REDUCED PROPERTY OVER IDEMPOTENTS

Tai Keun Kwak ${ }^{\dagger}$, Yang Lee, and Young Joo Seo*

Abstract

This article concerns the property that for any element a in a ring, if $a^{2 n}=a^{n}$ for some $n \geq 2$ then $a^{2}=a$. The class of rings with this property is large, but there also exist many kinds of rings without that, for example, rings of characteristic $\neq 2$ and finite fields of characteristic ≥ 3. Rings with such a property is called reduced-over-idempotent. The study of reduced-over-idempotent rings is based on the fact that the characteristic is 2 and every nonzero non-identity element generates an infinite multiplicative semigroup without identity. It is proved that the reduced-over-idempotent property pass to polynomial rings, and we provide power series rings with a partial affirmative argument. It is also proved that every finitely generated subring of a locally finite reduced-over-idempotent ring is isomorphic to a finite direct product of copies of the prime field $\{0,1\}$. A method to construct reduced-over-idempotent fields is also provided.

1. Reduced-over-idempotent rings

Throughout this note every ring is an associative ring with identity unless otherwise stated. A nilpotent element is also said to be a nilpotent for short. Let R be a ring. We denote the center, the set of all nilpotents, the set of all idempotents, the group of all units, and the Jacobson radical of R by $Z(R), N(R), I d(R), U(R)$, and $J(R)$, respectively. The polynomial (resp., power series) ring with an indeterminate x over R is denoted by $R[x]$ (resp., $R[[x]])$. $\mathbb{Z}\left(\mathbb{Z}_{n}\right)$ denotes the ring of integers (modulo $n)$. The characteristic of R is written by $C h(R)$. Let $a \in R$. The right (resp., left) annihilator of a in R is denoted by $r_{R}(a)$ (resp., $\left.l_{R}(a)\right) . a$ is called right (resp., left) regular if $r_{R}(a)=0$ (resp., $l_{R}(a)=0$); and a is called regular if a is both right and left regular. For $S \subseteq R,|S|$ denotes the cardinality of S. Denote the n by $n(n \geq 2)$ full (resp., upper triangular) matrix ring over R by $\operatorname{Mat}_{n}(R)$ (resp., $T_{n}(R)$). Write $D_{n}(R)=\left\{\left(a_{i j}\right) \in T_{n}(R) \mid a_{11}=\cdots=a_{n n}\right\}$.

A ring is usually called reduced if it has no nonzero nilpotents. It is easily proved that a ring R is reduced if and only if $a^{2}=0$ for $a \in R$ implies $a=0$. A ring is usually called Abelian if every idempotent is central. Reduced rings are easily shown

Received February 6, 2021. Revised July 9, 2021. Accepted July 11, 2021.
2010 Mathematics Subject Classification: 16U40.
Key words and phrases: reduced-over-idempotent ring, idempotent, reduced ring, Abelian ring, characteristic, unit, polynomial ring, power series ring.
\dagger This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2019R1F1A1040405).

* Corresponding author.
(C) The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
to be Abelian, but there exist many non-reduced rings which are Abelian (e.g., $D_{2}(R)$ over a commutative ring R).

Recall that a ring is called locally finite [8] if every finite subset in it generates a finite semigroup multiplicatively. It is obvious that every locally finite ring is of finite characteristic. It is obtained by [7, Theorem 2.2(1)] that a ring is locally finite if and only if every subring generated by a finite subset is finite. Finite rings are clearly locally finite, and an algebraic closure of a finite field is locally finite but not finite. Note that if a ring R is locally finite, then for any $r \in R$ there exists $n=n(r) \geq 1$ such that $r^{n} \in I d(R)$ (see the proof of [8, Proposition 16]). Here, r need not be an idempotent. It is clear that for any ring A and $a \in A, a \in \operatorname{Id}(A)$ implies $a^{k} \in \operatorname{Id}(A)$ for all $k \geq 1$.

Based on these facts, we introduce a new ring property.
Definition 1.1. A ring R is said to be reduced-over-idempotent provided that for any $a \in R, a^{n} \in I d(R)$ for some $n \geq 1$ implies $a \in I d(R)$.

The following consists of basic properties of reduced-over-idempotent rings which are essential for our study.

Lemma 1.2. For a reduced-over-idempotent ring R, we have the following assertions.
(1) R is reduced.
(2) $C h(R)=2$ and then R is an algebra over \mathbb{Z}_{2}.
(3) Every non-identity regular element in R forms an infinite multiplicative semigroup without identity.
(4) If R is locally finite, then R is Boolean.
(5) If R is locally finite, then $U(R)=\{1\}$.

