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UNIFIED INTEGRAL OPERATOR INEQUALITIES VIA CONVEX

COMPOSITION OF TWO FUNCTIONS

Lakshmi Narayan Mishra, Ghulam Farid∗, and Kahkashan Mahreen

Abstract. In this paper we have established inequalities for a unified integral op-
erator by using convexity of composition of two functions. The obtained results are
directly connected to bounds of various fractional and conformable integral operators
which are already known in literature. A generalized Hadamard integral inequal-
ity is obtained which further leads to its various versions for associated fractional
integrals. Further, some implicated results are discussed.

1. Introduction and Preliminary Results

The subject of fractional calculus has a lot of applications in science and engi-
neering. Like in biological population models, signal processing, optics and electro-
magnetic, use of fractional calculus is very helpful (see [3, 5] and references therein).
Specially, fractional integral inequalities have been studied by many authors using
convex functions as a tool.
The goal of this paper is to study a unified integral operator for convex composi-
tion of two functions. The considered operator has direct connection with several
fractional and conformable integral operators. We start with the definitions of gener-
alized Riemann-Liouville fractional integral operators.

Definition 1. [13] Let f : [a, b] → R be an integrable function. Also let g be
an increasing and positive function on (a, b], having a continuous derivative g′ on
(a, b). The left-sided and right-sided fractional integrals of a function f with respect
to another function g on [a, b] of order µ where R(µ) > 0 are defined by:

(1.1) µ
g Ia+f(x) =

1

Γ(µ)

∫ x

a

(g(x)− g(t))µ−1g′(t)f(t)dt, x > a

and

(1.2) µ
g Ib−f(x) =

1

Γ(µ)

∫ b

x

(g(t)− g(x))µ−1g′(t)f(t)dt, x < b,

where Γ(.) is the gamma function.
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Definition 2. [14] Let f : [a, b] → R be an integrable function. Also let g be
an increasing and positive function on (a, b], having a continuous derivative g′ on
(a, b). The left-sided and right-sided fractional integrals of a function f with respect
to another function g on [a, b] of order µ, k > 0 are defined by:

(1.3) µ
g I

k
a+f(x) =

1

kΓk(µ)

∫ x

a

(g(x)− g(t))
µ
k
−1g′(t)f(t)dt, x > a

and

(1.4) µ
g I

k
b−f(x) =

1

kΓk(µ)

∫ b

x

(g(t)− g(x))
µ
k
−1g′(t)f(t)dt, x < b,

where Γk(.) [16] is defined as follows:

(1.5) Γk(x) =

∫ ∞
0

tx−1e−
tk

k dt, <(x) > 0.

A generalized fractional integral operator containing an extended Mittag-Leffler
function is defined as follows:

Definition 3. [1] Let ω, µ, α, l, γ, c ∈ C, <(µ),<(α),<(l) > 0, <(c) > <(γ) > 0
with p ≥ 0, δ > 0 and 0 < k ≤ δ + <(µ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the

generalized fractional integral operators εγ,δ,k,cµ,α,l,ω,a+f and εγ,δ,k,cµ,α,l,ω,b−f are defined by:(
εγ,δ,k,cµ,α,l,ω,a+f

)
(x; p) =

∫ x

a

(x− t)α−1Eγ,δ,k,c
µ,α,l (ω(x− t)µ; p)f(t)dt,(1.6)

and (
εγ,δ,k,cµ,α,l,ω,b−f

)
(x; p) =

∫ b

x

(t− x)α−1Eγ,δ,k,c
µ,α,l (ω(t− x)µ; p)f(t)dt,(1.7)

where

(1.8) Eγ,δ,k,c
µ,α,l (t; p) =

∞∑
n=0

βp(γ + nk, c− γ)

β(γ, c− γ)

(c)nk
Γ(µn+ α)

tn

(l)nδ

is the extended generalized Mittag-Leffler function.

