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SUBGROUP ACTIONS AND SOME APPLICATIONS

Juncheol Han and Sangwon Park∗

Abstract. Let G be a group and X be a nonempty set and H be
a subgroup of G. For a given ϕG : G × X −→ X, a group action
of G on X, we define ϕH : H × X −→ X, a subgroup action of

H on X, by ϕH(h, x) = ϕG(h, x) for all (h, x) ∈ H × X. In this
paper, by considering a subgroup action of H on X, we have some
results as follows: (1) If H,K are two normal subgroups of G such
that H ⊆ K ⊆ G, then for any x ∈ X (orbϕG

(x) : orbϕH
(x)) =

(orbϕG
(x) : orbϕK

(x)) = (orbϕK
(x) : orbϕH

(x)); additionally,
in case of K ∩ stabϕG

(x) = {1}, if (orbϕG
(x) : orbϕK

(x)) and
(orbϕK

(x) : orbϕH
(x)) are both finite, then (orbϕG

(x) : orbϕH
(x))

is finite; (2) If H is a cyclic subgroup of G and stabϕH
(x) ̸= {1} for

some x ∈ X, then orbϕH
(x) is finite.

1. Introduction and basic definitions

The group action is a very useful tool for a classical group theory
(in particular, Sylow Theorems) ([5]), Galois theory, ring theory ([1, 2,
3]) and module theory ([6]), etc.

Let G be a group and X be a nonempty set. Let ϕG : G×X −→ X
be a group action of G on X. Then for any subgroup H of G, we have
a subgroup action of H on X, ϕH : H ×X −→ X given by ϕH(h, x) =
ϕG(h, x) for all (h, x) ∈ H×X. We define the orbit of x ∈ X under the
subgroup action ϕH of H on X by orbϕH

(x) = {ϕH(h, x) : ∀h ∈ H}.
We also define the stabilizer of x under the subgroup action ϕH of H
on X by stabϕH

(x) = {h ∈ H : ϕH(h, x) = x}.
For a given subgroup H of a group G, consider F = {αH : α ∈ G},

the collection of all distinct left cosets of H in G. For the convenience
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of expression, we denote ϕG(α, orbϕH (x)) by orbϕαH (x). Then we note
that orbϕG

(x) is the union of all orbϕαH
(x) and there exists some sub-

collection F1 of F such that ∪αH∈F1orbϕαH (x) is a disjoint union of
orbϕG

(x). Denote |F1| by (orbϕG
(x) : orbϕH

(x)). Clearly, we note
that |F | = (G : H) ≥ (orbϕG(x) : orbϕH (x)) where (G : H) is the
index of H in G, and if |orbϕG

(x)| is finite, |orbϕH
(x)| is finite and

|orbϕG(x)| = |orbϕH (x)|(orbϕG(x) : orbϕH (x)).

Example 1. Let n be a positive integer and Zn be the ring of
integers of modulo n. Let Xn be the set of all 2× 2 nonzero, singular
matrices over Zn, Gn be the general linear group of degree 2 over Zn

and Hn be the special linear group of degree 2 over Zn as a subgroup
of Gn, i.e., {A ∈ Gn | det(A) = 1}. In [4], it was shown that (Gn :
Hn) = ϕ(n), where ϕ(n) is the Euler-ϕ number of n.

Consider a group action of Gn on Xn, ϕGn : Gn × Xn −→ Xn

defined by ϕGn(g, x) = gx (mod n) for all (g, x) ∈ Gn × Xn and
a subgroup action of Hn on Xn, ϕHn : Hn × Xn −→ Xn given by
ϕHn(h, x) = ϕGn(h, x) for all (h, x) ∈ Hn × Xn. We compute the
followings by a computer programming (using Mathematica Ver. 7):
(1) For n = 6;

Note that G6 = H6 ∪̇ αH6 with (G6 : H6) = 2 where α =

(
1 0
0 5

)
∈

G6. Let x =

(
2 2
0 1

)
, y =

(
1 1
0 0

)
∈ X6. Then

orbϕH6
(x) ∪̇ orbαϕH6

(x) = orbϕG6
(x) with |orbϕH6

(x)| = |orbϕαH6
(x)| =

72, and then |orbϕG6
(x)| = 144, and so (orbϕG6

(x) : orbϕH6
(x)) =

2 = (G6 : H6). On the other hand, orbϕH6
(y) = orbϕG6

(y) with

|orbϕG6
(y)| = 24, and so (orbϕG6

(x) : orbϕH6
(x)) = 1.