Proof. (1) Let $a^{2}=0$ for $a \in R$. Then $a \in \operatorname{Id}(R)$ since R is reduced-overidempotent, so that $a=a^{2}=0$. Thus R is reduced.
(2) Since R is reduced-over-idempotent, $(-1)^{2}=1$ implies $-1 \in \operatorname{Id}(R)$, so that $-1=(-1)^{2}=1$. Thus $\operatorname{Ch}(R)=2$.
(3) Let a be a non-identity regular element in R. Consider the multiplicative semigroup $S=\left\{a^{n} \mid n \geq 1\right\}$ generated by a. Assume $a^{k_{1}}=a^{k_{2}}$ for some $k_{1} \neq k_{2}$. Then $a^{h}=1$ for some $h \geq 1$ since a is regular. Here, since R is reduced-overidempotent, we get $a \in \operatorname{Id}(R)$ and hence the regularity of a implies $a=1$, contrary to $a \neq 1$. Therefore S is an infinite multiplicative semigroup without identity.
(4) and (5) Let R be locally finite. Then, for any $a \in R$, there exists $m \geq 1$ such that $a^{m} \in I d(R)$ by the proof of [8, Proposition 16]. Thus $a \in I d(R)$ because R is reduced-over-idempotent, showing that R is Boolean.

Next, for $u \in U(R)$, we must get $u=1$ by the preceding argument, as desired.
The class of reduced-over-idempotent rings is seated between Boolean rings and reduced rings by Lemma $1.2(1,4)$. From Lemma 1.2(3), we obtain an equivalent condition of reduced-over-idempotent domains.

Theorem 1.3. (1) Let R be a domain. Then R is reduced-over-idempotent if and only if every non-identity regular element forms an infinite multiplicative semigroup without identity.
(2) Every free algebra over \mathbb{Z}_{2} is reduced-over-idempotent.
(3) Let R be a locally finite reduced-over-idempotent ring. Then every finitely generated subring of R is isomorphic to a finite direct product of copies of \mathbb{Z}_{2}.

Proof. (1) It suffices to show the sufficiency by Lemma 1.2(3). Assume the necessity and let $0 \neq a \in R$ such that $a^{n} \in \operatorname{Id}(R)$ for some $n \geq 1$. Then $a^{n}=1$ since R is a domain, so that we must have $a=1$ by assumption. Thus R is reduced-overidempotent.
(2) Let R be a free algebra over \mathbb{Z}_{2}. Then R is a domain such that $U(R)=\{1\}$ and every non-identity regular element forms an infinite multiplicative semigroup without identity. So R is reduced-over-idempotent by (1).
(3) Let S be a finitely generated subring of R. Then S is finite since R is locally finite, and hence S is isomorphic to a finite direct product of $M a t_{n_{i}}\left(F_{i}\right)$'s for some finite fields F_{i} and positive integers n_{i} by the Wedderburn-Artin theorem. Moreover S is also reduced-over-idempotent by Proposition 1.5(1) below, and then S is reduced by Lemma 1.2(1). From this we see that S is isomorphic to a finite direct product of F_{i} 's. But every F_{i} must coincide with \mathbb{Z}_{2} by Lemma 1.2(5), and therefore S is isomorphic to a finite direct product of copies of \mathbb{Z}_{2}.

The arguments below elaborate upon Lemma 1.2 and Theorem 1.3.
Remark 1.4. (1) Fields need not be reduced-over-idempotent. For example, consider the field \mathbb{C} of complex numbers. Then \mathbb{C} is not reduced-over-idempotent by Lemma 1.2(2), since $C h(\mathbb{C})=0$. Moreover, it implies that every subring of \mathbb{C} cannot be reduced-over-idempotent.

Assume that a field F is reduced-over-idempotent. If F is finite, then $F \cong \mathbb{Z}_{2}$ by Lemma $1.2(4)$, so that every finite field E with $|E| \geq 3$ cannot be reduced-overidempotent; for example, the Galois field $G F\left(2^{k}\right)$ with $k \geq 2$.
(2) Let $R=\mathbb{Z}_{2}\langle X\rangle$ be a free algebra generated by a set X over \mathbb{Z}_{2}. Then R is a reduced-over-idempotent domain by Theorem 1.3(2). If $|X|=1$, then $R \cong \mathbb{Z}_{2}[x]$. If $|X| \geq 2$, then $Z(R)=\mathbb{Z}_{2}$ by the proof of [2, Proposition 1.3(7)].
(3) Note that Boolean rings are obviously reduced-over-idempotent but not conversely. Indeed, let $R=\mathbb{Z}_{2}\langle a, b\rangle$ be the free algebra with noncommuting indeterminates a, b over \mathbb{Z}_{2}. Then R is reduced-over-idempotent by Theorem 1.3(2), but R is not Boolean clearly.
(4) Any of $\operatorname{Mat}_{n}(R), T_{n}(R)$ and $D_{n}(R)$, over any ring R for $n \geq 2$, cannot be reduced-over-idempotent because they are not reduced.

The following properties of reduced-over-idempotent rings do basic roles throughout this article.

Proposition 1.5. (1) The class of reduced-over-idempotent rings is closed under subrings.
(2) For a family $\left\{R_{\gamma} \mid \gamma \in \Gamma\right\}$ of rings, the following statements are equivalent:
(i) R_{γ} is reduced-over-idempotent;
(ii) The direct product $\prod_{\gamma \in \Gamma} R_{\gamma}$ of R_{γ} is reduced-over-idempotent;
(iii) The direct sum $\oplus_{\gamma \in \Gamma} R_{\gamma}$ of R_{γ} is reduced-over-idempotent.
(3) Let R be an Abelian ring and $e \in I d(R)$. Then R is reduced-over-idempotent if and only if both $e R$ and $(1-e) R$ are reduced-over-idempotent.

