
Korean J. Math. 29 (2021), No. 1, pp. 81–89
http://dx.doi.org/10.11568/kjm.2021.29.1.81

APPROXIMATION OPERATORS AND FUZZY ROUGH SETS IN

CO-RESIDUATED LATTICES

Ju-Mok Oh and Yong Chan Kim∗,†

Abstract. In this paper, we introduce the notions of a distance function, Alexan-
drov topology and 	-upper (⊕-lower) approximation operator based on complete
co-residuated lattices. Under various relations, we define (⊕,	)-fuzzy rough set on
complete co-residuated lattices. Moreover, we study their properties and give their
examples.

1. Introduction

Pawlak [15,16] introduced the rough set theory as a formal tool to deal with impre-
cision and uncertainty in the data analysis. For an extension of Pawlak’s rough sets,
many researchers [1-11,19,20,24] developed lower and upper approximation operators.
Radzikowska et al.[17,18] investigated (I, T )-generalized fuzzy rough set where T is a
t-norm and I is an implication. J.S.Mi et al.[14] investigated (S, T )-generalized fuzzy
rough set where T is a t-norm and S(a, b) = 1− T (1− a, 1− b) is an implication.

Ward et al.[23] introduced a complete residuated lattice which is an algebraic struc-
ture for many valued logic [3-5]. It is an important mathematical tool as algebraic
structures for many valued logics [1-11,19,20]. Using this concepts, fuzzy rough sets,
information systems and decision rules were investigated in complete residuated lat-
tices [1,2,7,20,25]. Moreover, Zheng et al.[25] introduced a complete co-residuated
lattice as the generalization of t-conorm. Junsheng et al.[7] investigated (�,&)-
generalized fuzzy rough set on (L,∨,∧,�,&, 0, 1) where (L,∨,∧,&, 0, 1) is a complete
residuated lattice and (L,∨,∧,�, 0, 1) is complete co-residuated lattice in a sense [13].

As the study of rough set theory and topological structures, many researchers [1,6-
9,12,14,15,17,21] investigated the Alexandrov topology and lattice structures of fuzzy
rough sets determined by lower and upper sets. In particular, Kim [8-11] introduce
the notion of Alexandrov topologies as a topological viewpoint of fuzzy rough sets and
studied the relations among fuzzy preorders, lower and upper approximation operators
and Alexandrov topologies in complete residuated lattices.
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In this paper, we introduce the notions of distance functions, Alexandrov topologies
and 	-upper (⊕-lower) approximation operators based on complete co-residuated
lattices (L,∨,∧,⊕, 0, 1). Under various relations, we define (⊕,	)-fuzzy rough set on
complete co-residuated lattices (L,∨,∧,⊕, 0, 1) where 	 is induced by ⊕. Moreover,
we study their properties and give their examples.

2. Preliminaries

Definition 2.1. [7,25] An algebra (L,∧,∨,⊕, 0, 1) is called a complete co-residuated
lattice if it satisfies the following conditions:

(Q1) L = (L,≤,∨,∧, 0, 1) is a complete lattice where 0 is the bottom element and
1 is the top element.

(Q2) a = a⊕ 0, a⊕ b = b⊕ a and a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ L.
(Q3) (

∧
i∈Γ ai)⊕ b =

∧
i∈Γ(ai ⊕ b).

Let (L,≤,⊕) be a complete co-residuated lattice. For each x, y ∈ L, we define

x	 y =
∧
{z ∈ L | y ⊕ z ≥ x}.

Then (x⊕ y) ≥ z iff x ≥ (z 	 y).

In this paper, we assume (L,∧,∨,⊕,	, 0, 1) is a complete co-residuated lattice.
For α ∈ L,A ∈ LX , we denote (α 	 A), (α ⊕ A), αX ∈ LX as (α 	 A)(x) = α 	
A(x), (α⊕ A)(x) = α⊕ A(x), αX(x) = α.