(2) For n = 10;

Note that (G10 : H10) = 4. Let x =

(
1 0
0 4

)
, y =

(
1 0
0 0

)
, z =(

1 1
0 5

)
∈ X10. Then we compute |orbϕG10

(x)| = 1, 440, |orbϕH10
(x)| =

360, and so (orbϕG10
(x) : orbϕH10

(x)) = 4 = (G10 : H10); (orbϕG10
(y) :

orbϕH10
(y)) = 1 with |orbϕG10

(y)| = |orbϕH10
(y)| = 72; (orbϕG10

(z) :
orbϕH10

(z)) = 1 with |orbϕG10
(z)| = |orbϕH10

(z)| = 144.

In Section 2, we have shown that for a given a group action ϕG of
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G on X, (1) if H is a normal subgroup of G such that (G : H) is finite,
then (orbϕG

(x) : orbϕH
(x)) is a divisor of (G : H); (2) if H and K are

two normal subgroups of a finite group G such that H ⊆ K ⊆ G, then
(orbϕG

(x) : orbϕH
(x)) = (orbϕG

(x) : orbϕK
(x))(orbϕK

(x) : orbϕH
(x));

in case of K∩stabϕG(x) = {1} for some x ∈ X, if (orbϕG(x) : orbϕK (x))
and (orbϕK

(x) : orbϕH
(x)) are both finite, then (orbϕG

(x) : orbϕH
(x))

is finite; moreover, (orbϕG(x) : orbϕK (x))(orbϕK (x) : orbϕH (x)) =
(orbϕG

(x) : orbϕH
(x)).

Let R be a ring with identity, X be the of all nonzero, nonunits of R
andG be the group of all units of R. In Section 3, by applying the result
obtained in section 2 to the subgroup action ϕH : H ×X −→ X for a
given subgroup H of G we have shown that if H is a cyclic subgroup
of G and stabϕH

(x) ̸= {1} for some x ∈ X, then orbϕH
(x) is finite; if

H is infinite, then the converse holds.

2. Subgroup action

We denote the cardinality of a set S by |S|. Also write A · B =
{ab|a ∈ A, b ∈ B} for any sets A,B.

Lemma 2.1. Let ϕG be a group action of a group G on a set X.
Then |orbϕH

(x)| = |orbϕαH
(x)| for all cosets αH of H in G.

Proof. Define f : orbϕH
(x) −→ orbϕαH

(x) by f(ϕH(h, x)) = ϕG(αh, x)
for all (h, x) ∈ orbϕH (x). Then clearly f is well-defined and onto. To
show that f is one to one, let f(ϕG(h, x)) = f(ϕG(h1, x)) for some
h, h1 ∈ H, and so ϕG(αh, x) = ϕG(αh1, x). Then

ϕH(h, x) = ϕG(1, ϕH(h, x)) = ϕG(α
−1α, ϕH(h, x))

= ϕG(α
−1, ϕG(α, ϕH(h, x))

= ϕG(α
−1, ϕG(α, ϕH(h1, x))

= ϕG(α
−1α, ϕH(h1, x))

= ϕG(1, ϕH(h1, x)) = ϕH(h1, x)

and thus f is one to one. Therefore, f is bijective and so we have the
result.

�
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Corollary 2.2. Let ϕG be a group action of a group G on a set
X and H be a normal subgroup of G. Then (orbϕG

(x) : orbϕH
(x)) =

(G : H · stabϕG(x)) for all x ∈ X.

Proof. By Lemma 2.1, orbϕαH
(x) = orbϕβH

(x) for some cosets αH, βH

of H in G if and only if α−1β ∈ H · stabϕG(x). Since H is a normal
subgroup of G, H · stabϕG

(x) is a subgroup of G, and so (orbϕG
(x) :

orbϕH (x)) = (G : H · stabϕG(x)). �

Remark 1. Let ϕG be a group action of a group G on a set X
and H be a normal subgroup of G. By Corollary 2.2, we note that
for all x ∈ X, (1) (orbϕG

(x) : orbϕH
(x)) = (G : H) if and only if

stabϕG
(x) ⊆ H; (2) if (G : H) is finite, then (orbϕG

(x) : orbϕH
(x)) is a

divisor of (G : H).

