ON COUNTABLY g-COMPACTNESS AND SEQUENTIALLY GO-COMPACTNESS

P. VIJAYASHANTHI AND J. KANNAN

ABSTRACT. In this paper, we investigate some properties of countably g-compact and sequentially GO-compact spaces. Also, we discuss the relation between countably g-compact and sequentially GO-compact. Next, we introduce the definition of g-subspace and study the characterization of g-subspace.

1. Preliminaries

Let (X, τ) be a topological space. A subset A of X is called *g*-closed [4] if $cl(A) \subset G$ holds whenever $A \subset G$ and G is open in X.

A is called *g*-open of X if its complement A^c is *g*-closed in X. Every open set is *g*-open [8]. A topological space X is said to be $T_{1/2}$ [2] if every *g*-closed set in X is closed in X. A is called *sequentially closed* [5] if for every sequence (x_n) in A with $(x_n) \to x$, then $x \in A$.

A sequence (x_n) in a space X g-converges to a point $x \in X$ [4] if (x_n) is eventually in every g-open set containing x and is denoted by $(x_n) \xrightarrow{g} x$ and x is called the g-limit of the sequence (x_n) , denoted by $glim x_n$.

A is called sequentially g-closed [4] if every sequence in A g-converges to a point in A. S[A] denote the set of all sequences in A and $c_g(X)$ denote the set of all gconvergent sequences in X. A sequentially g-open subset U (which is the complement of a sequentially g-closed set) is one in which every sequence in X which g-converges to a point in U is eventually in U. A space X is said to be GO-compact [7] if every g-open cover of X has a finite subcover. A space X is said to be g-Lindelöf [7] if every g-open cover of X has a countable subcover. A subset A of X is said to be sequentially GO-compact [4] if every sequence in A has a subsequence which g-converges to a point in A. A space X is countably g-compact [7] if every countable cover of X by g-open sets of X has a finite subcover.

A map $f: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is called *g*-continuous [2] if the inverse image of every closed set in Y is *g*-closed in X. A map $f: X \to Y$ is said to be strongly *g*-continuous [2] if the inverse image of every *g*-closed set in Y is closed in X.

Received June 11, 2021. Revised August 16, 2021. Accepted August 17, 2021.

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54A20.

Key words and phrases: g-open, countably g-compact and sequentially GO-compact, GO-compact and g-sequential space.

[©] The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Let (X, τ) and (Y, σ) be any two topological spaces. Then a map $f : (X, \tau) \to (Y, \sigma)$ is said to be *sequentially g-continuous at* $x \in X$ [4] if the sequence $(f(x_n)) \xrightarrow{g} f(x)$ whenever the sequence $(x_n) \xrightarrow{g} x$. If f is sequentially g-continuous at each $x \in X$, then it is said to be a sequentially g-continuous function.

LEMMA 1.1. [1] Suppose X is a topological space and $A \subset X$. The sequential closure of A is defined as the set $\{\lim x \mid x \in s(A) \cap c(X)\}$ where s(A) denotes the set of all sequences in A, c(X) denote the set of all g-convergent sequences in X and it is denoted by $[A]_{seq}$. Then $A \subset [A]_{seq}$.

2. Sequentially GO-compact

DEFINITION 2.1. A subset A of a topological space (X, τ) is called a *g*-neighborhood of a point $x \in X$ if there exists a *g*-open set U with $x \in U \subset A$.

DEFINITION 2.2. Let (X, τ) be a topological space, $A \subset X$ and let S[A] be the set of all sequences in A. Then the sequential g-closure of A, denoted by $[A]_{g_{seq}}$, is defined as

$$[A]_{g_{seg}} = \{ x \in X \mid x = glim \ x_n \text{ and } (x_n) \in S[A] \cap c_g(X) \}$$

 $c_q(X)$ denote the set of all g-convergent sequences in X.

LEMMA 2.3. [16, Lemma 3.3] Let (X, τ) be a topological space. Then the following hold.

- (a) Every g-convergence sequence is convergence sequence.
- (b) If (X, τ) is a $T_{1/2}$ space, then the concept of convergence and g-convergence coincide.

The following Example 2.4 shows that Every g-convergence sequence is convergence sequence. But converse of Lemma 2.3 (a) need not be true.

