecture on Iwasawa invariants of \mathbb{Z}_{p} extensions, Journal of Number Theory 172 (3) (2017), 200-233.
[3] J.Minardi, Iwasawa modules for \mathbb{Z}_{p}^{d}-extensions of algebraic number fields, Ph.D dissertation, University of Washington, 1986.
[4] H.Taya, Iwasawa Iinvariants andclass numbers of quadratic fields for the prime 3, Proc. Amer. Math. Soc. 128 (5) (1999), 1285-1292.

Jangheon Oh

Faculty of Mathematics and Statistics, Sejong University, Seoul 143-747, Korea.
E-mail: oh@sejong.ac.kr

[^0]: Received May 15, 2020. Revised January 13, 2021. Accepted April 1, 2021.
 2010 Mathematics Subject Classification: 11R23.
 Key words and phrases: Iwasawa invariants, generalized Greenberg conjecture, bi-quadratic fields. (C) The Kangwon-Kyungki Mathematical Society, 2021.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