Proof. (1) Note that $I d(S)=I d(R) \cap S$ for any subring S of a ring R.
(2) The proof comes from (1) and the fact that $\operatorname{Id}\left(\prod_{\gamma \in \Gamma} R_{\gamma}\right)=\prod_{\gamma \in \Gamma} I d\left(R_{\gamma}\right)$ and $I d\left(\oplus_{\gamma \in \Gamma} R_{\gamma}\right)=\oplus_{\gamma \in \Gamma} I d\left(R_{\gamma}\right)$.
(3) This follows (2), since $R \cong e R \oplus(1-e) R$.

Related to Proposition 1.5(1), one may ask whether the class of reduced-overidempotent rings is closed under homomorphic images. But the answer is negative as follows. We use the construction in [1, Example 4.8]. Consider the reduced-overidempotent ring $R=\mathbb{Z}_{2}\langle a, b\rangle$ as in Remark 1.4(3). Let J be the ideal of R generated by b^{2} and $\bar{r}=r+J$ for $r \in R$. Then R / J is not reduced-over-idempotent by Lemma $1.2(1)$ because it is not reduced; indeed, $\bar{b}^{2}=\overline{0}$ but $\bar{b} \neq \overline{0}$.

On the other hand, there exists a ring whose nontrivial factor rings are reduced-over-idempotent, but the ring is not reduced-over-idempotent. Consider the ring $R=T_{2}\left(\mathbb{Z}_{2}\right)$ which is not reduced-over-idempotent by Remark 1.4(4). Note that \mathbb{Z}_{2} is obviously reduced-over-idempotent, and hence $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is also reduced-over-idempotent by Proposition 1.5(2). All nontrivial factor rings of R are $R / I \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}, R / J \cong Z_{2}$, and $R / K \cong \mathbb{Z}_{2}$; hence these are reduced-over-idempotent, where $I=\left(\begin{array}{cc}0 & \mathbb{Z}_{2} \\ 0 & 0\end{array}\right)$, $J=$ $\left(\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & 0\end{array}\right)$, and $K=\left(\begin{array}{cc}0 & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}_{2}\end{array}\right)$.

A ring R is called a subdirect product of a family of rings $\left\{R_{\gamma} \mid \gamma \in \Gamma\right\}$ if there is a monomorphism $f: R \rightarrow \prod_{\gamma \in \Gamma} R_{\gamma}$ such that $\pi_{\gamma} \circ f$ is onto for all $\gamma \in \Gamma$, where π_{γ} : $\prod_{\gamma \in \Gamma} R_{\gamma} \rightarrow R_{\gamma}$ is the canonical epimorphism. The following is another application of Proposition 1.5(2).

Proposition 1.6. A subdirect product of reduced-over-idempotent rings is reduced-over-idempotent.

Proof. Let R be a subdirect product of a family $\left\{R_{\gamma} \mid \gamma \in \Gamma\right\}$ of reduced-overidempotent rings. Then $f(I d(R)) \subseteq I d\left(\prod_{\gamma \in \Gamma} R_{\gamma}\right)=\prod_{\gamma \in \Gamma} I d\left(R_{\gamma}\right)$ clearly. Suppose that for $a \in R$ there exists $n \geq 1$ such that $a^{n} \in \operatorname{Id}(R)$. Then $f(a)^{n}=f\left(a^{n}\right) \in$ $\operatorname{Id}\left(\prod_{\gamma \in \Gamma} R_{\gamma}\right)$. Since every R_{γ} is reversible-over-idempotent, $\prod_{\gamma \in \Gamma} R_{\gamma}$ is reversible-over-idempotent by Proposition 1.5(2). So $f(a)^{n} \in I d\left(\prod_{\gamma \in \Gamma} R_{\gamma}\right)$ implies $f(a) \in$ $I d\left(\prod_{\gamma \in \Gamma} R_{\gamma}\right)$. There exists $e_{\gamma} \in I d\left(R_{\gamma}\right)$ for each $\gamma \in \Gamma$ such that $f(a)=\left(e_{\gamma}\right)_{\gamma \in \Gamma}$. Then $f\left(a^{2}\right)=(f(a))^{2}=\left[\left(e_{\gamma}\right)_{\gamma \in \Gamma}\right]^{2}=\left(e_{\gamma}\right)_{\gamma \in \Gamma}=f(a)$ and hence $a^{2}=a$, since f is injective. Thus $a \in I d(R)$. Therefore R is reduced-over-idempotent.

Recall that a ring R is called local if $R / J(R)$ is a division ring. A ring R is called semilocal if $R / J(R)$ is semisimple Artinian, and R is called semiperfect if R is semilocal and idempotents can be lifted modulo $J(R)$. One-sided Artinian rings are clearly semiperfect. Local rings are Abelian and semilocal.

Proposition 1.7. A ring R is reduced-over-idempotent and semiperfect if and only if R is a finite direct product of local reduced-over-idempotent rings.

