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ON THE UNIQUENESS OF CERTAIN TYPE OF SHIFT

POLYNOMIALS SHARING A SMALL FUNCTION

Biswajit Saha

Abstract. In this article, we consider the uniqueness problem of

the shift polynomials fn(z)(fm(z)−1)

s∏
j=1

f(z+cj)
µj and fn(z)(f(z)−

1)m
s∏
j=1

f(z + cj)
µj , where f(z) is a transcendental entire function

of finite order, cj(j = 1, 2, ..., s) are distinct finite complex numbers
and n(≥ 1), m(≥ 1), s and µj(j = 1, 2, ..., s) are integers. With the
concept of weakly weighted sharing and relaxed weighted sharing we
obtain some results which extend and generalize some results due to
P. Sahoo [Commun. Math. Stat. 3 (2015), 227-238].

1. Introduction, Definitions and Results

By a meromorphic function we shall always mean a meromorphic
function in the complex plane. We assume that the reader is famil-
iar with the standard notations in Nevanlinna’s value distribution the-
ory of meromorphic functions as explained in [6], [7] and [16]. For a
nonconstant meromorphic function h, we denote by T (r, h) the Nevan-
linna characteristic function of h and by S(r, h) any quantity satisfying
S(r, h) = o{T (r, h)} as r → ∞, possibly outside of a set of finite linear
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measure. We say that the meromorphic function α(z) is a small function
of f, if T (r, α(z)) = S(r, f).

Let k be a positive integer or infinity and a ∈ C∪{∞}. Set E(a, f) =
{z : f(z)−a = 0}, where a zero with multiplicity k is counted k times. If
the zeros are counted only once, then we denote the set by E(a, f). Let f
and g be two nonconstant meromorphic functions. If E(a, f) = E(a, g),
then we say that f and g share the value a CM (counting multiplicities).
On the other hand, if E(a, f) = E(a, g), then we say that f and g share
the value a IM (ignoring multiplicities). We denote by Ek)(a, f) the set
of all a-points of f with multiplicities not exceeding k, where an a-point
is counted according to its multiplicity. Also we denote by Ek)(a, f)
the set of distinct a-points of f with multiplicities not greater than k.
We denote by Nk)(r, a; f) the counting function of zeros of f − a with

multiplicity less or equal to k, and by Nk)(r, a; f) the corresponding one
for which multiplicity is not counted. Let N(k(r, a; f) be the counting

function of zeros of f−a with multiplicity at least k and N (k(r, a; f) the
corresponding one for which multiplicity is not counted. Set

Nk(r, a; f) = N(r, a; f) +N (2(r, a; f) + ...+N (k(r, a; f).

LetNE(r, a; f, g) (NE(r, a; f, g)) be the counting function (reduced count-
ing function) of all common zeros of f − a and g − a with the same
multiplicities and N0(r, a; f, g) (N0(r, a; f, g)) the counting function (re-
duced counting function) of all common zeros of f−a and g−a ignoring
multiplicities. If

N(r, a; f) +N(r, a; g)− 2NE(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “CM”. On the other hand, if

N(r, a; f) +N(r, a; g)− 2N0(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “IM”.
We now explain in the following definition the notion of weakly weighted

sharing which was introduced by Lin and Lin [9].

Definition 1.1. [9] Let f and g share a “IM” and k be a positive

integer or ∞. N
E

k)(r, a; f, g) denotes the reduced counting function of
those a-points of f whose multiplicities are equal to the corresponding
a-points of g, and both of their multiplicities are not greater than k.

N
0

(k(r, a; f, g) denotes the reduced counting function of those a-points of
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f which are a-points of g, both of their multiplicities are not less than
k.

Definition 1.2. [9] Let a ∈ C ∪ {∞} and k be a positive integer or
∞. If

Nk)(r, a; f)−NE

k)(r, a; f, g) = S(r, f),

Nk)(r, a; g)−NE

k)(r, a; f, g) = S(r, g),

N (k+1(r, a; f)−N0

(k+1(r, a; f, g) = S(r, f),

N (k+1(r, a; g)−N0

(k+1(r, a; f, g) = S(r, g),

or if k = 0 and

N(r, a; f)−N0(r, a; f, g) = S(r, f),

N(r, a; g)−N0(r, a; f, g) = S(r, g),

then we say f and g weakly share a with weight k and we write f and
g share “(a, k)” to mean that f, g weakly share a with weight k.