Recently, Farid defined a unified integral operator as follows:

Definition 4. [15] Let f, g : [a, b] −→ R, 0 < a < b, be the functions such that f
be positive and f ∈ L1[a, b], and g be differentiable and strictly increasing. Also let φ

x

be an increasing function on [a,∞) and α, l, γ, c ∈ C, p, µ, δ ≥ 0 and 0 < k ≤ δ + µ.
Then for x ∈ [a, b] the left and right integral operators are defined by

(1.9) (gF
φ,γ,δ,k,c
µ,α,l,a+ f)(x, ω; p) =

∫ x

a

Ky
x(Eγ,δ,k,c

µ,α,l , g;φ)f(y)d(g(y))

and

(1.10) (gF
φ,γ,δ,k,c
µ,α,l,b− f)(x, ω; p) =

∫ b

x

Kx
y (Eγ,δ,k,c

µ,α,l , g;φ)f(y)d(g(y)),

where the involved kernel is defined by

(1.11) Ky
x(Eγ,δ,k,c

µ,α,l , g;φ) =
φ(g(x)− g(y))

g(x)− g(y)
Eγ,δ,k,c
µ,α,l (ω(g(x)− g(y))µ; p).
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For suitable settings of functions φ, g and certain values of parameters included
in Mittag-Leffler function (1.8), some interesting consequences can be obtained which
are comprised in [15, Remarks 6 & 7]. Many authors have utilized fractional and
conformable integrals to obtain interesting generalized results, we refer readers to
[9–11, 17, 19, 21, 22, 25, 27, 28]. To derive the results for integral operators (1.9) and
(1.10), we need to recall the following definitions:

Definition 5. [23] A function f : I ⊆ R −→ R, where I is an interval in R is
called convex if

(1.12) f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ I and λ ∈ [0, 1].

Lemma 1. [23] Let f : I → R be convex and increasing function and g : J → R,
with Rang(g) ⊆ I, be convex. Then the composite function f ◦ g is convex on J .

Lemma 2. [6] Let f : [a, b] → R be a convex function. If f is symmetric about
a+ b

2
, then the following inequality holds:

(1.13) f

(
a+ b

2

)
≤ f(x), x ∈ [a, b].

Next, we give a property of the kernel given in (1.11), which will be useful for
finding the results of this paper.
P: Let g and φ

I
be increasing functions. Then for m < t < n, m,n ∈ [a, b], the kernel

Kn
m(Eγ,δ,k,c

µ,α′,l , g;φ) satisfies the following inequality:

(1.14) Km
t (Eγ,δ,k,c

µ,α′,l , g;φ)g′(t) ≤ Km
n (Eγ,δ,k,c

µ,α′,l , g;φ)g′(t).

This can be obtained from following two straightforward inequalities:

(1.15)
φ(g(t)− g(m))

g(t)− g(m)
g′(t) ≤ φ(g(n)− g(m))

g(n)− g(m)
g′(t),

(1.16) Eγ,δ,k,c
µ,α′,l (ω(g(t)− g(m))µ; p) ≤ Eγ,δ,k,c

µ,α′,l (ω(g(n)− g(m))µ; p).

The reverse of inequality (1.14) holds when g and φ
I

are of opposite monotonicity. For
further properties see [8].
The aim of this paper is to obtain inequalities in compact form for unified integral
operators by using convexity of composition of two functions. These inequalities
investigate further results for several known integral operators. In Section 2, upper
bounds of unified integral operators (1.9) and (1.10) are established by using composite
convex functions. Further by using an additional condition of symmetry, two sided
Hadamard type bounds are obtained. Moreover some bounds are studied by using
convexity of |f ′|. Some special cases are studied in Sections 3 & 4.

2. Main Results

Theorem 1. Let f : [a, b] → R be a positive convex function. Let u : J → R,
where Rang(u) ⊆ [a, b] be a differentiable and strictly increasing function, g be a
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strictly increasing function. Let φ
x

be an increasing function on [a, b] and α, l, γ, c ∈
R, p, µ, δ ≥ 0 and 0 < k ≤ δ + µ. Then for x ∈ [a, b] we have(

gF
φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(x, ω; p) ≤ Ka

x(Eγ,δ,k,c
µ,α,l , g;φ)(2.1)

× (g(x)− g(a))((f ◦ u)(x) + (f ◦ u)(a))

and (
gF

φ,γ,δ,k,c
µ,α,l,b− f ◦ u

)
(x, ω; p) ≤ Kx

b (Eγ,δ,k,c
µ,α,l , g;φ)(2.2)