Proof. Suppose that R is reduced-over-idempotent and semiperfect. Then R is Abelian because R is reduced by Lemma 1.2(1). Since R is semiperfect, R has a finite orthogonal set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of local idempotents whose sum is 1 by [12, Proposition 3.7.2], say $R=\sum_{i=1}^{n} e_{i} R$ such that each $e_{i} R e_{i}$ is a local ring. Since R is Abelian, each
$e_{i} R$ is an ideal of R with $e_{i} R=e_{i} R e_{i}$. But each $e_{i} R$ is also a reduced-over-idempotent ring by Proposition 1.5(3).

Conversely assume that R is a finite direct product of local reduced-over-idempotent rings. Then R is Abelian and semiperfect since local rings are semiperfect by [12, Corollary 3.7.1], and moreover R is reduced-over-idempotent by Proposition 1.5(2).

We see an application of Proposition 1.7.
Corollary 1.8. Let R be a reduced-over-idempotent ring. If R is right Artinian then R is a finite direct product of division rings.

Proof. Let R be right Artinian. Then $J(R)$ is nilpotent, and hence $J(R)=0$ because R is reduced by Lemma 1.2(1). Moreover R is a finite direct product of local reduced-over-idempotent rings by Proposition $1.7, R=\sum_{i=1}^{n} R_{i}$. Note $J\left(R_{i}\right)=0$ since R_{i} is right Artinian and R_{i} is reduced. This implies that there exist a finite number of division rings D_{i} 's such that R is isomorphic to the direct product of D_{i} 's.

Corollary 1.8 can be obtained also by using the Wedderburn-Artin theorem.

2. Extensions

In this section, we study the reduced-over-idempotent ring property of several kinds of extensions, concentrating on polynomial rings and power series rings. $R\left[x ; x^{-1}\right]$ means the Laurent polynomial ring with an indeterminate x over a ring R.

Lemma 2.1. (1) [10, Lemma 8] For an Abelian ring R, we have that $\operatorname{Id}(R)=$ $I d(R[x])=I d(R[[x]])$ and that both $R[x]$ and $R[[x]]$ are Abelian.
(2) Let R be a reduced ring. Then $\operatorname{Id}\left(R\left[x ; x^{-1}\right]\right)=\operatorname{Id}(R)$.

Proof. (2) Let $f(x) \in \operatorname{Id}\left(R\left[x ; x^{-1}\right]\right)$ for $0 \neq f(x)=\sum_{i=m}^{n} a_{i} x^{i} \in R\left[x ; x^{-1}\right]$, where $m \in \mathbb{Z}, a_{m} \neq 0$ and $a_{n} \geq 0$. If $m \leq-1$ then $a_{m}^{2} \neq 0$ implies $f(x)^{2}=a_{m}^{2} x^{-2 m}+\cdots \neq$ $f(x)$, entailing $m \geq 0$. Next if $n \geq 1$ then $a_{n}^{2} \neq 0$ implies $f(x)^{2}=\cdots+a_{n}^{2} x^{2 n} \neq f(x)$, entailing $n=0$. Consequently $f(x)=a_{0}$ and $a_{0}^{2}=a_{0}$ follows.

The preceding lemma does an essential role in the proposition and remark below.
Proposition 2.2. For a ring R, the following conditions are equivalent:
(1) R is reduced-over-idempotent;
(2) $R[x]$ is reduced-over-idempotent;
(3) $R\left[x ; x^{-1}\right]$ is reduced-over-idempotent.

Proof. It suffices to show (1) $\Rightarrow(3)$ by Proposition $1.5(1)$. Let R be reduced-overidempotent. Then R is reduced by Lemma 1.2(1). Suppose that $f(x)^{k} \in I d\left(R\left[x ; x^{-1}\right]\right)$ for $0 \neq f(x)=\sum_{i=m}^{n} a_{i} x^{i} \in R\left[x ; x^{-1}\right]$ and $k \geq 1$, where $m \in \mathbb{Z}$. Then $f(x)^{k}=e$ for some $e \in I d(R)$ by Lemma 2.1(2). By the reducedness of R, we must get $f(x)=a_{0}$. This entails $a_{0}^{k}=e$. But since R is reduced-over-idempotent, $a_{0} \in \operatorname{Id}(R)$ and $a_{0}=e$ follows. Thus $R\left[x ; x^{-1}\right]$ is reduced-over-idempotent.

From Theorem 1.3(1) and Proposition 2.2, we can obtain reduced-over-idempotent fields. For example, let $F=\mathbb{Z}_{2}(x)$, the quotient field of $\mathbb{Z}_{2}[x]$, a reduced-overidempotent domain by Proposition 2.2. Taking $f \in E$ such that $f \neq 1$ and $f \neq 0$, we
have that $\left\{f^{n} \mid n \geq 1\right\}$ is an infinite multiplicative semigroup without identity. Thus E is reduced-over-idempotent by Theorem 1.3(1).

Considering the preceding proposition, one may ask whether the reduced-overidempotent property also go up to power series rings. We do not know the complete answer, but we provide a partial one for this question as follows.

Remark 2.3. Let R be a reduced-over-idempotent ring. Then R is reduced (hence Abelian) and $C h(R)=2$ by Lemma 1.2(1, 2). We will use these facts and Lemma 2.1(1) freely in the following computation.