EXAMPLE 2.4. Consider the topological space (X, τ) where $X = [0, 2), \tau = \{\emptyset, (0, 1), X\}$. Suppose that $(x_n) = (\frac{1}{n})$ for $n \in \mathbb{N}$. Then (x_n) converges to 0. If A = (0, 1], then A is g-closed and so $X \setminus A$ is g-open. That is, $\{0\} \cup (1, 2)$ is a g-open subset of X. But $\frac{1}{n} \notin \{0\} \cup (1, 2)$ for any n. Hence (x_n) does not g-convergent to 0.

THEOREM 2.5. Let (X, τ) be a topological space and $A \subset X$. Then the following hold.

- (a) Every sequentially closed set is a sequentially g-closed set.
- (b) A is sequentially g-closed if and only if $[A]_{g_{seq}} \subset A$.
- (c) Every sequentially g-closed set is g-closed hence every sequentially closed set is g-closed.

Proof. (a) Let $A \subset X$. Suppose A is sequentially closed. Let (x_n) be a sequence in A such that $(x_n) \xrightarrow{g} x$. By Theorem 2.3 (a), $(x_n) \to x$ in A and so $x \in A$. Thus, A is sequentially g-closed.

(b) Suppose $x \in [A]_{g_{seq}}$. Then there exists $(x_n) \in S[A] \cap c_g(X)$ such that $x = glim x_n$. Since A is a sequentially g-closed subset of $X, x \in A$. Hence $[A]_{g_{seq}} \subset A$. Conversely, let (x_n) be a sequence in A such that $(x_n) \xrightarrow{g} x$. Then $x \in [A]_{g_{seq}}$. By assumption, $[A]_{g_{seq}} \subset A$ and so $x \in A$. Hence A is sequentially g-closed.

556

(c) Suppose that A is sequentially g-closed. Then $[A]_{g_{seq}} \subset A$, by (b). Let $(x_n) \in S[A] \cap c_g(X)$. Then glim $x_n \in [A]_{g_{seq}}$. Since $[A]_{g_{seq}} \subset A$, A is closed. Thus, A is g-closed. By (a), every sequentially closed set is sequentially g-closed. Therefore, every sequentially closed set is g-closed.

THEOREM 2.6. Let (X, τ) be a topological space and A be a subset of X. If A is open then A is sequentially g-open.

Proof. Let A be open and (x_n) be a sequence in $X \setminus A$. Let $y \in A$. Then there is a g-neighborhood U of y which contained in A. Hence U does not contain any term of (x_n) . So y is not a limit of the sequence (x_n) . Since every g-convergent sequence is convergent (By Theorem 2.3(a)), y is not a g-limit of the sequence. Therefore, A is sequentially g-open.

THEOREM 2.7. Every sequentially GO-compact space is a sequentially compact space.

Proof. Suppose that (X, τ) is a sequentially GO-compact space and (x_n) is a sequence in X. Then by the definition of sequentially GO-compactness, there exists a subsequence (x_{n_k}) of (x_n) such that (x_{n_k}) g-converges to x. By Lemma 2.3 (a), $(x_{n_k}) \to x$. Therefore, X is sequentially compact.

In general, the converse of the Theorem 2.7 need not be true by Example 2.4.

DEFINITION 2.8. A topological space (X, τ) is said to be *g*-sequential if any subset A of X with $[A]_{g_{seq}} \subset A$ is closed in X, that is, every sequentially *g*-closed set in X is a closed set.

Next, we have to show that Theorem 2.9 every sequentially GO-compact space is countably g-compact space but converse true in g-sequential.

THEOREM 2.9. Every sequentially GO-compact space is countably g-compact space.

Proof. Suppose that (X, τ) is not countably *g*-compact. Let \mathcal{C} be a countable *g*-open cover that does not have a finite subcover. We choose $x_j \in X$, for each j > 1. Let $U_j \in \mathcal{C}$ that contains a point x_j but not in $\bigcup_{i=1}^{j-1} U_i$. We enough to show that the sequence (x_n) does not have a subsequence that *g*-converges.

Let $x \in X$. Then there exists k such that for every g-neighborhood U_k of x, $x_j \in U_k$ for every j > k. Thus, no subsequence of (x_n) g-converges to x. Since x is any arbitrary point, no subsequence of (x_n) g-converges to x. Therefore, (X, τ) is not a sequentially GO-compact space.

THEOREM 2.10. Let (X, τ) be a g-sequential space. Every countably g-compact space is sequentially GO-compact space.

Proof. Suppose that (X, τ) is a countably g-compact space. It suffices to show that any sequence (x_n) of points of a countably g-compact g-sequential space X has a g-convergent subsequence.