× (g(b)− g(x))((f ◦ u)(x) + (f ◦ u)(b))

hence (
gF

φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(x, ω; p) +

(
gF

φ,γ,δ,k,c
µ,α,l,b− f ◦ u

)
(x, ω; p)(2.3)

≤ Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)(g(x)− g(a))((f ◦ u)(x) + (f ◦ u)(a))

+Kx
b (Eγ,δ,k,c

µ,α,l , g;φ)(g(b)− g(x))((f ◦ u)(x) + (f ◦ u)(b)).

Proof. By (P), the following inequality holds:

(2.4) Kt
x(E

γ,δ,k,c
µ,α,l , g;φ)g′(t) ≤ Ka

x(Eγ,δ,k,c
µ,α,l , g;φ)g′(t).

Using convexity of f on the identity u(t) = u(x)−u(t)
u(x)−u(a)

u(a)

+ u(t)−u(a)
u(x)−u(a)

u(x) we have

(2.5) f(u(t)) ≤ u(x)− u(t)

u(x)− u(a)
f(u(a)) +

u(t)− u(a)

u(x)− u(a)
f(u(x)).

The following integral inequality can be obtained from (2.4) and (2.5):∫ x

a

Kt
x(E

γ,δ,k,c
µ,α,l , g;φ)f(u(t))d(g(t))

≤ f(u(a))

u(x)− u(a)
Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)

∫ x

a

(u(x)− u(t))d(g(t))

+
f(u(x))

u(x)− u(a)
Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)

∫ x

a

(u(t)− u(a))d(g(t))

=
f(u(a))

u(x)− u(a)
Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)u(x)

∫ x

a

d(g(t))

− f(u(a))

u(x)− u(a)
Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)

∫ x

a

u(t)d(g(t))

+
f(u(x))

u(x)− u(a)
Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)

∫ x

a

u(t)d(g(t))

− f(u(x))

u(x)− u(a)
Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)u(a)

∫ x

a

d(g(t)).

In the last expression the second term is purely negative due to the conditions are
defined on functions f , u and g, and third term is purely positive. Therefore the
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following inequality holds:(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(x, ω; p) ≤ Ka

x(Eγ,δ,k,c
µ,α,l , g;φ)(g(x)− g(a))(2.6)

((f ◦ u)(x) + (f ◦ u)(a)).

Again, by (P), the following inequality holds:

(2.7) Kx
t (Eγ,δ,k,c

µ,α,l , g;φ)g′(t) ≤ Kx
b (Eγ,δ,k,c

µ,α,l , g;φ)g′(t).

On the other hand using convexity of f on the identity u(t) = u(t)−u(x)
u(b)−u(x)

u(b)+ u(b)−u(t)
u(b)−u(x)

u(x)

we have

(2.8) f(u(t)) ≤ u(t)− u(x)

u(b)− u(x)
f(u(b)) +

u(b)− u(t)

u(b)− u(x)
f(u(x)).

The following integral inequality is obtained from (2.7) and (2.8):(
gF

φ,γ,δ,k,c
µ,α,l,b− f ◦ u

)
(x, ω; p) ≤ Kx

b (Eγ,δ,k,c
µ,α,l , g;φ)(2.9)

(g(b)− g(x))((f ◦ u)(x) + (f ◦ u)(b)).

By adding (2.6) and (2.9), (2.3) is obtained.

Remark 1. By setting u(x) = x, [15, Theorem 8] can be obtained.

Corollary 1. Under the suppositions of Theorem 1, if (f ◦ u) ∈ L∞[a, b], then
the following inequalities hold:

(2.10)
∣∣∣(gF φ,γ,δ,k,c

µ,α,l,a+ f ◦ g
)

(x, ω; p)
∣∣∣ ≤ K‖f ◦ u‖∞,

and

(2.11)
∣∣∣(gF φ,γ,δ,k,c

µ,α,l,b− f ◦ g
)

(x, ω; p)
∣∣∣ ≤ K‖f ◦ u‖∞,

where K = (g(b)− g(a))Ka
b (Eγ,δ,k,c

µ,α,l , g;φ).

