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SUBGROUP ACTIONS AND SOME APPLICATIONS

JUNCHEOL HAN AND SANGWON PARK*

ABSTRACT. Let G be a group and X be a nonempty set and H be
a subgroup of G. For a given ¢g : G x X — X, a group action
of G on X, we define ¢y : H Xx X — X, a subgroup action of
H on X, by ¢g(h,z) = ¢g(h,z) for all (h,z) € H x X. In this
paper, by considering a subgroup action of H on X, we have some
results as follows: (1) If H, K are two normal subgroups of G such
that H C K C G, then for any x € X (orbg, (x) : orbg, (x)) =
(orbg (x) : orbg, (x)) = (orbg, (x) : orbg, (v)); additionally,
in case of K N staby, (x) = {1}, if (orbg,(x) : orbg, (v)) and
(0rbg . () : 01y, (x)) are both finite, then (orbg, () : orbg,, ()
is finite; (2) If H is a cyclic subgroup of G and staby,, (x) # {1} for
some x € X, then orby,, () is finite.

1. Introduction and basic definitions

The group action is a very useful tool for a classical group theory
(in particular, Sylow Theorems) ([5]), Galois theory, ring theory ([1, 2,
3]) and module theory ([6]), etc.

Let G be a group and X be a nonempty set. Let ¢ : G X X — X
be a group action of G on X. Then for any subgroup H of G, we have
a subgroup action of H on X, ¢y : H x X — X given by ¢y (h,z) =
¢c(h,x) for all (h,x) € H x X. We define the orbit of x € X under the
subgroup action ¢y of H on X by orby, () = {¢u(h,z) : Vh € H}.
We also define the stabilizer of x under the subgroup action ¢z of H
on X by staby, () ={h € H : ¢u(h,x) = x}.

For a given subgroup H of a group G, consider F' = {aH : a € G},
the collection of all distinct left cosets of H in G. For the convenience
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of expression, we denote ¢g(c, orbg,, (z)) by orbe, ,, (). Then we note
that orbg, (x) is the union of all orby, ,, () and there exists some sub-
collection Fy of F such that Uyger orby, , (z) is a disjoint union of
orby, (z). Denote |Fi| by (orbg,(x) : orbe,(z)). Clearly, we note
that |F| = (G : H) > (orbg (z) : orbg, (z)) where (G : H) is the
index of H in G, and if |orby, ()| is finite, |orby, (x)| is finite and
07 (2)| = 073 (2)| (07 () 5 07 (2)):

EXAMPLE 1. Let n be a positive integer and Z,, be the ring of
integers of modulo n. Let X, be the set of all 2 x 2 nonzero, singular
matrices over Z,,, G, be the general linear group of degree 2 over Z,
and H, be the special linear group of degree 2 over Z,, as a subgroup
of Gy, ie, {A € G, |det(A) = 1}. In [4], it was shown that (G,
H,) = ¢(n), where ¢(n) is the Euler-¢ number of n.

Consider a group action of G,, on X,, ¢, : G, x X,, — X,
defined by ¢¢,(g9,2) = gz (mod n) for all (¢g,z) € G, x X,, and
a subgroup action of H, on X, ¢n, : H, x X,, — X,, given by
o¢m, (h,x) = ¢g, (h,x) for all (h,z) € H, x X,,. We compute the
followings by a computer programming (using Mathematica Ver. 7):

(1) For n = 6;

Note that G¢ = Hg U aHg with (Gg : Hg) = 2 where a = (é g) €
2 2 1 1

Gg. Let x = <O 1>,y— 0 0 € Xg. Then

0rbg s () U 0rbagy (x) = orbg, (x) with [orby, (z)| = |orbg, ()] =

72, and then |orby, (z)| = 144 and so (0rb¢G6 (z) : orbyy, (7))
= (Gg : Hg). On the other hand, orby, (y) = orbs. (y) with
lorbg, (y)] = 24, and so (orbg,, () : orbg, (v)) = 1.

(2) For n = 10;
1 0 1 0
Note that (Glo IHlo) = 4. Let x = <0 4>,y: <0 0),22
1 1
0 5 )€ Xi0. Then we compute [orby,, ()] = 1,440, [orbs, (z)]=

360, and so (orbyg, () : orbgy, (7)) =4 = (G0 : Hio); (orbeg, , (¥) :
orbyy, (y)) = 1 with ]0rb¢Gw (y)| = \0rb¢Hw (y)| = 72; (07“b¢c (2) :
orbyy  (2)) = 1 with [orby, (2)| = [orbe,  (2)] = 144.