Corollary 2.3. Let ϕG be a group action of a group G on a set
X. Then for all x ∈ X, |orbϕG(x)| = (G : stabϕG(x)).

Proof. Let H = {1}. Then it follows from Corollary 2.2. �

Theorem 2.4. Let ϕG be a group action of a group G on a set X
and H,K be two subgroups of G. Then (1) orbϕH (x) = orbϕK (x) for
some x ∈ X if and only if H ⊆ K · stabϕG

(x) and K ⊆ H · stabϕG
(x);

(2) in particular, if stabϕG(x) = {1} for some x ∈ X, then orbϕH (x) =
orbϕK

(x) if and only if H = K.

Proof. (1). Suppose that orbϕH (x) = orbϕK (x). Let h ∈ H be
arbitrary. Since ϕH(h, x) ∈ orbϕH

(x) = orbϕK
(x), ϕH(h, x) = ϕK(k, x)

for some k ∈ K. Thus k−1h ∈ stabϕG(x), and so h ∈ K · stabϕG(x).
Hence H ⊆ K · stabϕG

(x). Similarly, we have K ⊆ H · stabϕG
(x).

Conversely, suppose that H ⊆ K ·stabϕG
(x) and K ⊆ H ·stabϕG

(x).
Let ϕH(h, x) ∈ orbϕH

(x) be arbitrary. Then h = kg for some k ∈ K
and some g ∈ stabϕG

(x). Thus ϕH(h, x) = ϕG(h, x) = ϕG(kg, x) =
ϕG(k, ϕG(g, x)) = ϕG(k, x) = ϕK(k, x) ∈ orbϕK

(x), and so orbϕH
(x) ⊆

orbϕK
(x). Similarly, we have orbϕK

(x) ⊆ orbϕH
(x).

(2). In particular, if stabϕG(x) = {1}, then orbϕH (x) = orbϕK (x) if
and only if H = K by (1). �
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Remark 2. Let ϕG be a group action of a group G on a set X and
H,K be two subgroups of G. By Theorem 2.4, we note that for some
x ∈ X, (1) orbϕH (x) = orbϕG(x) if and only if G = H · stabϕG(x); (2)
if stabϕG

(x) ⊆ H ∩ K for some x ∈ X, then orbϕH
(x) ∩ orbϕK

(x) =
orbϕH∩K (x). Indeed, clearly, orbϕH∩K (x) ⊆ orbϕH (x) ∩ orbϕK (x). Let
y ∈ orbϕH

(x)∩orbϕK
(x) be arbitrary. Then y = ϕG(h, x) = ϕH(h, x) =

ϕK(k, x) = ϕG(k, x) for some h ∈ H, k ∈ K. Thus ϕG(k
−1h, x) =

x, and so k−1h ∈ stabϕG
(x)) ⊆ H ∩ K. Hence h = k(k−1h) ∈

K(H ∩K) ⊆ KK = K, and so y = ϕG(h, x) ∈ orbϕH∩K
(x), and then

orbϕH
(x)∩ orbϕK

(x) ⊆ orbϕH∩K
(x). Therefore, orbϕH

(x)∩ orbϕK
(x) =

orbϕH∩K
(x).

Theorem 2.5. Let ϕG be a group action of a finite group G on a
set X and H,K be two normal subgroups of G such that H ⊆ K ⊆
G. Then (orbϕG(x) : orbϕH (x)) = (orbϕG(x) : orbϕK (x))(orbϕK (x) :
orbϕH

(x)).

Proof. Since G is finite, both (orbϕG
(x) : orbϕK

(x)) and (orbϕK
(x) :

orbϕH (x)) are finite. By Corollary 2.2, we have (orbϕG(x) : orbϕH (x)) =
(G : H · stabϕG

(x)), (orbϕK
(x) : orbϕH

(x)) = (K : H · stabϕK
(x))

and (orbϕG(x) : orbϕK (x)) = (G : K · stabϕG(x)). We will show that
(K : H · stabϕK

(x)) = (K · stabϕG
(x) : K · stabϕG

(x) : H · stabϕG
(x)).