Proof. From (2.1) we have∣∣∣(gF φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(x, ω; p)

∣∣∣ ≤ Ka
b (Eγ,δ,k,c

µ,α,l , g;φ)(2.12)

× (g(b)− g(a))‖f ◦ u‖∞
that is (2.10) holds. Similarly, (2.2) gives (2.11).

We need the following lemma to prove the upcoming theorem:

Lemma 3. Let f : I → R be a convex and increasing function and let u : J → R,

Rang(u) ⊆ I be convex and symmetric about
a+ b

2
for a, b ∈ J . Then we have

(2.13) (f ◦ u)

(
a+ b

2

)
≤ (f ◦ u)(x)

for all x ∈ [a, b].

Proof. Since f and u are convex functions moreover f is increasing, therefore f ◦ u
is convex. Also u is symmetric about

a+ b

2
so is f ◦ u. Hence applying Lemma 2 we

get (2.13)
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The upcoming theorem provides the Hadamard type estimation of integral operators
(1.9) and (1.10).

Theorem 2. With the assumptions of Theorem 1, in addition if u is symmetric

about
a+ b

2
, then the following inequality holds:

(f ◦ u)

(
a+ b

2

)((
gF

φ,γ,δ,k,c
µ,α,l,b− 1

)
(a, ω; p)(2.14)

+
(
gF

φ,γ,δ,k,c
µ,α,l,a+ 1

)
(b, ω; p)

)
≤
(
gF

φ,γ,δ,k,c
µ,α,l,b− f ◦ u

)
(a, ω; p)

+
(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(b, ω; p) ≤ 2(g(b)− g(a))

×Ka
b (Eγ,δ,k,c

µ,α,l , g;φ) ((f ◦ u)(a) + (f ◦ u)(b)) .

Proof. By (P), the following inequality holds:

(2.15) Kt
x(E

γ,δ,k,c
µ,α,l , g;φ)g′(x) ≤ Ka

b (Eγ,δ,k,c
µ,α,l , g;φ)g′(x).

Using convexity of f on the identity u(t) = u(x)−u(a)
u(b)−u(a)

u(b)

+ u(b)−u(x)
u(b)−u(a)

u(a) we have

(2.16) f(u(x)) ≤ u(x)− u(a)

u(b)− u(a)
f(u(b)) +

u(b)− u(x)

u(b)− u(a)
f(u(a)).

The following integral inequality can be obtained from (2.15) and (2.16):∫ b

a

Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)f(u(x))d(g(x))

≤ f(u(b))

u(b)− u(a)
Ka
b (Eγ,δ,k,c

µ,α,l , g;φ)

∫ b

a

(u(x)− u(a))d(g(x))

+
f(u(a))

u(b)− u(a)
Ka
b (Eγ,δ,k,c

µ,α,l , g;φ)

∫ b

a

(u(b)− u(x))d(g(x)).

Integrating by parts the above inequality gives(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(b, ω; p) ≤ Ka

b (Eγ,δ,k,c
µ,α,l , g;φ)(2.17)

(g(b)− g(a))((f ◦ u)(a) + (f ◦ u)(b)).

Again, by (P), the following inequality holds:

(2.18) Kx
b (Eγ,δ,k,c

µ,α,l , g;φ)g′(x) ≤ Ka
b (Eγ,δ,k,c

µ,α,l , g;φ)g′(x).

The following inequality can be obtained from (2.16) and (2.18):(
gF

φ,γ,δ,k,c
µ,α,l,b− f ◦ u

)
(a, ω; p) ≤ Ka

b (Eγ,δ,k,c
µ,α,l , g;φ)(2.19)

(g(b)− g(a))((f ◦ u)(a) + (f ◦ u)(b)).

By adding (2.17 ) and (2.19), we have(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(b; p) +

(
gF

φ,γ,δ,k,c
µ,α,l,b− f ◦ u

)
(a; p)(2.20)

≤ 2(g(b)− g(a))Ka
b (Eγ,δ,k,c

µ,α,l , g;φ)((f ◦ u)(a)

+ (f ◦ u)(b)).
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Multiplying both sides of (2.13) by g′(x)Ka
x(Eγ,δ,k,c

µ,α,l , g;φ), then integrating over [a, b]
we get

(f ◦ u)

(
a+ b

2

)∫ b

a

Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)d(g(x))(2.21)

≤
∫ b

a

Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)(f ◦ u)(x)d(g(x)).