Put N(x) = 1 	 x. The condition N(N(x)) = x for each x ∈ L is called a double
negative law.

Remark 2.2. (1) An infinitely distributive lattice (L,≤,∨,∧,⊕ = ∨, 0, 1) is
a complete co-residuated lattice. In particular, the unit interval ([0, 1],≤,∨,∧,⊕ =
∨, 0, 1) is a complete co-residuated lattice [7,25].

x	 y =
∧
{z ∈ L | y ∨ z ≥ x}

=

{
0, if y ≥ x,
x, if y 6≥ x.

Put N(x) = 1 	 x = 1 for x 6= 1 and N(1) = 0. Then N(N(x)) = 0 for x 6= 1 and
N(N(1)) = 1. Hence N does not satisfy a double negative law.

(2) The unit interval with a right-continuous t-conorm ⊕, ([0, 1],≤,⊕), is a com-
plete co-residuated lattice [7.25].

(3) ([1,∞],≤,∨,⊕ = ·,∧, 1,∞) is a complete co-residuated lattice where

x	 y =
∧
{z ∈ [1,∞] | yz ≥ x}

=

{
1, if y ≥ x,
x
y
, if y 6≥ x.

∞ · a = a · ∞ =∞,∀a ∈ [1,∞],∞	∞ = 1.

Put N(x) = ∞	 x = ∞ for x 6= ∞ and N(∞) = 1. Then N(N(x)) = 1 for x 6= ∞
and N(N(∞)) =∞. Hence N does not satisfy a double negative law.

(4) ([0,∞],≤,∨,⊕ = +,∧, 0,∞) is a complete co-residuated lattice where

y 	 x =
∧
{z ∈ [0,∞] | x+ z ≥ y}

=
∧
{z ∈ [0,∞] | z ≥ −x+ y} = (y − x) ∨ 0,

∞+ a = a+∞ =∞,∀a ∈ [0,∞],∞	∞ = 0.
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Put N(x) = ∞	 x = ∞ for x 6= ∞ and N(∞) = 0. Then N(N(x)) = 0 for x 6= ∞
and N(N(∞)) =∞. Hence N does not satisfy a double negative law.

(5) ([0, 1],≤,∨,⊕,∧, 0, 1) is a complete co-residuated lattice where

x⊕ y = (xp + yp)
1
p 1 ≤ p <∞,

x	 y =
∧
{z ∈ [0, 1] | (zp + yp)

1
p ≥ x}

=
∧
{z ∈ [0, 1] | z ≥ (xp − yp)

1
p} = (xp − yp)

1
p ∨ 0,

Put N(x) = 1 	 x = (1 − xp)
1
p for 1 ≤ p < ∞. Then N(N(x)) = x for x ∈ [0, 1].

Hence N satisfies a double negative law.
(6) Let P (X) be the collection of all subsets of X. Then (P (X),⊂,∪,∩,⊕ =

∪, ∅, X) is a complete co-residuated lattice where

A	B =
∧
{C ∈ P (X) | B ∪ C ⊃ A}

= A ∩Bc = A−B.
Put N(A) = X 	 A = Ac for each A ⊂ X. Then N(N(A)) = A. Hence N satisfies a
double negative law.

Lemma 2.3. [11] Let (L,∧,∨,⊕,	, 0, 1) be a complete co-residuated lattice. For
each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, (x⊕ y) ≤ (x⊕ z), y 	 x ≤ z 	 x and x	 z ≤ x	 y.
(2) (

∨
i∈Γ xi)	 y =

∨
i∈Γ(xi 	 y) and x	 (

∧
i∈Γ yi) =

∨
i∈Γ(x	 yi).

(3) (
∧
i∈Γ xi)	 y ≤

∧
i∈Γ(xi 	 y)

(4) x	 (
∨
i∈Γ yi) ≤

∧
i∈Γ(x	 yi).