Indeed,

(K · stabϕG(x) : H · stabϕG(x)) =
|K · stabϕG(x)|
|H · stabϕG

(x)|

= (
|K|
|H|

)(
|H ∩ stabϕG

(x)|
|K ∩ stabϕG(x)|

)

= (
|K|
|H|

)(
|stabϕH (x)|
|stabϕK

(x)|
)

On the other hand,
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(K : H · stabϕK (x)) =
|K|

|H · stabϕK
(x)|

= (
|K|
|H|

)(
|H ∩ stabϕK

(x)|
|stabϕK (x)|

)

= (
|K|
|H|

)(
|stabϕH

(x)|
|stabϕK

(x)|
)

Hence we have (K : H ·stabϕK
(x)) = (K ·stabϕG

(x) : H ·stabϕG
(x)).

Therefore, (orbϕG
(x) : orbϕH

(x)) = (G : H · stabϕG(x)) = (G : K ·
stabϕG

(x))(K · stabϕG
(x) : H · stabϕG

(x)) = (G : K · stabϕG
(x))(K :

H · stabϕK
(x)) = (orbϕG

(x) : orbϕK
(x))(orbϕK

(x) : orbϕH
(x)).

�

Lemma 2.6. Let H,K be normal subgroups of a group G such that
H ⊆ K. If (K : H) is finite and K ∩ L = {1} for some subgroup L of
G, then (K : H) = (KL : HL).

Proof. Let {kiH : i = 1, · · · , r} be the collection of distinct cosets
of H in K. Let kℓ ∈ KL(k ∈ K, ℓ ∈ L) be arbitrary. Then k ∈ kiH
for some ki ∈ K, and so kℓ ∈ kiHL. Thus KL = k1HL ∪ · · · ∪ krHL.
We will show that {kiHL : i = 1, · · · , r} is the collection of distinct
cosets of HL in KL. Assume that kiHL∩ kjHL ̸= ∅ for some ki, kj ∈
K(ki ̸= kj). Let a ∈ kiHL∩kjHL. Then a = kih1ℓ1 = kih2ℓ2 for some

h1, h2 ∈ H, ℓ1, ℓ2 ∈ L, and so (kih1)
−1(kjh2) = ℓ1ℓ

−1
2 ∈ (KH) ∩ L =

K ∩L. Since K ∩L = {1}, kih1 = kjh2 ∈ kiH ∩ kjH, a contradiction.
Hence {kiHL : i = 1, · · · , r} is also the collection of distinct cosets of
HL in KL, and so (K : H) = (KL : HL). �

Theorem 2.7. Let ϕG be a group action of a group G on a set X
and H,K be two normal subgroups of G such that H ⊆ K ⊆ G and
K∩stabϕG

(x) = {1} for some x ∈ X. If both (orbϕG
(x) : orbϕK

(x)) and
(orbϕK (x) : orbϕH (x)) are finite, then (orbϕG(x) : orbϕH (x)) is finite.
Moreover, (orbϕG

(x) : orbϕK
(x))(orbϕK

(x) : orbϕH
(x)) = (orbϕG

(x) :
orbϕH (x)).
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Proof. By Corollary 2.2, we have (orbϕK (x) : orbϕH (x)) = (G :
H · stabϕG

(x)),
(orbϕK (x) : orbϕH (x)) = (K : H·stabϕK (x)) and (orbϕG(x) : orbϕK (x)) =
(G : K · stabϕG

(x)). Since H,K are normal subgroups of G such
that H ⊆ K ⊆ G and K ∩ stabϕG(x) = {1}, (K : H · stabϕK (x)) =
(K ·stabϕG

(x) : H ·stabϕG
(x)) by Lemma 2.6. Therefore, as in the proof

of Theorem 2.5 we have (orbϕG(x) : orbϕK (x))(orbϕK (x) : orbϕH (x)) =
(orbϕG

(x) : orbϕH
(x)). �

3. Cyclic subgroup action and some applications

Theorem 3.1. Let H be a cyclic subgroup of a group G and ϕH

be a subgroup action of H on X. If stabϕH (x) ̸= {1} for some x ∈ X,
then orbϕH

(x) is finite.