In Section 2, we have shown that for a given a group action ¢¢ of
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G on X, (1) if H is a normal subgroup of G such that (G : H) is finite,
then (orbg () : orbg, (x)) is a divisor of (G : H); (2) if H and K are
two normal subgroups of a finite group G such that H C K C G, then
(07 (2) : 07bisy (2)) = (0rbss () : 0rby (2))(0rbi (2) : 0rbisy ()
in case of K'Nstabg,, (x) = {1} for some x € X, if (orby, () : orbg, (x)
and (orbg, (z) : orbe, (z)) are both finite, then (orby, (x) : orby, (x)
is finite; moreover, (orbg,(x) : orbg, (x))(orbs, (x) : orbe, (x)
(0rbiss (z) : orbyy ().

Let R be a ring with identity, X be the of all nonzero, nonunits of R
and G be the group of all units of R. In Section 3, by applying the result
obtained in section 2 to the subgroup action ¢ : H x X — X for a
given subgroup H of G we have shown that if H is a cyclic subgroup
of G and staby,, (x) # {1} for some z € X, then orby, () is finite; if
H is infinite, then the converse holds.

~— — o

2. Subgroup action

We denote the cardinality of a set S by |S|. Also write A- B =
{abla € A,b € B} for any sets A, B.

LEMMA 2.1. Let ¢ be a group action of a group G on a set X.
Then |orby,, (x)| = |orbg,, (z)| for all cosets aH of H in G.

Proof. Define f : orbg, (x) — orbe, , (x) by f(¢u(h,z)) = ¢c(ah, )
for all (h,x) € orbg, (z). Then clearly f is well-defined and onto. To
show that f is one to one, let f(¢g(h,x)) = f(da(hi,x)) for some
h,hy € H, and so ¢g(ah,x) = ¢g(ahy,z). Then

1,¢u(h,x)) = ¢a(a o, ¢m(h, x))
a™!, og(a, ¢u(h, )

a™!, ¢c(a, ou (b, x))
ata,¢p(h,x))

L, ¢u(hi,z)) = ¢u(h,z)

and thus f is one to one. Therefore, f is bijective and so we have the
result.

Q
~~ I~ I/~ /N
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COROLLARY 2.2. Let ¢ be a group action of a group GG on a set
X and H be a normal subgroup of G. Then (orby () : orbg, (x)) =
(G : H - stabg, (x)) for all x € X.

Proof. By Lemma 2.1, orbg,, , (x) = orbg,,, (x) for some cosets o, B H
of H in G if and only if ™18 € H - staby, (z). Since H is a normal
subgroup of G, H - staby (x) is a subgroup of G, and so (orbg (z) :
orby, (x)) = (G : H - staby, (x)). O

REMARK 1. Let ¢g be a group action of a group G on a set X
and H be a normal subgroup of G. By Corollary 2.2, we note that
for all v € X, (1) (orbg,(x) : orbs, (z)) = (G : H) if and only if
stabg,, (x) C H; (2) if (G : H) is finite, then (orbg, (x) : orbe, ()) is a
divisor of (G : H).

COROLLARY 2.3. Let ¢ be a group action of a group GG on a set
X. Then for all z € X, |orby, (x)| = (G : staby (x)).

Proof. Let H = {1}. Then it follows from Corollary 2.2. O

THEOREM 2.4. Let ¢ be a group action of a group G on a set X
and H, K be two subgroups of G. Then (1) orby, (z) = orbg, (x) for
some x € X if and only if H C K - staby, (v) and K C H - stabg,, (x);
(2) in particular, if stabg, (x) = {1} for some x € X, then orby, (z) =
orbe, (x) if and only if H = K.

Proof. (1). Suppose that orbe, (r) = orby,(r). Let h € H be
arbitrary. Since ¢ (h,x) € orbg, (v) = orbs, (z), ¢pr(h,z) = ¢x(k,x)
for some k € K. Thus k™'h € stabs,(z), and so h € K - staby ().
Hence H C K - staby (x). Similarly, we have K C H - stabg,, (x).

Conversely, suppose that H C K - staby, () and K C H - staby,, (z
Let ¢p(h,z) € orby, (z) be arbitrary. Then h = kg for some k €
and some g € stabg, (). Thus ¢g(h,z) = ¢c(h,x) = ¢a(kg, )
dc(k,pc(g,x)) = ¢pa(k,z) = ¢r(k,x) € orby, (), and so orby, (x)
orby, (x). Similarly, we have orbg, (z) C orbg,, ().

(2). In particular, if stabg, (x) = {1}, then orby, (x) = orbe, (z) i
and only if H = K by (1).