Let $0 \neq f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[[x]]$ be such that $f(x)^{m} \in \operatorname{Id}(R[[x]])$ for some $m \geq 1$. Then $f(x)^{m}=e=a_{0}$ by the proof of Proposition 2.2. Write ${ }_{m} C_{k}=$ $\frac{m(m-1) \cdots(m-(k-1))}{k(k-1) \cdots 2}=\frac{m!}{(m-k)!k!}$ for $1 \leq k \leq m$. Note that ${ }_{m} C_{k}$ is an integer and that there exist even m 's such that ${ }_{m} C_{k}$ is odd for some $1 \leq k \leq m-1$, for example, ${ }_{6} C_{2}$, ${ }_{14} C_{2}$ and ${ }_{14} C_{4}$.
(i) Let $m=2$. The coefficient of the term of degree 2 of $f(x)^{2}$ is $0=2 a_{0} a_{2}+a_{1}^{2}=a_{1}^{2}$, so that $a_{1}=0$. From this we see that the coefficient of the term of degree 2^{2} of $f(x)^{2}$ is $0=2 a_{0} a_{4}+a_{2}^{2}=a_{2}^{2}$, so that $a_{2}=0$. Inductively assume that $a_{1}=\cdots=a_{k-1}=0$. Then the coefficient of the term of degree k^{2} in $f(x)^{2}$ is

$$
0=2 a_{0} a_{2 k}+a_{k}^{2}=a_{k}^{2},
$$

so that $a_{k}=0$. Therefore we now have that $a_{i}=0$ for all $i \geq 1$, concluding $f(x)=$ $a_{0} \in \operatorname{Id}(R[[x]])$.
(ii) Let $m=3$. The coefficient of the term of degree 1 of $f(x)^{3}$ is $0=3 a_{0} a_{1}=a_{0} a_{1}$. The coefficient of the term of degree 2 of $f(x)^{3}$ is $0=3 a_{0} a_{2}+3 a_{0} a_{1}^{2}=a_{0} a_{2}$. The coefficient of the term of degree 3 of $f(x)^{3}$ is $0=3 a_{0} a_{3}+3 a_{0} a_{1} a_{2}+3 a_{0} a_{2} a_{1}+a_{1}^{3}=$ $a_{0} a_{3}+a_{1}^{3}$. Multiplying this equality by a_{0}, we get $0=a_{0} a_{3}+a_{0} a_{1}^{3}=a_{0} a_{3}$. Inductively assume that $a_{0} a_{i}=0$ for $i=1, \ldots, k-1$. Then the coefficient of the term of degree k of $f(x)^{3}$ is

$$
0=3 a_{0} a_{k}+\sum_{s_{1}+s_{2}+s_{3}=k \text { and } s_{i}<k} a_{s_{1}} a_{s_{2}} a_{s_{3}}=a_{0} a_{k}+\sum_{s_{1}+s_{2}+s_{3}=k \text { and } s_{i}<k} a_{s_{1}} a_{s_{2}} a_{s_{3}} .
$$

Multiplying this equality by a_{0}, we get
$0=a_{0} a_{k}+a_{0} \sum_{s_{1}+s_{2}+s_{3}=k \text { and } s_{i}<k} a_{s_{1}} a_{s_{2}} a_{s_{3}}=a_{0} a_{k}+\sum_{s_{1}+s_{2}+s_{3}=k \text { and } s_{i}<k} a_{0} a_{s_{1}} a_{s_{2}} a_{s_{3}}=a_{0} a_{k}$
by assumption. Hence $a_{0} a_{i}=0$ for all $i \geq 1$.
Next we will show that $a_{i}=0$ for all i. From the equality $0=a_{0} a_{3}+a_{1}^{3}=a_{1}^{3}$, we obtain $a_{1}=0$. The coefficient of the term of degree 6 of $f(x)^{3}$ is

$$
0=3 a_{0} a_{6}+a_{2}^{3}+\sum_{s_{1}+s_{2}+s_{3}=6 \text { and } s_{i}<6} a_{s_{1}} a_{s_{2}} a_{s_{3}}=a_{2}^{3}+\sum_{s_{1}+s_{2}+s_{3}=6 \text { and } s_{i}<6} a_{s_{1}} a_{s_{2}} a_{s_{3}} .
$$

But some s_{i} is either 0 or 1 , hence $\sum_{s_{1}+s_{2}+s_{3}=6 \text { and } s_{i}<6} a_{s_{1}} a_{s_{2}} a_{s_{3}}=0$ by the results above, entailing $a_{2}^{3}=0$. Thus $a_{2}=0$.

Now inductively we assume that $a_{i}=0$ for $i=1, \ldots, k-1$. The coefficient of the term of degree $3 k$ in $f(x)^{3}$ is

$$
0=3 a_{0} a_{3 k}+a_{k}^{3}+\sum_{s_{1}+s_{2}+s_{3}=3 k \text { and } s_{i}<3 k} a_{s_{1}} a_{s_{2}} a_{s_{3}}=a_{k}^{3}+\sum_{s_{1}+s_{2}+s_{3}=3 k \text { and } s_{i}<3 k} a_{s_{1}} a_{s_{2}} a_{s_{3}} .
$$

But some s_{i} is seated in $[0, k-1]$, hence $\sum_{s_{1}+s_{2}+s_{3}=3 k}$ and $s_{i}<3 k ~ a_{s_{1}} a_{s_{2}} a_{s_{3}}=0$ by assumption and the result that $a_{0} a_{i}=0$ for all $i \geq 1$, entailing $a_{k}^{3}=0$. Thus $a_{k}=0$. Then $a_{i}=0$ for all $i \geq 1$. Consequently we now have $f(x)=a_{0} \in I d(R[[x]])$.