By using (1.10) of Definition 4 we get

(f ◦ u)

(
a+ b

2

)(
gF

φ,γ,δ,k,c
µ,α,l,b− 1

)
(a, ω; p) ≤

(
gF

φ,γ,δ,k,c
µ,α,l,b− f ◦ u

)
(a, ω; p).(2.22)

Multiplying both sides of (2.13) by Kx
b (Eγ,δ,k,c

µ,α,l , g;φ)g′(x) and integrating over [a, b] we
get

(f ◦ u)

(
a+ b

2

)(
gF

φ,γ,δ,k,c
µ,α,l,a+ 1

)
(b, ω; p) ≤

(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(b, ω; p),(2.23)

by adding (2.22) and (2.23), the following inequality is obtained:

(f ◦ u)

(
a+ b

2

)((
gF

φ,γ,δ,k,c
µ,α,l,b− 1

)
(a, ω; p)+

(
gF

φ,γ,δ,k,c
µ,α,l,a+ 1

)
(b, ω; p)

)
(2.24)

≤
(
gF

φ,γ,δ,k,c
µ,α,l,b− f ◦ u

)
(a, ω; p) +

(
gF

φ,γ,δ,k,c
µ,α,l,a+ f ◦ u

)
(b, ω; p).

From (2.20) and (2.24), inequality (2.14) is obtained.

Remark 2. By setting u(x) = x, [15, Theorem 22] can be obtained.

Theorem 3. Let f : [a, b] → R be a differentiable function. If |f ′| is convex. Let
u : J → R, where Rang(u) ⊆ [a, b] be a differentiable and strictly increasing function,
g is also a strictly increasing function. Let φ

x
be an increasing function and α, l, γ, c

∈ R, p, µ, δ ≥ 0 and 0 < k ≤ δ + µ. Then for x ∈ (a, b) we have

∣∣∣(gF φ,γ,δ,k,c
µ,α,l,a+ (f ′ ◦ u)

)
(x, ω; p) +

(
gF

φ,γ,δ,k,c
µ,α,l,b− (f ′ ◦ u)

)
(x, ω; p)

∣∣∣ ≤ Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)

(2.25)

× (g(x)− g(a))(|(f ′ ◦ u)(x)|+ |(f ′ ◦ u)(a)|)
+Kx

b (Eγ,δ,k,c
µ,α,l , g;φ)(g(b)− g(x))(|(f ′ ◦ u)(x)|+ |(f ′ ◦ u)(b)|).

Proof. Using convexity of |f ′| on the identity

u(t) = u(x)−u(t)
u(x)−u(a)

u(a) + u(t)−u(a)
u(x)−u(a)

u(x), x ∈ (a, b)

we have

|f ′(u(t))| ≤ u(x)− u(t)

u(x)− u(a)
|f ′(u(a))|+ u(t)− u(a)

u(x)− u(a)
|f ′(u(x))|,(2.26)

from which we can write

−
(
u(x)− u(t)

u(x)− u(a)
|f ′(u(a))|+ u(t)− u(a)

u(x)− u(a)
|f ′(u(x))|

)
(2.27)

≤ f ′(u(t)) ≤
(
u(x)− u(t)

u(x)− u(a)
|f ′(u(a))|+ u(t)− u(a)

u(x)− u(a)
|f ′(u(x))|

)
.
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Let first we consider the right hand side inequality of the above inequality i.e.

f ′(u(t)) ≤ u(x)− u(t)

u(x)− u(a)
|f ′(u(a))|+ u(t)− u(a)

u(x)− u(a)
|f ′(u(x))|.(2.28)

The following integral inequality can be obtained from (2.4) and (2.28):∫ x

a

Kt
x(E

γ,δ,k,c
µ,α,l , g;φ)f ′(u(t))d(g(t))

≤ |f ′(u(a))|
u(x)− u(a)

Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)

∫ x

a

(u(x)− u(t))d(g(t))

+
f ′(u(x))|
u(x)− u(a)

Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)

∫ x

a

(u(t)− u(x))d(g(t)),

which gives (
gF

φ,γ,δ,k,c
µ,α,l,a+ (f ′ ◦ u)

)
(x, ω; p) ≤ Ka

x(Eγ,δ,k,c
µ,α,l , g;φ)(2.29)

× (g(x)− g(a))(|(f ′ ◦ u)(x)|+ |(f ′ ◦ u)(a)|).

