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ON THE GENOTYPE FREQUENCIES AND GENERATING

FUNCTION FOR FREQUENCIES IN A DYPLOID MODEL

Won Choi

Abstract. For a locus with two alleles (IA and IB), the frequencies of the alleles
are represented by

p = f(IA) =
2NAA + NAB

2N
, q = f(IB) =

2NBB + NAB

2N

where NAA, NAB and NBB are the numbers of IAIA, IAIB and IBIB respectively
and N is the total number of populations. The frequencies of the genotypes expected
are calculated by using p2, 2pq and q2. So in this paper, we consider the method of
whether some genotypes is in Hardy-Weinburg equilibrium. Also we calculate the
probability generating function for the offspring number of genotype produced by a
mating of the ith male and jth female under a diploid model of N population with
N1 males and N2 females. Finally, we have conditional joint probability generating
function of genotype frequencies.

1. Introduction

The gene population can be represented in term of allelic frequencies. There are
fewer alleles than genotypes, so the gene population can be represented in fewer term
when allelic frequencies are used.

For a locus with two alleles (IA and IB), the frequencies of the alleles are represented
by the p and q and p, q can be calculated as follows;

p = f(IA) =
2NAA +NAB

2N
, q = f(IB) =

2NBB +NAB

2N

where NAA, NAB and NBB are the numbers of IAIA, IAIB and IBIB respectively
and N is the total number of populations.

The alleles frequencies can be calculated from the genotype frequencies. To calculate
allelic frequencies from genotypic frequencies, we add the frequency of the homozygote
for each allele to half the frequency of the heterozygote( [3]);

p = f(IA) = f(IAIA) +
1

2
f(IAIB), q = f(IB) = f(IBIB) +

1

2
f(IAIB)
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For example, suppose NAA = 100, NAB = 150 and NBB = 50. Then we have

f(IAIA) = 0.333, f(IAIB) = 0.5, f(IBIB) = 0.1667

with round off to the proper digit. The allelic frequencies can be calculated from either
the numbers or the frequencies of the genotypes. To calculate allelic frequencies from
the numbers of genotypes, we try following calculations;

p = f(IA) =
2NAA +NAB

2N
= 0.583, q = f(IB) =

2NBB +NAB

2N
= 0.4167

To calculate the allelic frequencies from genotypic frequencies, we try following cal-
culations;

p = f(IA) = f(IAIA) +
1

2
f(IAIB) = 0.583

q = f(IB) = f(IBIB) +
1

2
f(IAIB) = 0.4167

The frequencies of the genotypes expected are calculated by using p2, 2pq and
q2. So in this paper, we consider the method of whether some genotypes is in these
probabalities. Also we calculate the probability generating function for the offspring
number of genotype under a diploid model of N population with N1 males and N2

females. Finally, we have conditional joint probability generating function of genotype
frequencies.

2. Main Results

If a population is large, randomly mating and not affected by mutation, migration
or natural selection, then the allelic frequencies of a population do not change and
the genotypic frequencies will not change after one generation in the proportion of
p2 (the frequency of IAIA), 2pq (the frequency of IAIB) and q2 (the frequency of
IBIB). Here p is the frequency of allele IA and q is the frequency of allele IB. When
genotypes are in the expected proportions of p2, 2pq, q2, the population is said to be
in Hardy-Weinburg equilibrium( [2], [3]).

The Hardy-Weinburg law indicated that when its conditions are satisfied, reproduc-
tion alone does not alter allelic or genotypic frequencies and the allelic frequencies
determine the frequencies of genotypes.

The frequencies of the genotypes expected under Hardy-Weinberg equilibrium are
calculated by using p2, 2pq and q2.

Example 1. In the example of Introduction, the frequencies of the genotypes ex-
pected under Hardy-Weinberg equilibrium are

f(IAIA) = p2 = 0.339889

f(IAIB) = 2pq = 0.4858722

f(IBIB) = q2 = 0.17438976.
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Multiplying each of these expected genotypic frequencies by the total number of ob-
served genotypes in the population, we get the numbers expected for each genotypes;

IAIA = 0.339889× 300 = 101.9667

IAIB = 0.4858722× 300 = 145.76166

IBIB = 0.17438976× 300 = 52.316928.