Now it is clear from definition 1.2 that weakly weighted sharing is a
scaling between IM and CM.

In 2007, A. Banerjee and S. Mukherjee [1] introduced a new type of
sharing which is weaker than weakly weighted sharing and is defined as
follows.

Definition 1.3. [1] We denote by N(r, a; f |= p; |= q) the reduced
counting function of common a-points of f and g with multiplicities p
and q, respectively.

Definition 1.4. [1] Let a ∈ C ∪ {∞} and k be a positive integer or
∞. Suppose that f and g share a “IM”. If for p 6= q,∑

p,q≤k

N(r, a; f |= p; g |= q) = S(r),

then we say that f and g share a with weight k in a relaxed manner and
in that case we write f and g share (a, k)∗.

Recently, the topic of shift equation and shift product in the complex
plane C has attracted many mathematicians, a large number of papers
have focused on value distribution of shifts and shift operator analogues
of Nevanlinna theory (including [3], [4], [5], [8] and [13]) and many people
paid their attention to the uniqueness of shifts and shift polynomials of
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meromorphic function and obtained many interesting results. In this
direction J.L. Zhang [17] considered the zeros of certain type of shift
polynomials and proved the following result for small functions.

Theorem A. Let f(z) and g(z) be two transcendental entire function
of finite order, α(z) ( 6≡ 0) be a small function with respect to f(z)
and c be a nonzero complex constant. If n ≥ 2 is an integer then
fn(z)(f(z)− 1)f(z + c)− α(z) has infinitely many zeros.

In the same paper the author also proved the following uniqueness
result.

Theorem B. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0) be a small function with respect to
both f(z) and g(z). Suppose that c is a nonzero complex constant and
n ≥ 7 is an integer. If fn(z)(f(z)−1)f(z+c) and gn(z)(g(z)−1)g(z+c)
share α(z) CM, then f(z) = g(z).

In 2014, using the idea of weakly weighted sharing and relaxed weighted
sharing C. Meng [12] obtained the following uniqueness theorems which
improve and supplement Theorem B in different directions.

Theorem C. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that c is a nonzero complex constant and
n ≥ 7 is an integer. If fn(z)(f(z)−1)f(z+c) and gn(z)(g(z)−1)g(z+c)
share “(α(z), 2)”, then f(z) ≡ g(z).

Theorem D. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that c is a nonzero complex constant and
n ≥ 10 is an integer. If fn(z)(f(z)−1)f(z+c) and gn(z)(g(z)−1)g(z+c)
share (α(z), 2)∗, then f(z) ≡ g(z).

Theorem E. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that c is a nonzero complex constant
and n ≥ 16 is an integer. If

E2)

(
α(z), fn(z)(f(z)− 1)f(z + c)

)
= E2)

(
α(z), gn(z)(g(z)− 1)g(z + c)

)
,

then f(z) ≡ g(z).
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In 2015, P. Sahoo [14] studied the uniqueness problem of shift polyno-
mials of the form fn(z)(fm(z)−1)f(z+ c) and fn(z)(f(z)−1)mf(z+ c)
and proved the following results which generalize Theorems C-E.

Theorem F. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that c is a nonzero complex constant, n
and m(≥ 1) are integers such that n ≥ m+6. If fn(z)(fm(z)−1)f(z+c)
and gn(z)(gm(z)− 1)g(z + c) share “(α(z), 2)”, then f(z) ≡ tg(z) where
tm = 1.

Theorem G. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that c is a nonzero complex constant, n
and m(≥ 1) are integers such that n ≥ 2m+8. If fn(z)(fm(z)−1)f(z+c)
and gn(z)(gm(z) − 1)g(z + c) share (α(z), 2)∗, then f(z) ≡ tg(z) where
tm = 1.

Theorem H. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that c is a nonzero complex constant, n
and m(≥ 1) are integers such that n ≥ 4m+ 12. If

E2)

(
α(z), fn(z)(fm(z)− 1)f(z + c)

)
= E2)

(
α(z), gn(z)(gm(z)− 1)g(z + c)

)
,

then f(z) ≡ tg(z) where tm = 1.