Suppose that $x_i \neq x_j$ if $i \neq j$. Let x be a g-limit point of the infinite set A. Since $x \in cl(A \setminus \{x\})$, the set $A \setminus \{x\}$ is not closed. So that, X being a g-sequential space, the set $A \setminus \{x\}$ contains a sequence g-converging to a point in the complement of $A \setminus \{x\}$. Rearranging the sequence (y_n) , we get a g-convergent subsequence of (x_n) .

THEOREM 2.11. If the topological space (X, τ) is countably g-compact, then every sequence (x_n) has a g-limit point.

Proof. Let (x_n) be a sequence in X and let $A = \{x_n \mid n \in \mathbb{N}\}$. Suppose that A is an infinite set. Then A has a set of g-limit point of x. Let U be a g-neighborhood of x. Then there is a sequence (y_n) in $A \setminus \{x\}$ such that $g \lim y_n = x$. This implies that $x_n \in A \setminus \{x\}, x_n \in U$. Therefore, x is a g-limit point of A. If A is finite, then there exists $x \in X$ such that $x_n = x$ for infinitely many $n \in \mathbb{N}$. Then for every g-open set U containing x. Hence x is a g-limit point of A.

THEOREM 2.12. The Cartesian product $X \times Y$ of a countably g-compact space X and a sequentially GO-compact space Y is countably g-compact.

Proof. Consider a countably infinite set $A = \{m_1, m_2, ...\} \subset X \times Y$, where $m_i = (x_i, y_i)$ for i = 1, 2, ... and $m_i \neq m_j$ whenever $i \neq j$. Let $y_{k_1}, y_{k_2}, ...$ be a subsequence of $y_1, y_2, ...$ that g-converges to a point $y \in Y$. If the set $\{x_{k_1}, x_{k_2}, ...\}$ is finite, then there exists a point $x \in X$ and a subsequence $k_{l_1}, k_{l_2}, ...$ of the sequence $k_1, k_2, ...$ such that $x_{k_{l_i}} = x$ for i = 1, 2, ... If the set $\{x_{k_1}, x_{k_2}, ...\}$ is infinite, then it has g-limit point $x \in X$. Therefore, $(x, y) \in X \times Y$ is a g-limit point of the set A.

THEOREM 2.13. If X is a countably g-compact space and Y is a g-sequential space, then the projection $P: X \times Y \to Y$ is closed.

Proof. Let A be a closed subset of $X \times Y$. Consider a sequence (y_n) of points of P(A)and U be g-open neighborhood of y in Y, $y_i \in U$ and a point $y \in g \lim y_i$. We Choose a point $x_i \in X$ such that $(x_i, y_i) \in A$ for i = 1, 2, ... Suppose the set $A = \{x_1, x_2, ...\}$ is finite, then there exists $x \in X$ such that $x_{k_i} = x$ for infinite sequence $k_1 < k_2 < ...$ of integers. So that $(x, y) \in g \lim(x_{k_i}, y_{k_i})$ implies that $(x, y) \in [A]_{g_{seq}} = A$, since A is closed, that is, $y \in P(A)$. Suppose the set A is infinite, then it has g-limit point $x \in A$ so that $(x, y) \in [A]_{g_{seq}} = A$ implies that $y \in P(A)$. Since Y is a g-sequential space, the set P(A) is closed in Y.

PROPOSITION 2.14. Every g-closed subset of countably g-compact space is countably g-compact relative to X.

Proof. Let A be a g-closed subset of a countably g-compact space X. Then A^c is g-open in X. Let B be a countable cover of A by g-open sets in X. Then $\{B, A^c\}$ is a g-open cover of X. Since X is countably g-compact it has a finite subcover say $\{C_1, C_2, ..., C_n\}$. If this subcover contains A^c , we remove it. Otherwise leave the subcover as it is. Thus, we have obtained finite g-open subcover of A and so A is countably g-compact relative to X.

THEOREM 2.15. Let X be countably g-compact and Y be any space. If $f : X \to Y$ is g-continuous, then f(X) is countably g-compact.

Proof. Let A be an infinite subset of f(X). Then $A = \{f(x) \mid x \in B\}$ where $B \subseteq X$ is infinite. Since X is countably g-compact. B has a g-limit point k. Let V_k be a g-neighborhood of f(k). Since f is g-continuous, there exists some g-neighborhood U_k of k such that $f(U_k) \subseteq V_k$.