We determine whether the differences between the observed and the expected numbers
of each genotypes are due to chance.∑(observed− expected)2

expected

=
(100− 101.9667)2

101.9667
+

(150− 145.76166)2

145.76166
+

(50− 51.316928)2

51.316928
= 0.0379330594 + 0.1232390325 + 0.033795853 = 0.1949679449.

The value of chi-square is about 0.19 and the degree of freedom for Hardy-Weinberg
equilibrium is the number of expected genotypes classes minus the number of associ-
ated alleles. The chi-square value with 1 degree of freedom has very large probability.
Therefore the observed values differ from the expected value and genotypes observed
are likely to be in Hardy-Weinberg proportions.

Example 2. The fitness is defined as the relative reproductive success of a genotype
in case of natural selection( [2], [3]). We fine the fitness of Example 1 for each genotype
as following;

the fitness of IAIA =
100

150
= 0.6667

the fitness of IAIB =
150

150
= 1

the fitness of IBIB =
50

150
= 0.3333.

The selection coefficient is the relative intensity of selection against a genotype. There-
fore the selection coefficients of IAIA, IAIB and IBIB are 0.3333, 0 and 0.6667, re-
spectively.

Let us define a genotype by w = (x; y). Denote pn(x) by the probability that in
the n-th generation male (or female) individual transmits the gene x without any
mutation or gene conversion.

We begin with the following Lemma;

Lemma 1. The probability pn(x) is the same for all n and forms a stationary state
in the filial generation.

Proof. In case neither mutation nor gene conversion, mutation or gene conversion
rate is 1 for all k = 1, 2, · · · , r. Therefore we have

pn+1(x) = pn(x)
r∑

k=1

qkxpn(k) = pn(x)
r∑

k=1

pn(k) = pn(x)
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for n = 0, 1, 2, · · · and x = 1, 2, · · · , r where qij is mutation or gene conversion rate
from a partition i to another partition j( [1]). This formula means that

pn(x) = p0(x)

and the probability pn(x) without mutation or gene conversion is the same for all n.
See ( [1]) for the detail proof.

We consider a diploid model of N population with N1 males and N2 females. The
alleles will be represented by IA and IB. At time n the individuals are distributed

among the genotypes IAIA, IAIB and IBIB with N
(1)
n , N

(2)
n , · · · , N (6)

n , respectively.

For example, N
(2)
n = N1 −N (1)

n −N (3)
n and N

(5)
n = N2 −N (4)

n −N (6)
n .

Also, we consider the indepedent and identically distributed random variables Xij(i =
1, 2, · · · , N1; j = 1, 2, · · · , N2), the number of offsprings produced by a mating of the
ith male and jth female. Let the probability generating function(p.g.f.) for eachXij be

P (z) and let p
(w)
ij be the probability that an offspring of a mating of a male of genotype

x and a female of genotype y which is of w; x = 1, 2, 3; y = 1, 2, 3; w = 1, 2, · · · , 6.

Then we have;

Theorem 2. Suppose that at (n + 1)th generation, there are in all N1N2 matings
which take the kth male and the lth female (k = 1, 2, · · · , N1; l = 1, 2, · · · , N2). Let

G
(w)
kl be the number of offsprings of type w where w = 1, 2, · · · , 6 in the dyploid model

and qkl be the probability that a mating produces Xkl offspring.

The p.g.f. of G
(w)
kl is

N1∏
k=1

N2∏
l=1

{
∑
G

(w)
kl

∑
Xkl

(
Xkl

G
(1)
kl , G

(2)
kl , G

(3)
kl , G

(4)
kl , G

(5)
kl , G

(6)
kl

)
[

6∏
w=1

(p
(w)
kl r

(w)
kl )G

(w)
kl ]qkl}

Proof. Obviously Xkl are independent, Xkl =
∑6

w=1G
(w)
kl and

P (G
(w)
kl |Xkl) =

(
Xkl

G
(1)
kl , G

(2)
kl , G

(3)
kl , G

(4)
kl , G

(5)
kl , G

(6)
kl

) 6∏
w=1

(p
(w)
kl )G

(w)
kl

for w = 1, 2, · · · , 6. From the total probability theorem, we have

P (G
(w)
kl |Xkl) =

N1∏
k=1

N2∏
l=1

{
∑
Xkl

P (G
(w)
kl |Xkl)P (Xkl)}
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for w = 1, 2, · · · , 6; k = 1, 2, · · · , N1; l = 1, 2, · · · , N2. The p.g.f. of G
(w)
kl is