(5) x	 x = 0, x	 0 = x and 0	 x = 0. Moreover, x	 y = 0 iff x ≤ y.
(6) y ⊕ (x	 y) ≥ x, y ≥ x	 (x	 y) and (x	 y)⊕ (y 	 z) ≥ x	 z.
(7) x	 (y ⊕ z) = (x	 y)	 z = (x	 z)	 y.
(8) x	 y ≥ (x⊕ z)	 (y ⊕ z), y 	 x ≥ (z 	 x)	 (z 	 y) and (x⊕ y)	 (z ⊕ w) ≤

(x	 z)⊕ (y 	 w).
(9) x⊕ y = 0 iff x = 0 and y = 0.
(10) (x⊕ y)	 z ≤ x⊕ (y 	 z) and (x	 y)⊕ z ≥ x	 (y 	 z).
(11) If L satisfies a double negative law and N(x) = 1 	 x, then N(x ⊕ y) =

N(x)	 y = N(y)	 x and x	 y = N(y)	N(x). Moreover, N(
∨
i∈Γ xi) =

∧
i∈Γ N(xi)

and N(
∧
i∈Γ xi) =

∨
i∈Γ N(xi).

Definition 2.4. [11] Let (L,∧,∨,⊕,	, 0, 1) be a complete co-residuated lattice.
Let X be a set. A function dX : X ×X → L is called a distance function if it satisfies
the following conditions:

(M1) dX(x, x) = 0 for all x ∈ X,
(M2) dX(x, y)⊕ dX(y, z) ≥ dX(x, z), for all x, y, z ∈ X,
(M3) If dX(x, y) = dX(y, x) = 0, then x = y.
The pair (X, dX) is called a distance space.

Remark 2.5. (1) We define a distance function dX : X × X → [0,∞]. Then
(X, dX) is called a pseudo-quasi-metric space.

(2) Let (L,∧,∨,⊕,	, 0, 1) be a complete co-residuated lattice. Define a function
dL : L × L → L as dL(x, y) = x 	 y. By Lemma 2.3 (5) and (8), (L, dL) is a dis-
tance space. Moreover, we define a function dLX : LX × LX → L as dLX (A,B) =∨
x∈X(A(x)	B(x)). Then (LX , dLX ) is a distance space.
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(3) We define a function d[0,∞]X : [0,∞]X × [0,∞]X → [0,∞] as d[0,∞]X (A,B) =∨
x∈X(A(x)	B(x)) =

∨
x∈X((B(x)−A(x)) ∨ 0). Then ([0,∞]X , d[0,∞]X ) is a pseudo-

quasi-space.
(4) If (X, dX) is a distance space and we define a function d−1

X (x, y) = dX(y, x),
then (X, d−1

X ) is a distance space.
(5) Let (L,∧,∨,⊕,	, 0, 1) be a complete co-residuated lattice. Let (X, dX) be

a distance space and define (dX ] dX)(x, z) =
∧
y∈X(dX(x, y) ⊕ dX(y, z)) for each

x, z ∈ X. By (M2), (dX ] dX)(x, z) ≥ dX(x, z) and (dX ] dX)(x, z) ≤ dX(x, x) ⊕
dX(x, z) = d(x, z). Hence (dX ] dX) = dX .

3. Approximation operators and fuzzy rough sets

Definition 3.1. A subset τ ⊂ LX is called an Alexandrov topology on X iff it
satisfies the following conditions:

(O1) αX ∈ τ .
(O2) If Ai ∈ τ for all i ∈ I, then

∨
i∈I Ai,

∧
i∈I Ai ∈ τ .

(O3) If A ∈ τ and α ∈ L, then A	 α, α⊕ A ∈ τ .

Definition 3.2. A map J : LX → LX is called an 	-upper approximation
operator if it satisfies the following conditions, for all A,Ai ∈ LX , and α ∈ L,

(J1) J (A	 α) = J (A)	 α,
(J2) J (

∨
i∈I Ai) =

∨
i∈I J (Ai),

(J3) J (A) ≥ A and J (J (A)) = J (A).