Since k is a g-limit point of B, there exists some $y_n \in B$ such that $y_n \neq k, y_n \in U_k$. Thus, $f(y_n) \in f(U_k) \subseteq V_k$. Since $f(y_n) \in A \setminus f(k), f(y_n) \xrightarrow{g} f(k)$. Since every g-neighborhood V_k of $f(k), f(y_n) \in V_k$, that is f(k) is a g-limit point of A. By Theorem 2.11, f(X) has a g-limit point. Therefore, f(X) is countably g-compact. THEOREM 2.16. If X is g-Lindelöf, then countably g-compactness implies GO-compactness.

Proof. Suppose X is not GO-compact. Suppose that X has an g-open cover which has no finite subcover. We assume that the g-open cover to be countable, since X is g-Lindelöf. So, $X = \bigcup_{k \in \mathbb{N}} U_k$ where each U_k is g-open. Assume that if $U_m \subset \bigcup_{k=1}^{m-1} U_k$, then U_m is not a part of the cover. Now, for each m, let $x_m \in U_m - (\bigcup_{k=1}^{m-1} U_k)$. So (x_m) is an infinite set which has a g-limit point x. Because $\{U_k\}_{k \in \mathbb{N}}$ covers $X, x \in U_n$ for some n and $x_i \in U_n$ for i > n. But this is impossible, since the x_i 's were chosen to be disjoint from $\bigcup_{k=1}^{m-1} U_k$.

PROPOSITION 2.17. A g-sequential space has unique g-limit if and only if each countably g-compact subset is closed.

Proof. Suppose that $A = \{x\} \bigcup \{x_n \mid n \in \mathbb{N}\}$ is an infinite subset of X which is g-converging to two distinct points x and y, then A has a countably g-compact subset of X which is not closed.

Conversely, let A be a countably g-compact subset of X. Suppose that (x_n) is a sequence in A and $(x_n) \xrightarrow{g} x$. Then $\{x\} \bigcup \{x_n \mid n \in \mathbb{N}\}$ is sequentially g-closed and closed. Thus, x is the only possible g-limit of $\{x_n \mid n \in \mathbb{N}\}$. If $\{x_n \mid n \in \mathbb{N}\}$ is infinite, then $x \in A$. If $\{x_n \mid n \in \mathbb{N}\}$ is finite, then $x_n = x$ for all n and $x_n \in A$. Hence A is closed.

COROLLARY 2.18. A g-sequential space has unique g-limit if and only if each sequentially GO-compact subset is closed.

Proof. Suppose that A is a sequentially GO-compact subset of a g-sequential space X with unique g-limit. Then A is countably g-compact. By Proposition 2.17, A is closed. The converse part of the proof follows from Theorem 2.9.

3. g-subspace

Let (X, τ) be a topological space, Y be a subspace of X and $A \subset Y$.

 $[A]_{g|_{Y_{seq}}} = \{ x \in Y \mid x = glimx_n \text{ and } x_n \in S[A] \cap c_{g|_Y}(Y) \} = [Y]_{g_{seq}} \cap Y$ where $c_{g|_Y}(Y) = \{ x_n \in S[Y] \cap c_g(X) \mid x \in Y \}$

PROPOSITION 3.1. Let (X, τ) be a topological space and $A \subset Y \subset X$. Then $[A]_{g|_{Y_{seq}}} = [A]_{g_{seq}} \cap Y$.

Proof. If $x \in [A]_{g|_{Y_{seq}}}$, then there exists a sequence $(x_n) \in c_{g|_Y}(Y) \cap S[A]$ with $(x_n) \xrightarrow{g|_Y} x$. Thus, $x \in [A]$. Next, suppose that $[A]_{g_{seq}} \cap Y$, then there exists a $(x_n) \in S[A] \cap c_g(X)$ with $(x_n) \xrightarrow{g} x \in Y$. Therefore, $(x_n) \in c_{g|_Y}(Y)$ and $x \in [A]_{g|_{Y_{seq}}}$. Thus, $[A]_{g|_{Y_{seq}}} = [A]_{g_{seq}} \cap Y$.

COROLLARY 3.2. Let (X, τ) be a topological space and Y be a subspace of X. If A is sequentially g-closed in X, then the set $A \cap Y$ is sequentially $g|_Y$ -closed in Y.