Theorem I. Let f(z) and g(z) be two transcendental entire functions
of finite order, and α(z)(6≡ 0,∞) be a small function with respect to both
f(z) and g(z). Suppose that c is a nonzero complex constant, n and
m(≥ 1) are integers satisfying n + m ≥ 10. If fn(z)(f(z)− 1)mf(z + c)
and gn(z)(g(z)−1)mg(z+c) share “(α(z), 2)”, then either f(z) ≡ g(z) or
f(z) and g(z) satisfy the algebraic equation R(f, g) = 0, where R(f, g)
is given by

R(w1, w2) = wn1 (w1 − 1)mw1(z + c)− wn2 (w2 − 1)mw2(z + c).

Theorem J. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0,∞) be a small function with respect to
both f(z) and g(z). Suppose that c is a nonzero complex constant, n and
m(≥ 1) are integers satisfying n + m ≥ 13. If fn(z)(f(z)− 1)mf(z + c)
and gn(z)(g(z) − 1)mg(z + c) share (α(z), 2)∗, then the conclusions of
Theorem I hold.



894 B. Saha

Theorem K. Let f(z) and g(z) be two transcendental entire func-
tions of finite order, and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that c is a nonzero complex constant, n
and m(≥ 1) are integers satisfying n+m ≥ 19. If

E2)

(
α(z), fn(z)(f(z)− 1)mf(z + c)

)
= E2)

(
α(z), gn(z)(g(z)− 1)mg(z + c)

)
,

then the conclusions of Theorem I hold.

Regarding the results of P. Sahoo stated above it is natural to ask the
following question which is the motive of the present paper.

Question 1.1. What can be said about the relationship between two
entire functions f(z) and g(z) if one replace the difference polynomial

fn(z)(fm(z)−1)f(z+c) by fn(z)(fm(z)−1)
s∏
j=1

f(z+cj)
µj in Theorems

F-H and fn(z)(f(z) − 1)mf(z + c) by fn(z)(f(z) − 1)m
s∏
j=1

f(z + cj)
µj

in Theorems I-K, where f(z) is a transcendental entire function of finite
order, cj(j = 1, 2, ..., s), n(≥ 1), m(≥ 1), s and µj(j = 1, 2, ..., s) are
integers?

For the sake of simplicity we also use the notation σ =
s∑
j=1

µj.

In the paper, our main concern is to find the possible answer of the
above question. We prove following theorems which extend and gener-
alize Theorems F-K. The following theorems are the main results of the
paper.

Theorem 1.1. Let f(z) and g(z) be two transcendental entire func-
tions of finite order and α(z)(6≡ 0,∞) be a small function with respect to
both f(z) and g(z). Suppose that cj (j = 1, 2, ..., s) be distinct finite com-
plex numbers and n(≥ 1), m(≥ 1), s and µj(j = 1, 2, ..., s) are integers

satisfying n ≥ max{m+σ+5,m+5σ}. If fn(z)(fm(z)−1)
s∏
j=1

f(z+cj)
µj

and gn(z)(gm(z)− 1)
s∏
j=1

g(z + cj)
µj share “(α(z), 2)”, then f(z) = tg(z)

where tm+σ = 1.



On the uniqueness of certain type of shift polynomials 895

Theorem 1.2. Let f(z) and g(z) be two transcendental entire func-
tions of finite order and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that cj (j = 1, 2, ..., s) be distinct fi-
nite complex numbers and n(≥ 1), m(≥ 1), s and µj(j = 1, 2, ..., s) are
integers satisfying n ≥ max{2m + 2σ + 6,m + 5σ}. If fn(z)(fm(z) −

1)
s∏
j=1

f(z + cj)
µj and gn(z)(gm(z) − 1)

s∏
j=1

g(z + cj)
µj share (α(z), 2)∗,

then f(z) = tg(z) where tm+σ = 1.