Definition 3.3. A map H : LX → LX is called an ⊕-lower approximation
operator if it satisfies the following conditions, for all A,Ai ∈ LX , and α ∈ L,

(H1) H(α⊕ A) = α⊕H(A),
(H2) H(

∧
i∈I Ai) =

∧
i∈I H(Ai),

(H3) H(A) ≤ A and H(H(A)) = H(A).
Let H (resp. J ) be ⊕-lower (resp. 	-upper) approximation operator on X. As

a generalization of fuzzy rough set, the pair (H(A),J (A)) is called an (⊕,	)-fuzzy
rough set for A ∈ LX .

The map α : LX → L is an fuzzy accuracy measure defined, for A ∈ LX

α(A) =
∨
x∈X

(J (A)(x)	H(A)(x)).

Theorem 3.4. Let dX ∈ LX×X be a distance function. Define JdX ,HdX : LX →
LX as follows

JdX (B)(x) =
∨
y∈X(B(y)	 dX(x, y)),

HdX (A)(y) =
∧
x∈X(A(x)⊕ dX(x, y)).

Then the followings hold.
(1) JdX is an 	-upper approximation operator.
(2) HdX is an ⊕-lower approximation operator. Moreover, (HdX (A),JdX (A)) is an

(⊕,	)-fuzzy rough set for A ∈ LX .
(3) JdX (αX) = αX , JdX (dX(x,−)) = dX(x,−) and α ⊕ JdX (A) ≥ JdX (α ⊕ A) for

each α ∈ L,A ∈ LX and JdX (A) ≤ JdX (B) for A ≤ B.
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(4) HdX (αX) = αX , HdX (dX(x,−)) = dX(x,−) and HdX (A)	α ≤ HdX (A	α) for
each α ∈ L,A ∈ LX and HdX (A) ≤ HdX (B) for A ≤ B.

(5) HdX (A) =
∨
{B | JdX (B) ≤ A} and JdX (α	A) = α	Hd−1

X
(A), for all A ∈ LX .

(6) JdX (B) =
∧
{A | HdX (A) ≥ B}.

(7) For each A,B ∈ LX , HdX (JdX (B)) = JdX (B) and JdX (HdX (A)) = HdX (A)
(8) τdX = {A ∈ LX | A(x)⊕dX(x, y) ≥ A(y)} is an Alexandrov topology on X with

dX(x,−), (α	 dX(−, x)) ∈ τdX . Moreover,

τdX = {HdX (A) | A ∈ LX} = {
∧
y∈X(A(y)⊕ dX(y,−)) | A ∈ LX}

= {JdX (A) | A ∈ LX} = {
∨
y∈X(A(y)	 dX(−, y)) | A ∈ LX}.

Proof. (1) (J1) For each A ∈ LX and α ∈ L, by Lemma 2.3 (7),

JdX (A	 α)(x) =
∨
y∈X((A(y)	 α)	 dX(x, y))

=
∨
y∈X((A(y)	 dX(x, y))	 α = JdX (A)(x)	 α.

(J2) For each Ai ∈ LX , by Lemma 2.3(2), JdX (
∨
i∈ΓAi) =

∨
i∈Γ JdX (Ai).

(J3) For each A ∈ LX , JdX (A)(x) =
∨
y∈X(A(y) 	 dX(x, y)) ≥ A(x) 	 dX(x, x) =

A(x).
For each A ∈ LX ,

JdX (JdX (A))(x) =
∨
y∈X(JdX (A)(y)	 dX(x, y))

=
∨
y∈X(

∨
z∈X(A(z)	 dX(y, z))	 dX(x, y))

=
∨
y∈X(

∨
z∈X((A(z)	 dX(y, z))	 dX(x, y))) (by Lemma 2.3 (2))

=
∨
y,z∈X(A(z)	 (dX(y, z)⊕ dX(x, y))) (by Lemma 2.3 (7))

=
∨
z∈X(A(z)	

∧
y∈X(dX(y, z)⊕ dX(x, y))) (by Lemma 2.3 (2))

=
∨
z∈X(A(z)	 dX(x, z)) = JdX (A)(x).