~—
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REMARK 2. Let ¢ be a group action of a group G on a set X and
H, K be two subgroups of G. By Theorem 2.4, we note that for some
z € X, (1) orby, (z) = orby. (z) if and only if G = H - stabg, (x); (2)
if stabg, (v) € H N K for some x € X, then orby, (x) N orby, (x) =
0rbgyn i (x). Indeed, clearly, orby,, ., () C orbg, (x) Norbg, (x). Let
y € orby, (x)Norbg, (x) be arbitrary. Theny = ¢g(h,x) = ¢pu(h,z) =
b (k,z) = ¢g(k,x) for some h € H,k € K. Thus ¢g(k~th,z) =
z, and so k'h € staby,(x)) € H N K. Hence h = k(k™'h) €
KHNK)C KK =K, and 50y = ¢g(h,z) € orbs, (), and then
orby, (x) Norby, (x) C orbg, . (). Therefore, orby,, (x) Norby, (v) =

0rbg g ().

THEOREM 2.5. Let ¢ be a group action of a finite group G on a
set X and H, K be two normal subgroups of G such that H C K C
G. Then (orby,(z) : orbg, (x)) = (orbes (z) : orbg, (x))(orbey, (x) :
T (2)).

Proof. Since G is finite, both (orbg, (x) : 0rbe, (x)) and (orbg, (
orby,, (x)) are finite. By Corollary 2.2, we have (orbg (x) : orbg,, ()
(G : H - staby, (), (orbg, (x) : orbs, (z)) = (K : H - staby, (x))
and (orbg, () : orbyy (z)) = (G : K - staby, (z)). We will show that
(K : H - staby, (x)) = (K - staby (z) : K - staby, (z) : H - staby, ()).
Indeed,

z):
) =

K - stabyg ()|
7 - stabo, (0)
_ (@)UH N stabg,, (x)|)
7] R 1 stabg (2)
_ K] [stabo, (o)
[H|"" |stabg . (2)|

(K - stabg,, (x) : H - stabg,, (x)) =

On the other hand,
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K]
|H - stabg, ()]

_ (|K|)(|Hﬂstab¢K(x)|
[H|""  |stabg, (z)]

_ (K1 Jstabsy o)
[H|"" |stabg, (x)]

(K : H - staby, (7))

)

Hence we have (K : H-staby, (v)) = (K - staby, (x) : H-staby, ()).
Therefore, (orby,(z) : orby, (x)) = (G : H - stabg,(x)) = (G : K -
stabg,, (v))(K - staby, (z) : H - staby, (z)) = (G : K - staby, (x))(K :
H - stabys (2)) = (0rbog (2) : 0rb (1)) (0rbgy (z) : 0rb, ().

0

LEMMA 2.6. Let H, K be normal subgroups of a group G such that
H C K. If (K : H) is finite and K N L = {1} for some subgroup L of
G, then (K : H) = (KL : HL).

Proof. Let {k;H :i=1,---,r} be the collection of distinct cosets
of Hin K. Let k/ ¢ KL(k € K,{ € L) be arbitrary. Then k € k;H
for some k; € K, and so k/ € k;HL. Thus KL =kiHLU---Uk,.HL.
We will show that {k;HL : ¢ = 1,--- ,r} is the collection of distinct
cosets of HL in K L. Assume that k, HLNk;HL # () for some k;, k; €
K(k; # kj). Let a € k;HLNk;HL. Then a = k;h1¢, = k;hals for some
hi,hy € H, 01,0y € L, and so (k;hy)~(kjhe) = (1451 € (KH)NL =
KNL. Since KNL = {1}, kihy = kjhs € k;HNk;H, a contradiction.
Hence {k;HL :i=1,---,r} is also the collection of distinct cosets of
HLin KL,andso (K :H)=(KL:HL). O

THEOREM 2.7. Let ¢ be a group action of a group G on a set X
and H, K be two normal subgroups of G such that H C K C G and
KnNstaby, (x) = {1} for some x € X. If both (orbg, (x) : orby, (z)) and
(orbgy (z) : orbg, (x)) are finite, then (orby. () : orbg, (x)) is finite.
Moreover, (orbgy,(x) @ orbg, (z))(orby, (z) : orby, (x)) = (orbg, (x) :

orby, (x)).
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Proof. By Corollary 2.2, we have (orbg, (z) : orbs,(x)) = (G :
H - staby, ()),
(0rbgy ()  orbg,, (x)) = (K : H-staby, ()) and (orbg, (x) : orbe, (v)) =
(G : K - staby,(x)). Since H,K are normal subgroups of G such
that H C K C G and K N staby, (x) = {1}, (K : H - stabyy (z)) =
(K -staby, (z) : H-stabg,, (x)) by Lemma 2.6. Therefore, as in the proof
of Theorem 2.5 we have (orbg, (x) : 0rbg, (z))(0rbe, () : orbg,, (z)) =

(orbye (x) : orby, (x)). O

3. Cyclic subgroup action and some applications

THEOREM 3.1. Let H be a cyclic subgroup of a group G and ¢y
be a subgroup action of H on X. If staby, (x) # {1} for some x € X,
then orby,, () is finite.