Theorem 1.3. Let f(z) and g(z) be two transcendental entire func-
tions of finite order and α(z)(6≡ 0,∞) be a small function with respect to
both f(z) and g(z). Suppose that cj (j = 1, 2, ..., s) be distinct finite com-
plex numbers and n(≥ 1), m(≥ 1), s and µj(j = 1, 2, ..., s) are integers

satisfying n ≥ max{4m + 4σ + 8,m + 5σ}. If E2)

(
α(z), fn(z)(fm(z)−

1)
s∏
j=1

f(z + cj)
µj

)
= E2)

(
α(z), gn(z)(gm(z) − 1)

s∏
j=1

g(z + cj)
µj

)
, then

f(z) = tg(z) where tm+σ = 1.

Theorem 1.4. Let f(z) and g(z) be two transcendental entire func-
tions of finite order and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that cj (j = 1, 2, ..., s) be distinct finite
complex numbers and n(≥ 1), m(≥ 1), s and µj(j = 1, 2, ..., s) are inte-

gers satisfying n + m ≥ σ + 9. If fn(z)(f(z) − 1)m
s∏
j=1

f(z + cj)
µj and

gn(z)(g(z)−1)m
s∏
j=1

g(z+cj)
µj share “(α(z), 2)”, then either f(z) ≡ g(z)

or f(z) and g(z) satisfy the algebraic equation R(f, g) = 0, where R(f, g)
is given by

R(w1, w2) = wn1 (w1 − 1)m
s∏
j=1

w1(z + cj)
µj − wn2 (w2 − 1)m

s∏
j=1

w2(z + cj)
µj .

Theorem 1.5. Let f(z) and g(z) be two transcendental entire func-
tions of finite order and α(z)(6≡ 0,∞) be a small function with respect
to both f(z) and g(z). Suppose that cj (j = 1, 2, ..., s) be distinct finite
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complex numbers and n(≥ 1), m(≥ 1), s and µj(j = 1, 2, ..., s) are inte-

gers satisfying n+m ≥ 2σ + 11. If fn(z)(f(z)− 1)m
s∏
j=1

f(z + cj)
µj and

gn(z)(g(z)− 1)m
s∏
j=1

g(z + cj)
µj share (α(z), 2)∗, then the conclusions of

1.4 hold.

Theorem 1.6. Let f(z) and g(z) be two transcendental entire func-
tions of finite order and α(z)(6≡ 0,∞) be a small function with respect to
both f(z) and g(z). Suppose that cj (j = 1, 2, ..., s) be distinct finite com-
plex numbers and n(≥ 1), m(≥ 1), s and µj(j = 1, 2, ..., s) are integers

satisfying n+m ≥ 4σ+15. If E2)

(
α(z), fn(z)(f(z)−1)m

s∏
j=1

f(z+cj)
µj

)
= E2)

(
α(z), gn(z)(g(z) − 1)m

s∏
j=1

g(z + cj)
µj

)
, then the conclusions of

1.4 hold.

2. Lemmas

Let F and G be two nonconstant meromorphic functions defined in
the complex plane C. We denote by H the function as follows:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 2.1. [3] Let f(z) be a transcendental meromorphic function
of finite order, then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.2. [11] Let f be a meromorphic function of finite order ρ
and let c( 6= 0) be a fixed nonzero complex constant. Then

N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

outside of possible exceptional set with finite logarithmic measure.
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Lemma 2.3. [2] Let f be an entire function of finite order and F =

fn(z)(fm(z)− 1)
s∏
j=1

f(z + cj)
µj . Then

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

Lemma 2.4. Let f be an entire function of finite order and F =

fn(z)(f(z)− 1)m
s∏
j=1

f(z + cj)
µj . Then

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

Proof. Applying the same method of Lemma 2.3, we can easily prove
it.

Lemma 2.5. [1] Let F and G be two nonconstant meromorphic func-
tions that share “(1, 2)” and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

−
∞∑
p=3

N
(
r, 0;

G
′

G
|≥ p

)
+ S(r, F ) + S(r,G),

and the same inequality holds for T (r,G).

Lemma 2.6. [1] Let F and G be two nonconstant meromorphic func-
tions that share (1, 2)∗ and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+N(r, 0;F ) +N(r,∞;F )−m(r, 1;G)

+S(r, F ) + S(r,G),

and the same inequality holds for T (r,G).