Hence JdX is an 	-upper approximation operator.
(2) (H1) HdX (α ⊕ A)(y) =

∧
x∈X((α ⊕ A)(x) ⊕ dX(x, y)) = α ⊕

∧
x∈X(A(x) ⊕

dX(x, y)) = α⊕HdX (A)(y).
(H2)HdX (

∧
i∈ΓAi) =

∧
x∈X(

∧
i∈Γ Ai(x)⊕dX(x, y)) =

∧
i∈Γ(
∧
x∈X(Ai(x)⊕dX(x, y)) =∧

i∈ΓHdX (Ai)(y).
(H3) HdX (A)(y) =

∨
x∈X(A(x)⊕ dX(x, y)) ≤ A(y)⊕ dX(y, y) = A(y).

For all B ∈ LX , z ∈ X,

HdX (HdX (A))(z) =
∧
x∈X(HdX (A)(x)⊕ dX(x, z))

=
∧
x∈X(

∧
y∈X(A(y)⊕ dX(y, x))⊕ dX(x, z))

=
∧
y∈X(A(y)⊕

∧
x∈X(dX(y, x)⊕ dX(x, z)))

=
∧
y∈X(A(y)⊕ dX(y, z)) = HdX (A)(z).

Hence HdX is an ⊕-lower approximation operator.
(3) Since JdX (αX)(x) =

∨
y∈X(αX(y) 	 dX(x, y)) ≤ α, by (J3), JdX (αX) = αX .

For each x, z ∈ X,

JdX (dX(x,−))(z) =
∨
y∈X

(dX(x, y)	 dX(z, y)) = dX(x, z).
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For each A ∈ LX and α ∈ L,

α⊕ JdX (A)(x) = α⊕
∨
y∈X(A(y)	 dX(x, y))

≥
∨
y∈X(α⊕ (A(y)	 dX(x, y)))

≥
∨
y∈X((α⊕ A)(y)	 dX(x, y)) (by Lemma 2.3 (10))

= JdX (α⊕ A)(x).

For A ≤ B, JdX (A) ≤ JdX (B).
(4) Since HdX (αX)(y) =

∧
x∈X(αX(x)⊕ dX(x, y)) ≥ α, HdX (αX) = αX . For x, z ∈

X,

HdX (dX(x,−))(z) =
∧
y∈X

(dX(x, y)⊕ dX(y, z)) = dX(x, z).

For each A ∈ LX and α ∈ L,

HdX (A	 α)(z) =
∧
x∈X((A	 α)(x)⊕ dX(x, z))

≥
∧
x∈X((A(x)⊕ dX(x, z))	 α)

≥
∧
x∈X(A(x)⊕ dX(x, z))	 α

= HdX (A)(z)	 α.

(5) By (J2), for each A ∈ LX ,∨
{B(y) | JdX (B)(x) ≤ A(x)} =

∨
{B(y) |

∨
y∈Y (B(y)	 dX(x, y)) ≤ A(x)}

=
∧
x∈X(dX(x, y)⊕ A(x)) = HdX (A)(y).

For all B ∈ LX , x ∈ X,

JdX (α	B)(x) =
∨
y∈X((α	B(y))	 dX(x, y))

=
∨
y∈X((α	 (B(y)⊕ dX(x, y)) (by Lemma 2.3 (7))

= α	
∨
y∈X((B(y)⊕ dX(x, y))

= α	Hd−1
X

(B)(x)

(6) By (H2), for each B ∈ LX ,∧
{A(x) | HdX (A)(y) ≥ B(y)}

=
∧
{A(x) |

∧
x∈X(A(x)⊕ dX(x, y)) ≥ B(y)}

=
∨
y∈Y (B(y)	 dX(x, y)) = JdX (B)(x).