Proof. Let H =< a > be a cyclic group generated by a ∈ G. If
orbϕH (x) = {x} or H = {1}, then |orbϕH (x)| = 1, and so orbϕH (x)
is finite. Thus suppose that orbϕH

(x) ̸= {x} and H ̸= {1}. Then
|orbϕH (x)| ≥ 2. Let H0 = stabϕH (x). Then H > H0 ̸= {1}, and so
H0 =< at > is a proper subgroup of H generated by at for some posi-
tive integer t ≥ 2. Let ϕH(h, x) ∈ orbϕH (x) be arbitrary. Then h = as

for some integer s. By the division algorithm on Z, the ring of integers,
s = qt + r for some q, r ∈ Z where 0 ≤ r ≤ t − 1. Since at ∈ H0 =
stabϕH

(x), x = ϕH(at, x), and so ϕH(a2t, x) = ϕH(at, ϕH(at, x)) =
ϕH(at, x) = x. Thus by continuing in this process inductively, we have
x = ϕH(at, x) = · · · = ϕH(aqt, x). Hence ϕH(h, x) = ϕH(as, x) =
ϕH(aqt+r, x) = ϕH(ar, ϕH(aqt, x)) = ϕH(ar, x), and so orbϕH (x) =
{x, ϕH(a, x), · · · , ϕH(at−1, x)} is finite. �

Corollary 3.2. Let H be an infinite cyclic subgroup of a group
G and ϕH be a subgroup action of H on X. Then stabϕH

(x) ̸= {1} for
some x ∈ X if and only if orbϕH

(x) is finite.

Proof. If follows from Corollary 2.3 and Theorem 3.1. �

In this section, let R be a ring with identity, X(R) (simply denoted
by X) be the set of all nonzero, nonunits of R and G(R) (simply
denoted by G) be the group of all units of R. Let H be a subgroup
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of G. Then the map ϕr
H : H × X −→ X (resp. ϕc

H : H × X −→ X)
defined by ϕr

H((h, x) = hx (resp. ϕc
H((h, x) = hxh−1) is a subgroup

action of H on X, which is called the regular action (resp. conjugate
action)(refer [1], [2] and [3]). By Theorem 3.1, if H is a cyclic subgroup
of G and stabϕr

H
(x) ̸= {1} (resp. stabϕc

H
(x) ̸= {1}) for some x ∈ X,

then orbϕr
H
(x) (resp. orbϕc

H
(x)) is finite.

Recall that the index of a nilpotent x ∈ R is the least positive
integer n such that xn = 0 ̸= xn−1 and is denoted by ind(x).

Corollary 3.3. Let R be a ring and x ∈ X be a nilpotent with
ind(x) = n. Then orbϕr

H
(x) (resp. orbϕc

H
(x)) is finite where H is a

cyclic subgroup of G generated by 1 + xn−1. In particular, if G is
cyclic, then orbϕr

G
(x) (resp. orbϕc

G
(x)) is finite.

Proof. Since x ∈ X is nilpotent with ind(x) = n, 1 ̸= 1+ xn−1 ∈ H
and so (1+xn−1)x = x (resp. (1+xn−1)x = x(1+xn−1)), which implies
that 1 + xn−1 ∈ stabϕr

H
(x) ̸= {1} (resp. 1 + xn−1 ∈ stabϕc

H
(x) ̸= {1}).

Thus orbϕr
G
(x) (resp. orbϕc

G
(x)) is finite by Theorem 3.1. In particular,

if G is cyclic, then orbϕr
G
(x) (resp. orbϕc

G
(x)) is finite by the similar

argument.

�

Corollary 3.4. Let R be a ring such that 2 ∈ G and e ∈ X be
an idempotent. Then orbϕr

H
(e) (resp. orbϕc

H
(e)) is finite where H is a

cyclic subgroup of G generated by 2e− 1. In particular, if G is cyclic,
then orbϕr

G
(e) (resp. orbϕc

G
(e)) is finite.

Proof. Since 2 ∈ G, 2e− 1 ∈ G and (2e− 1)e = e (resp. (2e− 1)e =
e(2e − 1)), and so stabϕr

H
(e) ̸= {1} (resp. stabϕc

H
(e) ̸= {1}). Thus

orbϕr
H
(e) (resp. orbϕc

H
(e)) is finite by Theorem 3.1. In particular,

if G is cyclic, then orbϕr
G
(e) (resp. orbϕc

G
(e)) is finite by the similar

argument. �

Corollary 3.5. Let R be a ring and H be a cyclic normal sub-
group of G. If (G : H) is finite and stabϕr

H
(x) ̸= {1} for some x ∈ X,

then orbϕr
G
(x) is finite.



Subgroup actions and some applications 189

Proof. If follows from Corollary 2.3 and Theorem 3.1. �
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