Lemma 2.7. [10] Let F and G be two nonconstant entire functions,
and p ≥ 2 an integer. If Ep)(1, F ) = Ep)(1, G) and H 6≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G),

and the same inequality is true for T (r,G).

Lemma 2.8. [15] Let F and G be two nonconstant meromorphic func-
tions and H ≡ 0. If

lim sup
r−→∞

N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G)

T (r)
< 1
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where T (r) = max{T (r, F ), T (r,G)}, r ∈ I and I is a set with infinite
linear measure, then either F ≡ G or FG ≡ 1.

Lemma 2.9. [2] Let f and g be transcendental entire functions of
finite order. Suppose that cj (j = 1, 2, ..., s) be distinct finite complex
numbers and n, m, s and µj(j = 1, 2, ..., s) are integers. If n ≥ m + 5σ

and .fn(z)(fm(z)− 1)
s∏
j=1

f(z + cj)
µj = gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj ,

then f(z) = tg(z), where tm = tn+σ = 1.

3. Proof of the Theorems

Proof of Theorem 1.1. Let

F (z) =

fn(z)(fm(z)− 1)
s∏
j=1

f(z + cj)
µj

α(z)
,

G(z) =

gn(z)(gm(z)− 1)
s∏
j=1

g(z + cj)
µj

α(z)
.

Then F and G are transcendental meromorphic functions that share
“(1, 2)” except the zeros and poles of α(z). From Lemma 2.3 we get

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f),(3.1)

T (r,G) = (n+m+ σ)T (r, g) + S(r, g).(3.2)
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If possible we may assume that H 6≡ 0. Then using Lemmas 2.1, 2.2 and
2.5 we deduce that

T (r, F ) + T (r,G)

≤ 2N2(r, 0;F ) + 2N2(r, 0;G) + 2N2(r,∞;F ) + 2N2(r,∞;G)

+S(r, F ) + S(r,G)

≤ 4N(r, 0; f) + 4N(r, 0; g) + 2N(r, 1; fm) + 2N(r, 1; gm)

+2N

(
r, 0;

s∏
j=1

f(z + cj)
µj

)
+ 2N

(
r, 0;

s∏
j=1

g(z + cj)
µj

)
+S(r, f) + S(r, g)

≤ (2m+ 2σ + 4){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).(3.3)

Therefore from (3.1), (3.2) and (3.3) we obtain

(n−m− σ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction with the assumption that n ≥ m+σ+ 5. Thus, we must
have H ≡ 0.
Since

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

≤ N(r, 0; f) +N(r, 0; g) +N(r, 1; fm) +N(r, 1; gm)

+N

(
r, 0;

s∏
j=1

f(z + cj)
µj

)
+N

(
r, 0;

s∏
j=1

g(z + cj)
µj

)
+S(r, f) + S(r, g)

≤ (m+ σ + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ T (r),

where T (r) = max{T (r, F ), T (r,G)}, by Lemma 2.8, we deduce that
either F ≡ G or FG ≡ 1. Let FG ≡ 1. Then

fn(z)(fm(z)− 1)
s∏
j=1

f(z + cj)
µjgn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj = α2
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i.e.

fn(z)(f(z)− 1)(fm−1(z) + fm−2(z) + ...+ 1)
s∏
j=1

f(z + cj)
µj

gn(z)(g(z)− 1)(gm−1(z) + gm−2(z) + ...+ 1)
s∏
j=1

g(z + cj)
µj = α2

It can be easily viewed from above thatN(r, 0; f) = S(r, f) andN(r, 1; f) =
S(r, f). Thus we obtain

δ(0, f) + δ(1, f) + δ(1, f) = 3,

which is not possible. Therefore, we must have F ≡ G and then

fn(z)(fm(z)− 1)
s∏
j=1

f(z + cj)
µj ≡ gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj .

Therefore, by Lemma 2.9 it follows that f(z) ≡ tg(z), where t is a
constant satisfying tm = 1. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Let F and G be defined as in the proof of
Theorem 1.1. Then F and G are transcendental meromorphic functions
that share (1, 2)∗ except the zeros and poles of α(z). We assume, if
possible, that H 6≡ 0. Using Lemma 2.1, 2.2 and 2.6 we deduce that

T (r, F ) + T (r,G)

≤ 2N2(r, 0;F ) + 2N2(r, 0;G) + 2N2(r,∞;F ) + 2N2(r,∞;G)

+N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G)

−m(r, 1;F )−m(r, 1;G) + S(r, F ) + S(r,G)

≤ 5N(r, 0; f) + 5N(r, 0; g) + 3N(r, 1; fm) + 3N(r, 1; gm)

+3N

(
r, 0;

s∏
j=1

f(z + cj)
µj

)
+ 3N

(
r, 0;

s∏
j=1

g(z + cj)
µj

)
+S(r, f) + S(r, g)

≤ (3m+ 3σ + 5){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).(3.4)

Therefore, using (3.1) and (3.2) we obtain from (3.4)

(n− 2m− 2σ − 5){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
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a contradiction since n ≥ 2m+2σ+6. Thus, we must have H ≡ 0. Then
the result follows from the proof of Theorem 1.1. This completes the
proof of Theorem 1.2.

Proof of Theorem 1.3. Let F and G be defined as in the proof of
Theorem 1.1. Then F and G are transcendental meromorphic functions
such that

E2)

(
α(z), fn(z)(fm(z)− 1)

s∏
j=1

f(z + cj)
µj

)

= E2)

(
α(z), gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj

)
except the zeros and poles of α(z).
Since

2N2(r, 0;F ) + 2N2(r, 0;G) + 3N(r, 0;F ) + 3N(r, 0;G)

≤ 7N(r, 0; f) + 7N(r, 0; g) + 5N(r, 1; fm) + 5N(r, 1; gm)

+5N

(
r, 0;

s∏
j=1

f(z + cj)
µj

)
+ 5N

(
r, 0;

s∏
j=1

g(z + cj)
µj

)
+S(r, f) + S(r, g)

≤ (5m+ 5σ + 7){T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

from Lemmas 2.7 and 2.8 and proceeding similarly as in the proof of
Theorem 1.1, the conclusion of Theorem 1.3 follows.

Proof of Theorem 1.4. Let

F (z) =

fn(z)(f(z)− 1)m
s∏
j=1

f(z + cj)
µj

α(z)
,

G(z) =

gn(z)(g(z)− 1)m
s∏
j=1

g(z + cj)
µj

α(z)
.

Then F and G are transcendental meromorphic functions that share
“(1, 2)” except the zeros and poles of α(z). From Lemma 2.3 we get

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f),(3.5)
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T (r,G) = (n+m+ σ)T (r, g) + S(r, g).(3.6)

If possible we may assume that H 6≡ 0. Then using Lemmas 2.1, 2.2 and
2.5 we deduce that

T (r, F ) + T (r,G)

≤ 2N2(r, 0;F ) + 2N2(r, 0;G) + 2N2(r,∞;F ) + 2N2(r,∞;G)

+S(r, F ) + S(r,G)

≤ 4N(r, 0; f) + 4N(r, 0; g) + 4N(r, 1; f) + 4N(r, 1; g)

+2N

(
r, 0;

s∏
j=1

f(z + cj)
µj

)
+ 2N

(
r, 0;

s∏
j=1

g(z + cj)
µj

)
+S(r, f) + S(r, g)

≤ (2σ + 8){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).(3.7)

Therefore from (3.5), (3.6) and (3.7) we obtain

(n+m− σ − 8){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction with the assumption that n+m ≥ σ+ 9. Thus, we must
have H ≡ 0.
Since

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

≤ N(r, 0; f) +N(r, 0; g) +N(r, 1; f) +N(r, 1; g)

+N

(
r, 0;

s∏
j=1

f(z + cj)
µj

)
+N

(
r, 0;

s∏
j=1

g(z + cj)
µj

)
+S(r, f) + S(r, g)

≤ (σ + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

≤ T (r),

where T (r) = max{T (r, F ), T (r,G)}, by Lemma 2.8, we deduce that
either F ≡ G or FG ≡ 1. Let FG ≡ 1. Then

fn(z)(f(z)− 1)m
s∏
j=1

f(z + cj)
µjgn(z)(g(z)− 1)m

s∏
j=1

g(z + cj)
µj = α2.