(7) For each B ∈ LX ,

HdX (JdX (B))(z) =
∧
x∈X(JdX (B)(x)⊕ dX(x, z))

=
∧
x∈X(

∨
y∈X(B(y)	 dX(x, y))⊕ dX(x, z))

≥
∧
x∈X

∨
y∈X((B(y)	 dX(x, y))⊕ dX(x, z))

≥
∧
x∈X

∨
y∈X(B(y)	 (dX(x, y)	 dX(x, z))) (by Lemma 2.3 (10))

≥
∨
y∈X(B(y)	

∨
x∈X(dX(x, y)	 dX(x, z)))

≥
∨
y∈X(B(y)	 dX(z, y)) = JdX (B)(z),

JdX (HdX (B))(x) =
∨
y∈X(HdX (B)(y)	 dX(x, y))

=
∨
y∈X(

∧
z∈X(B(z)⊕ dX(z, y))	 dX(x, y))

≤
∨
y∈X

∧
z∈X((B(z)⊕ dX(z, y))	 dX(x, y))

≤
∨
y∈X

∧
z∈X(B(z)⊕ (dX(z, y)	 dX(x, y)) (by Lemma 2.3 (10))

≤
∧
z∈X(B(z)⊕

∨
y∈X(dX(z, y)	 dX(x, y))

=
∧
z∈X(B(z)⊕ dX(x, z)) = HdX (B)(x).

(8) (O1) Since αX(x)⊕ dX(x, y) ≥ αX(y), αX ∈ τdX .
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(O2) If Ai ∈ τdX for all i ∈ I,
∨
i∈I Ai(x) ⊕ dX(x, y) ≥

∨
i∈I(Ai(x) ⊕ dX(x, y)) ≥∨

i∈I Ai(y) and
∧
i∈I Ai(x) ⊕ dX(x, y) =

∧
i∈I(Ai(x) ⊕ dX(x, y)) ≥

∧
i∈I Ai(y). Hence∨

i∈I Ai,
∧
i∈I Ai ∈ τdX .

(O3) If A ∈ τdX and α ∈ L, then dX(x, y)⊕(A(x)	α)⊕α ≥ dX(x, y)⊕A(x) ≥ A(y).
Thus dX(x, y)⊕ (A(x)	 α) ≥ A(y)	 α. So A	 α ∈ τdX . Easily, α⊕ A ∈ τdX .

Since dX(x,−)(y)⊕ dX(y, z) ≥ dX(x,−)(z), dX(x,−) ∈ τdX . Since

(α	 dX(−, x))(y)⊕ dX(y, z)⊕ dX(z, x)
≥ (α	 dX(−, x))(y)⊕ dX(y, x) ≥ α,

(α	 dX(−, x))(y)⊕ dX(y, z) ≥ α	 dX(z, x), that is, (α	 dX(−, x)) ∈ τdX .

For A ∈ τdX , A =
∧
x∈X(A(x)⊕ dX(x,−)) = HdX (A) ∈ τdX and A =

∨
x∈X(A(x)	

dX(−, x)) = JdX (A) ∈ τdX .

Theorem 3.5. (1) Let H : LX → LX be an ⊕-lower approximation operator iff
there exist a distance function dH on X such that

H(A)(y) =
∧
x∈X

(A(x)⊕ dH(x, y)).

(2) If L satisfies a double negative law, then J : LX → LX be an 	-upper approx-
imation operator iff there exist a distance function dJ on X such that

J (B)(x) =
∨
y∈X

(B(y)	 dJ (x, y)).

Proof. (1) (⇒) Put dH : X ×X → L as dH(x, y) = H(0x)(y) where 0x(x) = 0 and
0x(y) = 1 for x 6= y ∈ X.

(M1) dH(x, x) = H(0x)(x) ≤ 0x(x) = 0.