Now we consider the case of $m \geq 4$. Note that the coefficient of degree $v m$ of $f(x)^{m}$ is

$$
\begin{aligned}
& { }_{m} C_{0} a_{v}^{m}+{ }_{m} C_{m-1} a_{0}^{m-1} a_{v m}+\sum_{i_{1}+i_{2}=v m \text { and } i_{t}<v m}{ }_{m} C_{m-2} a_{0}^{m-2} a_{i_{1}} a_{i_{2}} \\
& +\sum_{j_{1}+j_{2}+j_{3}=v m \text { and } j_{p}<v m}{ }_{m} C_{m-3} a_{0}^{m-3} a_{j_{1}} a_{j_{2}} a_{j_{3}} \\
& +\cdots+\sum_{s_{1}+s_{2}+\cdots+s_{m-2}=v m \text { and } s_{q}<v m}{ }_{m} C_{2} a_{0}^{2} a_{s_{1}} a_{s_{2}} \cdots a_{s_{m-2}} \\
& +\sum_{t_{1}+t_{2}+\cdots+t_{m-1}=v m \text { and } t_{w}<v m}{ }_{m} C_{1} a_{0} a_{t_{1}} a_{t_{2}} \cdots a_{t_{m-1}} \\
& =a_{v}^{m}+{ }_{m} C_{1} a_{0} a_{v m}+\sum_{i_{1}+i_{2}=v m \text { and } i_{t}<v m}{ }_{m} C_{2} a_{0} a_{i_{1}} a_{i_{2}} \\
& +\sum_{j_{1}+j_{2}+j_{3}=v m \text { and } j_{p}<v m}{ }_{m} C_{3} a_{0} a_{j_{1}} a_{j_{2}} a_{j_{3}} \\
& 5+\cdots+\sum_{s_{1}+s_{2}+\cdots+s_{k-2}=v m \text { and } s_{q}<v m}{ }_{m} C_{2} a_{0} a_{s_{1}} a_{s_{2}} \cdots a_{s_{m-2}} \\
& +\sum_{t_{1}+t_{2}+\cdots+t_{m-1}=v m \text { and } t_{w}<v m}{ }_{m} C_{1} a_{0} a_{t_{1}} a_{t_{2}} \cdots a_{t_{m-1}},(*)
\end{aligned}
$$

where we use $a_{0} \in I d(R) \cap Z(R)$. Note that $\left\{i_{1}, i_{2}\right\} \cap[0, v-1] \neq \emptyset,\left\{j_{1}, j_{2}, j_{3}\right\} \cap[0, v-$ $1] \neq \emptyset$ and $\left\{s_{1}, s_{2}, \ldots, s_{m-2}\right\} \cap[0, v-1] \neq \emptyset$.
(iii) Let m be an even integer such that ${ }_{m} C_{k}$ is even for all $1 \leq k \leq m-1$, for example, $m=4$. Then, for every $v \geq 1$, the coefficient of the term of degree $v m$ of $f(x)^{m}$ is $a_{v}^{m}=0$ by the preceding $(*)$, so that $a_{v}=0$. Thus $f(x)=a_{0} \in \operatorname{Id}(R[[x]])$.
(iv) We do not know the computation of the general case that $m \geq 5$ and ${ }_{m} C_{k}$ is odd for some $1 \leq k \leq m-1$, for example, $m=6$.

Let R be a ring with an endomorphism σ. Recall that the skew polynomial ring $R[x ; \sigma]$ is a ring of polynomial in x with coefficients in R and subject to the relation $x r=\sigma(r) x$ for $r \in R$. The skew Laurent polynomial ring $R\left[x, x^{-1} ; \sigma\right]$ is a localization of $R[x ; \sigma]$ with respect to the set of powers of x.

For a ring R with a monomorphism σ, let $A(R, \sigma)$ be the subset $\left\{x^{-i} r x^{i} \mid r \in R\right.$ and $i \geq 0\}$ of the skew Laurent polynomial ring $R\left[x, x^{-1} ; \sigma\right]$. Note that for $j \geq 0$, $x^{j} r=\sigma^{j}(r) x^{j}$ implies $r x^{-j}=x^{-j} \sigma^{j}(r)$ for $r \in R$. This yields that for each $j \geq$ 0 we have $x^{-i} r x^{i}=x^{-(i+j)} \sigma^{j}(r) x^{i+j}$. It follows that $A(R, \sigma)$ forms a subring of $R\left[x, x^{-1} ; \sigma\right]$ with the following natural operations: $x^{-i} r x^{i}+x^{-j} s x^{j}=x^{-(i+j)}\left(\sigma^{j}(r)+\right.$ $\left.\sigma^{i}(s)\right) x^{i+j}$ and $\left(x^{-i} r x^{i}\right)\left(x^{-j} s x^{j}\right)=x^{-(i+j)} \sigma^{j}(r) \sigma^{i}(s) x^{i+j}$ for $r, s \in R$ and $i, j \geq 0$. Note that $A(R, \sigma)$ is an over-ring of R, and the map $\bar{\sigma}: A(R, \sigma) \rightarrow A(R, \sigma)$ defined by $\bar{\sigma}\left(x^{-i} r x^{i}\right)=x^{-i} \sigma(r) x^{i}$ is an automorphism of $A(R, \sigma)$. Jordan showed, with the use of left localization of the skew polynomial $R[x ; \sigma]$ with respect to the set of powers
of x, that for any pair (R, σ), such an extension $A(R, \sigma)$ always exists in [9]. This ring $A(R, \sigma)$ is usually said to be the Jordan extension of R by σ.