It can be easily seen from above thatN(r, 0; f) = S(r, f) andN(r, 1; f) =
S(r, f). Thus we obtain

δ(0, f) + δ(1, f) + δ(1, f) = 3,
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which is not possible. Therefore, we must have F ≡ G and then

(3.8)

fn(z)(f(z)− 1)m
s∏
j=1

f(z + cj)
µj = gn(z)(g(z)− 1)m

s∏
j=1

g(z + cj)
µj ,

Set h = f
g
. If h is a constant, then substituting f = gh in (3.8), we

deduce that

s∏
j=1

g(z + cj)
µj [gm(hn+m+σ − 1)−m C1g

m−1(hn+m+σ−1 − 1)

+...+ (−1)m(hn+σ − 1)] = 0.

Since g is a transcendental entire function, we have
s∏
j=1

g(z + cj)
µj 6= 0.

So from above we obtain

gm(hn+m+σ − 1)−m C1g
m−1(hn+m+σ−1 − 1) + ...+ (−1)m(hn+σ − 1) = 0,

which implies h = 1 and hence f = g. If h is not a constant, then it
follows from (3.8) that f and g satisfy the algebraic equation R(f, g) = 0,
where R(f, g) is given by

R(w1, w2) = wn1 (w1 − 1)m
s∏
j=1

w1(z + cj)
µj − wn2 (w2 − 1)m

s∏
j=1

w2(z + cj)
µj .

Proof of Theorem 1.5. Let F and G be defined as in the proof of
Theorem 1.4. Then F and G are transcendental meromorphic functions
that share (1, 2)∗ except the zeros and poles of α(z). We assume, if
possible, that H 6≡ 0. Then using Lemma 2.1, 2.2 and 2.6 we deduce
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that

T (r, F ) + T (r,G)

≤ 2N2(r, 0;F ) + 2N2(r, 0;G) + 2N2(r,∞;F ) + 2N2(r,∞;G)

+N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G)

−m(r, 1;F )−m(r, 1;G) + S(r, F ) + S(r,G)

≤ 5N(r, 0; f) + 5N(r, 0; g) + 5N(r, 1; f) + 5N(r, 1; g)

+3N

(
r, 0;

s∏
j=1

f(z + cj)
µj

)
+ 3N

(
r, 0;

s∏
j=1

g(z + cj)
µj

)
+S(r, f) + S(r, g)

≤ (3σ + 10){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).(3.9)

Therefore, using (3.1) and (3.2) we obtain from (3.9)

(n+m− 2σ − 10){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction since n+m ≥ 2σ+11. Thus, we must have H ≡ 0. Then
the result follows from the proof of Theorem 1.4. This completes the
proof of Theorem 1.5.

Proof of Theorem 1.6. Let F and G be defined as in the proof of
Theorem 1.4. Then F and G are transcendental meromorphic functions
such that

E2)

(
α(z), fn(z)(f(z)− 1)m

s∏
j=1

f(z + cj)
µj

)

= E2)

(
α(z), gn(z)(g(z)− 1)m

s∏
j=1

g(z + cj)
µj

)
except the zeros and poles of α(z).
Since

2N2(r, 0;F ) + 2N2(r, 0;G) + 3N(r, 0;F ) + 3N(r, 0;G)

≤ 7N(r, 0; f) + 7N(r, 0; g) + 7N(r, 1; f) + 7N(r, 1; g)

+5N

(
r, 0;

s∏
j=1

f(z + cj)
µj

)
+ 5N

(
r, 0;

s∏
j=1

g(z + cj)
µj

)
+S(r, f) + S(r, g)

≤ (5σ + 14){T (r, f) + T (r, g)}+ S(r, f) + S(r, g),
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from Lemmas 2.7 and 2.8 and proceeding similarly as in the proof of
Theorem 1.4, the conclusion of Theorem 1.6 follows.

Open Problems. In the paper, there are two open questions for further
research.

Question 3.1. What can we get if we consider transcendental mero-
morphic functions in Theorems 1.1 - 1.6?

Question 3.2. Can we relax the lower bound of n in Theorems 1.1
- 1.6?

Conclusion. In this paper some results of uniqueness problems of shift
polynomials of transcendental entire functions of finite order have been
extended and generalized with the help of weakly weighted sharing and
relaxed weighted sharing.
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