Proof. Let H =< a > be a cyclic group generated by a € G. If
orby, (x) = {x} or H = {1}, then |orby, ()| = 1, and so orbg, (x)
is finite. Thus suppose that orby, () # {z} and H # {1}. Then
lorbg,, (x)] > 2. Let Hy = stabg, (). Then H > Hy # {1}, and so
Hy =< a® > is a proper subgroup of H generated by a' for some posi-
tive integer t > 2. Let ¢p(h,x) € orby, () be arbitrary. Then h = a®
for some integer s. By the division algorithm on Z, the ring of integers,
s = qt + r for some ¢,7 € Z where 0 < r <t — 1. Since a' € Hy =
stabg,, (z), © = ¢p(at,x), and so ¢g(a®,x) = du(at, du(at,x)) =
¢ (a',z) = z. Thus by continuing in this process inductively, we have

Tr = ¢H(at7x) = = ¢H(aqt7x)' Hence (bH(h?x) = ¢H(asax) =
¢u (a7, 2) = ¢u(a”", ¢u(a?,x)) = ¢u(a",r), and so orby, (z) =
{x,ng(a,x), e 7¢H<at_17x)} is finite. 0

COROLLARY 3.2. Let H be an infinite cyclic subgroup of a group
G and ¢ be a subgroup action of H on X. Then staby,, (z) # {1} for
some x € X if and only if orbg, (x) is finite.

Proof. If follows from Corollary 2.3 and Theorem 3.1. U

In this section, let R be a ring with identity, X (R) (simply denoted
by X) be the set of all nonzero, nonunits of R and G(R) (simply
denoted by G) be the group of all units of R. Let H be a subgroup
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of G. Then the map ¢} : H x X — X (resp. ¢4 : H x X — X)
defined by ¢% ((h,z) = hx (resp. ¢%4((h,x) = hah™!) is a subgroup
action of H on X, which is called the regular action (resp. conjugate
action)(refer [1], [2] and [3]). By Theorem 3.1, if H is a cyclic subgroup
of G and stabgr (v) # {1} (vesp. stabge (v) # {1}) for some x € X,
then orbg. (r) (vesp. orbge (z)) is finite.

Recall that the index of a nilpotent x € R is the least positive
integer n such that 2 = 0 # z"~! and is denoted by ind(z).

COROLLARY 3.3. Let R be a ring and x € X be a nilpotent with
ind(x) = n. Then orbyr (x) (resp. orbge (x)) is finite where H is a
cyclic subgroup of G generated by 1 + 2"~!. In particular, if G is
cyclic, then orbyy, (x) (resp. orbge, (v)) is finite.

Proof. Since z € X is nilpotent with ind(z) =n, 1 #1+a2"t € H
and so (1+2" 1z = z (resp. (1+2" 1)z = z(1+2"" 1)), which implies
that 1+ 2"~ " € stabgr (x) # {1} (resp. 142"~ € stabge () # {1}).
Thus orbyr, () (resp. orbge (x)) is finite by Theorem 3.1. In particular,
if G is cyclic, then orbgr, (r) (vesp. orbge (v)) is finite by the similar
argument.

0

COROLLARY 3.4. Let R be a ring such that 2 € G and e € X be
an idempotent. Then orbg (e) (resp. orbge (e)) is finite where H is a
cyclic subgroup of G generated by 2e — 1. In particular, if G is cyclic,
then orbyr, (€) (resp. orbge (e)) is finite.

Proof. Since 2 € G,2e—1 € G and (2¢ — 1)e = e (resp. (2¢e —1)e =
e(2e — 1)), and so stabyr (e) # {1} (resp. stabge (e) # {1}). Thus
orbgr (e) (resp. orbge (e)) is finite by Theorem 3.1. In particular,
if G is cyclic, then orbyr,(e) (resp. orbge (e)) is finite by the similar
argument. 0

COROLLARY 3.5. Let R be a ring and H be a cyclic normal sub-
group of G. If (G : H) is finite and stabyr (v) # {1} for some x € X,
then orbgr, () is finite.
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Proof. If follows from Corollary 2.3 and Theorem 3.1. 0
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