Now we consider the left hand side inequality from the inequality (2.27) and proceed
as we did for the right hand side inequality we have(

gF
φ,γ,δ,k,c
µ,α,l,a+ (f ′ ◦ u)

)
(x, ω; p) ≥ −Ka

x(Eγ,δ,k,c
µ,α,l , g;φ)(2.30)

× (g(x)− g(a))(|(f ′ ◦ u)(x)|+ |(f ′ ◦ u)(a)|).

From (2.29) and (2.30), the following inequality is obtained:∣∣∣(gF φ,γ,δ,k,c
µ,α,l,a+ (f ′ ◦ u)

)
(x, ω; p)

∣∣∣ ≤ Ka
x(Eγ,δ,k,c

µ,α,l , g;φ)(2.31)

× (g(x)− g(a))(|(f ′ ◦ u)(x)|+ |(f ′ ◦ u)(a)|).

On the other hand using convexity of |f ′(t)| on the identity u(t) = u(t)−u(x)
u(b)−u(x)

u(b) +
u(b)−u(t)
u(b)−u(x)

u(x) we have

(2.32) |f ′(u(t))| ≤ u(t)− u(x)

u(b)− u(x)
|f ′(u(b))|+ u(b)− u(t)

u(b)− u(x)
|f ′(u(x))|.

The following integral inequality can be obtained from (2.7) and (2.32):∣∣∣(gF φ,γ,δ,k,c
µ,α,l,b− (f ′ ◦ u)

)
(x, ω; p)

∣∣∣ ≤ Kx
b (Eγ,δ,k,c

µ,α,l , g;φ)(2.33)

× (g(b)− g(x))(|(f ′ ◦ u)(x)|+ |(f ′ ◦ u)(b)|).

From (2.31) and (2.33), inequality (2.25) is obtained.

Remark 3. By setting u(x) = x, [15, Theorem 25] can be obtained.

3. Hadamard type inequalities

In this section some interesting implications of Theorem 2 are obtained by setting
specific values of the functions φ and g in (2.14). These results actually give different
versions of Hadamard inequality for fractional and conformable integrals deduced
in [15, Remark 6] .
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Corollary 2. If we consider φ(t) = Γ(α)tα/k

kΓk(α)
and p = ω = 0, then (2.14) satisfies

the following Hadamard type inequality for generalized Riemann-Liouville fractional
integral operators for α ≥ k defined in [14]:

2

αΓK(α)
(f ◦ u)

(
a+ b

2

)
(g(b)− g(a))α/k

≤ α
g I

k
a+(f ◦ u)(b) +α

g I
k
b−(f ◦ u)(a)

≤ 2

kΓk(α)
(g(b)− g(a))α/k((f ◦ u)(a) + (f ◦ u)(b)).

Corollary 3. If we consider φ(t) = tα and g(x) = I(x) = x with p = ω = 0, then
(2.14) satisfies the following Hadamard type inequality for Riemann-Liouville integral
operators defined in [13]:

2

αΓ(α)
(f ◦ u)

(
a+ b

2

)
(b− a)α

≤ αIa+(f ◦ u)(b) + αIb−(f ◦ u)(a)

≤ 2

Γ(α)
(b− a)α((f ◦ u)(a) + (f ◦ u)(b)).