Proof. Since A is sequentially g-closed in X, $[A]_{g_{seq}} \subset A$, by Theorem 2.5 (b). By Proposition 3.1, $[A \cap Y]_{g|_{Y_{seq}}} = [A \cap Y]_{g_{seq}} \cap Y \subset [A]_{g_{seq}} \cap Y \subset A \cap Y$. Thus, $A \cap Y$ is sequentially $g|_{Y}$ -closed in Y.

COROLLARY 3.3. Let (X, τ) be a topological space and $A \subset Y \subset X$. If A is sequentially $g|_Y$ -closed in Y and Y is sequentially g-closed in X, then A is sequentially g-closed in X

Proof. Since Y is sequentially g-closed in X, $[A]_{g_{seq}} \subset [Y]_{g_{seq}} \subset Y$. Since A is sequentially $g|_Y$ -closed in Y, $[A]_{g|_{Y_{seq}}} \subset A$. By Proposition 3.1, $[A]_{g_{seq}} = [A]_{g_{seq}} \cap Y = [A]_{g|_{Y_{seq}}} \subset A$. Therefore, A is sequentially g-closed in X.

THEOREM 3.4. Every g-closed subset of a g-sequential space is g-sequential.

Proof. Suppose that X is a g-sequential space and Y is a g-closed set of X. We have show that the subspace Y is a $g|_Y$ -sequential space.

Let A be a subset of Y with $[A]_{g_{seq}} \subset A$, that is, A is sequentially $g|_Y$ -closed in Y. Since $[A]_{g_{seq}} \subset [Y]_{g_{seq}}$, $[A]_{g_{seq}} = [A]_{g_{seq}} \cap Y = [A]_{g|_{Y_{seq}}} \subset A$ and so A is closed in X. Therefore, A is closed in Y. Hence Y is a g-sequential space.

References

- A. V. Arhangel'skii and L. S. Pontryagin(eds), *General Topology* I, Encyclopaedia of Mathematical Sciences, Vol. 17, Springer-Verlage, Berlin, 1990.
- [2] K. Balachandran, P. Sundaram and H. Maki, On Generalized Continuos Maps in Topological Spaces, Mem. Fac. Sci. Kochi Univ. 12 (1991), 5–13.
- [3] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czechoslovak Math. J. 26 (2) (1976), 174–182.
- M. Caldas and S. Jafari, On g-US spaces, Universitatea Din Bacau Studii Si Cercetari Stiintifice Seria: Matematica, (2004), 13–20.
- [5] R. Engelking, *General topology* (revised and completed edition), Heldermann verlag, Berlin, 1989.
- [6] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1) (1965), 107–115.
- [7] A. Keskin and T. Noiri, Almost contra-g-continuous functions, Chaos, Solitons and Fractals 42 (2009), 238–246.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, **19** (2) (1970), 89–96.
- [9] S. Lin and L. Liu, G-methods, G-sequential spaces and G-continuity in topological spaces, Topology Applns. 212 (2016), 29–48.
- [10] O. Mucuk and T. Sahan, On G-Sequential continuity, Filomat 28 (6) (2011), 1181–1189.
- [11] S. K. Pal, *I*-Sequential topological spaces, Appl. Math. E-Notes, 14(2014), 236–241.
- [12] V. Renukadevi and B. Prakash, *I*-Frechet-Urysohn spaces, Math. Moravica **20** (2) (2016), 87–97.
- [13] T. Zhongbao and L. Fucai, Statistical versions of sequential and Frechet-Urysohn spaces, Adv. Math. (China), 44 (2015), 945–954.
- [14] V. Renukadevi and P. Vijayashanthi, On *I*-Fréchet-Urysohn spaces and sequential *I*-convergence groups, Math. Moravica, 23 (1) (2019), 119–129.
- P. Vijayashanthi, V. Renukadevi and B. Prakash, On countably s-Fréchet-Urysohn spaces, JCT: J. Compos. Theory, XIII (II) (2020), 969–976.
- [16] P. Vijayashanthi, On Sequentially g-connected components and sequentially locally gconnectedness, Korean J. Math. 29 (2) (2021), 355–360.

Palanichamy Vijayashanthi

Ayya Nadar Janaki Ammal College (Autonomous, affiliated to Madurai Kamaraj Univeristy), Sivakasi 626124, Tamilnadu, India. *E-mail*: vijayashanthi26892@gmail.com

J. Kannan

Ayya Nadar Janaki Ammal College (Autonomous, affiliated to Madurai Kamaraj Univeristy), Sivakasi 626124, Tamilnadu, India. *E-mail*: jayram.kannan@gmail.com