Theorem 2.4. Let R be an Abelian ring with a monomorphism σ. Then R is reduced-over-idempotent if and only if the Jordan extension $A=A(R, \sigma)$ of R by σ is reduced-over-idempotent.

Proof. It is enough to show the necessity by Proposition 1.5(1). Suppose that R is reduced-over-idempotent and let $a^{n} \in I d(A)$ for some $n \geq 1$, where $a=x^{-i} r x^{i} \in A$ for $i, j \geq 0$. Then $a^{n}=x^{-n i} \sigma^{(n-1) i}\left(r^{n}\right) x^{n i} \in I d(A)$ implies $\sigma^{(n-1) i}\left(r^{n}\right) \in I d(R)$, because $\operatorname{Id}(A)=\left\{x^{-i} r x^{i} \mid r \in \operatorname{Id}(R)\right.$ and $\left.i \geq 0\right\}$ clearly. Note that $\sigma(\operatorname{Id}(R))=I d(R)$ since σ is a monomorphism. So $\sigma^{(n-1) i}\left(r^{n}\right) \in I d(R)$ yields $r^{n} \in I d(R)$, and thus $r \in \operatorname{Id}(R)$ since R is reduced-over-idempotent. Therefore the Jordan extension A of R by σ is reduced-over-idempotent.

A multiplicatively closed subset S of a ring R is said to satisfy the right Ore condition if for each $a \in R$ and $b \in S$, there exist $a_{1} \in R$ and $b_{1} \in S$ such that $a b_{1}=b a_{1}$. It is shown, by [13, Theorem 2.1.12], that S satisfies the right Ore condition and S consists of regular elements if and only if the right quotient $\operatorname{ring} R_{S}$ of R with respect to S exists.

Recall that a ring R is called right (resp., left) p.p. if each principal right (resp., left) ideal of R is projective. It is well known that a ring R is right p.p. if and only if the right annihilator of each element of R is generated by an idempotent. A ring is called p.p. if it is both right and left p.p..

Following Goodearl [4], a ring R (possibly without identity) is called (von Neumann) regular if for every $a \in R$ there exists $b \in R$ such that $a=a b a$. It is easily shown that $J(R)=0$ if R is regular, and a ring R (possibly without identity) is called strongly regular if $a \in a^{2} R$ for every $a \in R$. A ring is strongly regular if and only if it is Abelian regular if and only if it is reduced regular, by [4, Theorems 3.2 and 3.5].

Proposition 2.5. Let S be a multiplicatively closed subset of an Abelian ring R.
(1) Suppose that S satisfies the right Ore condition. If the right quotient ring R_{S} of R with respect to S is reduced-over-idempotent, then so is R. Conversely, if R is locally finite reduced-over-idempotent, then R_{S} is strongly regular.
(2) Suppose that S consists of central regular elements and $\operatorname{Id}\left(S^{-1} R\right)=\left\{u^{-1} e \mid\right.$ $e \in I d(R)$ and $u \in S\}$. Then R is reduced-over-idempotent if and only if $S^{-1} R$ is reduced-over-idempotent.

Proof. (1) It is clear that R is reduced-over-idempotent when R_{S} is reduced-overidempotent by Proposition 1.5(1), since R is a subring of R_{S}.