Corollary 4. If we consider φ(t) = tα/kΓ(α)
kΓk(α)

and g(x) = I(x) = x, p = ω = 0,

then (2.14) satisfies the following Hadamard type inequality for k-fractional Riemann-
Liouville integral operators along with α ≥ k defined in [17]:

2

αΓk(α)
(f ◦ u)

(
a+ b

2

)
(g − a)α/k

≤ αIka+(f ◦ u)(b) +α Ikb−(f ◦ u)(a)

≤ 2

kΓk(α)
(g − a)α/k((f ◦ u)(a) + (f ◦ u)(b)).

Corollary 5. If we consider φ(t) = tα, α > 0 and g(x) = xρ

ρ
, ρ > 0 with p =

ω = 0, then (2.14) satisfies the following Hadamard type inequality for Katugampola
fractional integral operators defined in [2]:

2

ρααΓ(α)
(bρ − aρ)α(f ◦ u)

(
a+ b

2

)
≤ ρIαa+(f ◦ u)(b) +ρ Iαb−(f ◦ u)(a)

≤ 2

ραΓ(α)
(bρ − aρ)α((f ◦ u)(a) + (f ◦ u)(b)).

Corollary 6. If we consider φ(t) = tα, α > 0 and g(x) = xs+1

s+1
, s > 0, p = ω = 0,

then (2.14) satisfies the following Hadamard type inequality for conformable integral
operators:

2

(s+ 1)ααΓ(α)
(bs+1 − as+1)α(f ◦ u)

(
a+ b

2

)
≤ sIαa+(f ◦ u)(b) +s Iαb−(f ◦ u)(a)

≤ 2

(s+ 1)αΓ(α)
(bs+1 − as+1)α((f ◦ u)(a) + (f ◦ u)(b)).
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Corollary 7. If we consider φ(t) = tα/kΓ(α)
kΓk(α)

and g(x) = xs+1

s+1
, s > 0, p = ω = 0,

then (2.14) satisfies the following Hadamard type inequality for conformable integral
operators with α ≥ k defined in [26]:

2(bs+1 − as+1)α/k

(s+ 1)α/kαΓk(α)
(f ◦ u)

(
a+ b

2

)
≤ s

kI
α
a+(f ◦ u)(b)

+ s
kI

α
b−(f ◦ u)(a) ≤ 2

(s+ 1)α/kkΓ(α)
(bs+1 − as+1)α/k((f ◦ u)(a) + (f ◦ u)(b)).

Corollary 8. If we consider φ(t) = tα and g(x) = xβ+s

β+s
, β, s > 0, p = ω = 0, then

(2.14) satisfies the following Hadamard type inequality for generalized conformable
integral operators defined in [12]:

2

(β + s)ααΓ(α)
(bβ+ − aβ+s)α(f ◦ u)

(
a+ b

2

)
≤ s

βI
α
a+(f ◦ u)(b) +s

β I
α
b−(f ◦ u)(a)

≤ 2

(β + s)αΓ(α)
(bβ+s − aβ+s)α((f ◦ u)(a) + (f ◦ u)(b)).

4. Further implications

In this section we apply Theorem 1 to get the boundedness and continuity of
integral operators (1.9)and (1.10) from which reader can reproduce boundedness of
integral operators given in [15, Remark 6 & 7]. Moreover we present some examples
which provide upper bounds of Riemann-Liouville fractional integrals.

Theorem 4. If f ∈ L∞[a, b], then integral operators defined in (1.9) and (1.10)
are continuous.

Proof. Let u(x) = x, then u is strictly increasing, so (2.1) becomes(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(x, ω; p) ≤ Ka

x(Eγ,δ,k,c
µ,α,l , g;φ)(g(x)− g(a))(f(x) + f(a)).(4.1)

Using (2.2) we have∣∣∣(gF φ,γ,δ,k,c
µ,α,l,a+ f

)
(x, ω; p)

∣∣∣ ≤ 2Ka
b (Eγ,δ,k,c

µ,α,l , g;φ)(g(b)− g(a))‖f‖∞.(4.2)(
gF

φ,γ,δ,k,c
µ,α,l,a+ f

)
(x, ω; p) is bounded, also it is linear and hence continuous. Similarly,

continuity of
(
gF

φ,γ,δ,k,c
µ,α,l,b− f

)
(x, ω; p) can be proved.