(M2) Since A =
∧
y∈X(A(y)⊕ 0y) and H(0x) =

∧
y∈X(H(0x)(y)⊕ 0y),∧

y∈X(dH(x, y)⊕ dH(y, z))
=
∧
y∈X(H(0x)(y)⊕H(0y)(z)) ( by (H2))

= H(
∧
y∈X(H(0x)(y)⊕ 0y)(z)) = H(H(0x))(z)

= H(0x)(z) = dH(x, z).

Hence dH is a distance function. Moreover,

H(A)(y) = H(
∧
x∈X(A(x)⊕ 0x))(y)

=
∧
x∈X(A(x)⊕H(0x)(y))

=
∧
x∈X(A(x)⊕ dH(x, y))).

(⇐) It follow from Theorem 3.4(2).

(2) (⇒) Put dJ : X ×X → L as dJ (x, y) = N(J (N(0y))(x) where 0x(x) = 0 and
0x(y) = 1 for x 6= y ∈ X.

(M1) Since J (N(0x) ≥ N(0x, dJ (x, x) = N(J (N(0x))(x) ≤ N(N(0x)(x) = 0.



88 Ju-Mok Oh and Yong Chan Kim

(M2) Since A =
∧
y∈X(A(y)⊕0y), N(A) =

∧
y∈X(N(A)(y)⊕0y), by Lemma 2.3(11),

A =
∨
y∈X(N(0y)	N(A)(y)),

N(
∧
y∈X(dJ (x, y)⊕ dJ (y, z)))

=
∨
y∈X(N(NJ (N(0y))(x)⊕NJ (N(0z))(y))) ( by (H2))

=
∨
y∈X(J (N(0y))(x)	N(J (N(0z))(y))) ( by (H2))

= J (
∨
y∈X((N(0y))(x)	N(J (N(0z))(y)))) ( by (H2))

= J (J (N(0z)))(x) = J (N(0z))(x)
= N(dJ (x, z)).

Hence dJ is a distance function. Moreover,

J (B)(x) = J (
∨
y∈Y (N(0y)(x)	N(B)(y))

=
∨
y∈Y (J (N(0y))(x)	N(B)(y))

=
∨
y∈Y (B(y)	N(J (N(0y)))(x))

=
∨
y∈Y (B(y)	 dJ (x, y))).

(⇐) It follow from Theorem 3.4(1).

Example 3.6. Let X = {x, y, z} be a set and (L = {0, 1
4
, 1

2
, 3

4
, 1},⊕,	, 0, 1) be a

complete co-residuated lattice with

x⊕ y = 1 ∧ (x+ y), x	 y = (x− y) ∨ 0.

Define d1
X , dX : X ×X → L as

d1
X =

 0 1 1
4

1
2

0 1
4

3
4

1
2

0

 , dX =

 0 3
4

1
4

1
2

0 1
4

3
4

1
2

0


Since d1

X(x, z)⊕ d1
X(z, y) = 1

4
+ 1

2
6≥ d1

X(x, y) = 1, d1
X is not a distance function. Since

dX ] dX = dX from Remark 2.5(5), dX is a distance function.
By Theorem 3.4(8), we obtain an Alexandrov topology τdX = {HdX (C) | C ∈

LX} = {JdX (D) | D ∈ LX} where

HdτX
(C) =

∧
x∈X(C(x)⊕ dτX (x,−))

=

 C(x) ∧ (C(y) + 1
2
) ∧ (C(z) + 3

4
)

(C(x) + 3
4
) ∧ C(y) ∧ (C(z) + 1

2
)

(C(x) + 1
4
) ∧ (C(y) + 1

4
) ∧ C(z)


JdτX (D) =

∨
x∈X(D(x)	 dτX (−, x))

=

 D(x) ∨ (D(y)− 3
4
) ∨ (D(z)− 1

4
)

(D(x)− 1
2
) ∨D(y) ∨ (D(z)− 1

4
)

(D(x)− 3
4
) ∨ (D(y)− 1

2
) ∨D(z)


The pair (HdX (A),JdX (A)) is an (⊕,	)-fuzzy rough set for A ∈ LX .
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