Conversely, suppose that R is locally finite reduced-over-idempotent. Then R is reduced regular by Lemma $1.2(1,4)$ and so R is p.p. by [4, Theorem 1.1]. Moreover R_{S} is reduced by [10, Theorem 16]. We claim that R_{S} is also p.p.. Let $a b^{-1} \in R_{S}$. Since R is right p.p., $r_{R}(a)=e R$ for some $e \in I d(R)$. So $a b^{-1} e=a e b^{-1}=0$ and $e R_{S} \subseteq r_{R_{S}}\left(a b^{-1}\right)$ follows. For the converse, let $c d^{-1} \in r_{R_{S}}\left(a b^{-1}\right)$. Then $a b^{-1} c d^{-1}=$ $0 \Rightarrow a b^{-1} c=0 \Rightarrow c a b^{-1}=0$, since R_{S} is reduced. So $c a=0 \Rightarrow a c=0$ because R is reduced. Thus $c \in e R \Rightarrow c=e c$, and hence $c d^{-1}=e c d^{-1} \in e R_{S}$ and $r_{R_{S}}\left(a b^{-1}\right) \subseteq e R_{S}$. Consequently, we get $r_{R_{S}}\left(a b^{-1}\right)=e R_{S}$, and thus R_{S} is right p.p.. Moreover R_{S} is left p.p. by [6, Lemma 1(i)], since it is reduced. Therefore R_{S} is a reduced p.p. ring and so it is strongly regular by [5, Lemma 3.3].
(2) It is sufficient to show the necessity by Proposition 1.5(1). Assume that R is reduced-over-idempotent, and let $\alpha=u^{-1} a \in S^{-1} R$ be such that $\alpha^{n} \in I d\left(S^{-1} R\right)$ for some $n \geq 2$. Then $\left(u^{n}\right)^{-1} a^{n} \in \operatorname{Id}\left(S^{-1} R\right)$, and so $a^{n} \in I d(R)$ by hypothesis. But R is reduced-over-idempotent, and hence $a \in \operatorname{Id}(R)$. This implies $\alpha=u^{-1} a \in \operatorname{Id}\left(S^{-1} R\right)$, concluding that $S^{-1} R$ is reduced-over-idempotent.

Notice that there exist rings in which the hypothesis " $I d\left(S^{-1} R\right)=\left\{u^{-1} e \mid e \in\right.$ $\operatorname{Id}(R)$ and $u \in S\}$ " in Proposition 2.5(2) does not hold, by [11, page 1967], in general.

Let A be an algebra over a commutative ring S. Due to Dorroh [3], the Dorroh extension of A by S is the Abelian group $A \times S$ with multiplication given by $\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}+s_{1} r_{2}+s_{2} r_{1}, s_{1} s_{2}\right)$ for $r_{i} \in A$ and $s_{i} \in S$. We use $A \times_{\text {dor }} S$ to denote the Dorroh extension of A by S.

Proposition 2.6. Let R be a unitary algebra over a commutative ring S. Suppose that R is Boolean and S is reduced-over-idempotent. Then $D=R \times_{\text {dor }} S$ is reduced-over-idempotent.

Proof. $C h(R)=2$ by Lemma 1.2(2), and note that $\operatorname{Id}(D)=\operatorname{Id}(R) \times \operatorname{Id}(S)$. For, $(r, s) \in I d(D)$ if and only if $(r, s)^{2}=(r, s)$ if and only if $\left(r^{2}, s^{2}\right)=(r, s)$ if and only if $(r, s) \in \operatorname{Id}(R) \times \operatorname{Id}(S)$. We freely use these facts throughout this proof.

Let $(r, s) \in D$ be such that $(r, s)^{n} \in \operatorname{Id}(D)$ for some $n \geq 2$. Then $s^{n} \in \operatorname{Id}(S)$. Since S is reduced-over-idempotent, $s \in I d(S)$. If $n=2$ then the result is obvious, so suppose $n \geq 3$. Since R is Boolean, we have

$$
(r, s)^{n}=\left(r^{n}+2\left(2^{n-1}-1\right) s r, s^{n}\right)=\left(r^{n}, s^{n}\right)=(r, s) .
$$

But $(r, s)^{n} \in I d(D)$ and $(r, s) \in I d(D)$ follows. Therefore D is reduced-overidempotent.

As an application of Proposition 2.6, let R be a direct product of \mathbb{Z}_{2} 's and consider $R \times_{d o r} \mathbb{Z}_{2}$. Then this Dorroh extension is reduced-over-idempotent by Proposition 2.6.

Acknowledgements The authors thank the referee deeply for very careful reading of the manuscript and valuable suggestions in depth that improved the paper by much.

References

[1] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), 3128-3140.
[2] K.J. Choi, T.K. Kwak, Y. Lee, Reversibility and symmetry over centers, J. Korean Math. Soc. 56 (2019), 723-738.
[3] J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), 85-88.
[4] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979).
[5] C.Y. Hong, N.K. Kim, Y. Lee, P.P. Nielsen, Minimal prime spectrum of rings with annihilator conditions, J. Pure Appl. Algebra 213 (2009), 1478-1488.
[6] C. Huh, H.K. Kim, Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), 37-52.
[7] C. Huh, N.K. Kim, Y. Lee, Examples of strongly π-regular rings, J. Pure Appl. Algebra 189 (2004), 195-210.
[8] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761.
[9] D.A. Jordan, Bijective extensions of injective ring endomorphisms, J. Lond. Math. Soc. 25 (1982), 435-448.
[10] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.
[11] T.K. Kwak, Y. Lee, Reflexive property on idempotents, Bull. Korean Math. Soc. 50 (2013), 1957-1972.
[12] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
[13] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, John Wiley \& Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore, 1987.

Tai Keun Kwak

Department of Mathematics, Daejin University, Pocheon 11159, Korea E-mail: tkkwak@daejin.ac.kr

Yang Lee

Department of Mathematics, Yanbian University, Yanji 133002, China and Institute of Basic Science, Daejin University, Pocheon 11159, Korea
E-mail: ylee@pusan.ac.kr

Young Joo Seo

Department of Mathematics, Daejin University, Pocheon 11159, Korea
E-mail: jooggang@daejin.ac.kr