Corollary 9. Under the assumptions of Theorem 1 the following inequality holds:

(4.3) Iαb−u(x) + Iαa+u(x) ≤ 1

Γ(α)
((x− a)α(u(x)− u(a)) + (b− x)α(u(b)− u(x))) .

Proof. Let f(x) = x. Then f is convex and from (2.1) we have(
gF

φ,γ,δ,k,c
µ,α,l,a+ u(x)

)
(x, ω; p) ≤ Ka

x(Eγ,δ,k,c
µ,α,l , g;φ)(u(x) + u(a))

= φ(g(x)− g(a))(u(x) + u(a))Eγ,δ,k,c
µ,α,l (ω(g(x)− g(a))µ; p).
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Further if φ(t) = tα and g(x) = x, then we have
∞∑
n=0

βp(γ + nk, c− γ)

β(γ, c− γ)

(c)nk
Γ(µn+ α)

ωn

(l)nδ

∫ x

a

(x− t)µn+α−1u(t)dt

≤ (x− a)α(u(x)− u(a))Eγ,δ,k,c
µ,α,l (ω((x− a)µ; p),

which gives

Eγ,δ,k,c
µ,α,l (ω; p)Iµn+α

a+ u(x) ≤ (x− a)α(u(x)− u(a))Eγ,δ,k,c
µ,α,l (ω((x− a)µ; p).

By setting ω = p = 0 we get

(4.4) Iαa+u(x) ≤ 1

Γ(α)
(x− a)α(u(x)− u(a)).

Similarly, one can also obtain

(4.5) Iαb−u(x) ≤ 1

Γ(α)
(b− x)α(u(b)− u(x)).

From (4.4) and (4.5), (4.3) is obtained.

Corollary 10. Under the assumptions of Theorem 3 the following inequality
holds:
(4.6)

Iαa+|u|(x) + Iαb−|u|(x) ≤ 1

Γ(α)
((x− a)α(|u|(x)− |u|(a)) + (b− x)α(|u|(b)− |u|(x))) .

Proof. Let f(x) =
x2

2
. Then |f ′(x)| = |x| is convex and from (2.29) we have(

gF
φ,γ,δ,k,c
µ,α,l,a+ |u|(x)

)
(x, ω; p) ≤ Ka

x(Eγ,δ,k,c
µ,α,l , g;φ)(|u|(x) + |u|(a))

= φ(g(x)− g(a))(|u|(x) + |u|(a))Eγ,δ,k,c
µ,α,l (ω(g(x)− g(a))µ; p).

Further if φ(t) = tα and g(x) = x, then we have
∞∑
n=0

βp(γ + nk, c− γ)

β(γ, c− γ)

(c)nk
Γ(µn+ α)

ωn

(l)nδ

×
∫ x

a

(x− t)µn+α−1|u(t)|dt ≤ (x− a)α(|u|(x)− |u|(a))

× Eγ,δ,k,c
µ,α,l (ω((x− a)µ; p),

which gives

Eγ,δ,k,c
µ,α,l (ω; p)Iµn+α

a+ |u|(x) ≤ (x− a)α(|u|(x)− |u|(a))

× Eγ,δ,k,c
µ,α,l (ω((x− a)µ; p),

by setting ω = p = 0 we get

(4.7) Iαa+ |u|(x) ≤ 1

Γ(α)
(x− a)α(|u|(x)− |u|(a)).

Similarly, one can also obtain

(4.8) Iαb−|u|(x) ≤ 1

Γ(α)
(b− x)α(|u|(b)− |u|(x)).

From (4.7) and (4.8), (4.6) is obtained.
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5. Concluding remarks

This paper studies a unified integral operator via convex composition of two func-
tions. In the consequent generalized bounds of this operator are derived in a compact
form which the bounds of several kinds of fractional and conformable integral oper-
ators can be produced. The fractional and conformable integral operators defined
in [2, 4, 7, 9, 10, 12, 17, 18, 20, 24, 29, 30] are directly linked and satisfy all the results.
Furthermore various versions of Hadamard inequality are produced and boundedness
of all the considered operators is deduced. Also upper bounds of Riemann-Liouville
fractional integrals are established in two corollaries while reader can obtain such
bounds for other fractional and conformable integrals.
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