E{
N1∏
k=1

N2∏
l=1

6∏
w=1

r
(w)
kl

G
(w)
kl }

=

N1∏
k=1

N2∏
l=1

{
∑
G

(w)
kl

[(
6∏

w=1

r
(w)
kl

G
(w)
kl

)
∑
Xkl

P (G
(w)
kl |Xkl)P (Xkl)]}

=

N1∏
k=1

N2∏
l=1

{
∑
G

(w)
kl

∑
Xkl

(
Xkl

G
(1)
kl , G

(2)
kl , G

(3)
kl , G

(4)
kl , G

(5)
kl , G

(6)
kl

)
[

6∏
w=1

(p
(w)
kl r

(w)
kl )G

(w)
kl ]qkl}.

Suppose that the generation n+ 1 has N1 males and N2 = N −N1 females. If the
parbability of an offspring being male is p1 and female p2, the probability of having
N1 males and N2 females from N1N2 matings of parents in the ith generation is

thecoefficient of zN1
1 zN2

2 in [P (p1z1 + p2z2)]
N1N2 .

Then we meet with;

Theorem 3. The conditional expection of

6∏
w=1

r(w)N
(w)
n+1 ,

given N
(1)
n , N

(2)
n , · · · , N (6)

n is the product of

{the coefficient of zN1
1 zN2

2 in [P (p1z1 + p2z2)]
N1N2}−1

and the coefficient of zN1
1 zN2

2 in

3∏
i=1

6∏
j=4

[P{z1(
3∑

w=1

p
(w)
ij r

(w)) + z2(
6∑

w=4

p
(w)
ij r

(w))}]N
(i)
n N

(j)
n .

Proof. Theorem 2 can be represented by

N1∏
k=1

N2∏
l=1

{
∑
Xkl

(p
(1)
kl r

(1)
kl + p

(2)
kl r

(2)
kl + · · ·+ p

(6)
kl rkl)

(6))Xklqkl}

N1∏
k=1

N2∏
l=1

P (p
(1)
kl r

(1)
kl + p

(2)
kl r

(2)
kl + · · ·+ p

(6)
kl r

(6)
kl ).

We know that there are N
(i)
n N

(j)
n matings of a male of genotype i and a female of

genotype j (i, j = 1, 2, 3). Therefore the population at generation n+ 1 is

N
(w)
n+1 =

N1∑
k=1

N2∑
l=1

G
(w)
kl , w = 1, 2, · · · , 6
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and we have

E[
6∏

w=1

r(w)N
(w)
n+1|N (1)

n , N (2)
n , · · · , N (6)

n ] =
3∏

i=1

6∏
j=4

[P (p
(1)
ij r

(1)+p
(2)
ij r

(2)+· · ·+p(6)ij r
(6))]N

(i)
n N

(j)
n

Therefore we get the joint probability generating function for N
(1)
n+1, N

(2)
n+1, · · · , N

(6)
n+1

conditional on N1 = N
(1)
n+1 +N

(2)
n+1 +N

(3)
n+1 and N2 = N

(4)
n+1 +N

(5)
n+1 +N

(6)
n+1 and we have

the result, given the population at the ith generation.

Remark. In Theorem 2 and Theorem 3, p
(w)
ij can be represented by pn(x). By Lemma

1, p1(A) = p4(A), p2(A) = p5(A) and p1(B) = p4(B), p2(B) = p5(B). So in case of a
model allowing mutation, we have

p
(1)
11 = p21(A)pk = (1− γ1)2pk

where γ1 is the probability of a mutation from A to B.
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