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RESIDUAL FINITENESS AND ABELIAN SUBGROUP

SEPARABILITY OF SOME HIGH DIMENSIONAL GRAPH

MANIFOLDS

Raeyong Kim

Abstract. We generalize 3-manifolds supporting non-positively curved metric to
construct manifolds which have the following properties : (1) They are not locally
CAT(0). (2) Their fundamental groups are residually finite. (3) They have subgroup
separability for some abelian subgroups.

1. Introduction

A subgroup H of a group G is separable if, given an element g ∈ G\H, there exists a
subgroup K of finite index in G such that H ⊂ K and g /∈ K. A group G is residually
finite if the trivial subgroup is separable. Equivalently, G is residually finite if, given
a nontrivial element g, there exists a finite group F and a homomorphism φ : G→ F
such that φ(g) is nontrivial. A group G is subgroup separable, or LERF (locally
extended residually finite) if every finitely generated subgroup of G is separable.

Residual finiteness and subgroup separability are interesting for a number of rea-
sons. For example, if finitely generated residually finite group has the solvable word
problem. In other words, there exists an algorithm to decide whether a given element
represents the identity or not. Also a finitely generated residually finite group G is
Hopfian, i.e., every epimorphism G → G is an isomorphism. If a finitely presented
group is subgroup separable, then it has the solvable generalized word problem. See [8]
for details. One can also find the connection of subgroup separability to geometric
topology in [12].

Related to low dimensional topology, the following fundamental groups of manifolds
are known to be residually finite and subgroup separable.: free groups ([5]), surface
groups([12]), Seifert manifold groups([12]), and hyperbolic 3-manifold groups([1], [15]).
Nevertheless, 3-manifold groups are much more complicated. Every Haken 3-manifold
group is residually finite. But nontrivial graph manifold groups and fibered 3-manifold
groups with some conditions are known to be non-LERF. See [13]. Finally, related to
this paper, every Haken 3-manifold group is abelian subgroup separable, i.e., every
(finitely generated) abelian subgroup is separable. See [6].
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In [4], Frigerio, Lafont and Sisto generalized 3-manifolds supporting nonpositively
curved metric to introduce the notion of high dimensional graph manifolds (graph
n-manifolds, in short). They established various rigidity results, including topolog-
ical, smooth and quasi-isometric rigidities, inspired by corresponding results in the
theory of nonpositively curved spaces and groups. They also studied many interesting
algebraic and algorithmic properties of the fundamental groups of graph n-manifolds,
mainly by analyzing the canonical graph of groups structure. Finally, they presented
examples showing that their construction of the manifolds is more general than non-
positively curved 3-manifolds. A geodesic metric space X is CAT(0) if every geodesic
triangle in X is thinner than the comparison triangle in the Euclidean plane having
the same side lengths. By definition, every nonpositively curved manifold is locally
CAT(0). See [3] for broad understanding about CAT(0) spaces and groups. Contrast
to 3-manifolds theory, Frigerio, Lafont and Sisto proved that

Theorem 1.1. [4, Corollary 11.11] In each dimension n ≥ 4, there exist infinitely
many closed irreducible graph n-manifolds not supporting any locally CAT(0) metric.

The main goal of this paper is that the fundamental groups of some of the manifolds
appeared in the theorem above are residually finite and have subgroup separability for
some abelian subgroups. One can find the precise construction of graph n-manifolds
not supporting locally CAT(0) metric in [4, Chapter 11]. More specifically, we an-
alyze the canonical graph of groups structure of the fundamental group of a graph
n-manifold to prove the following.

Theorem 1.2. In each dimension n ≥ 4, there exist infinitely many closed n-
manifolds M , which generalize 3-manifolds supporting nonpositively curved metric,
with following properties:

1. M is not locally CAT(0).
2. π1(M) is residually finite.
3. π1(M) has subgroup separability for some abelian subgroups.

2. Construction

We briefly recall the notion of a graph of groups and introduce the construction
of the manifolds for the main theorem. Then we prove the fundamental groups are
residually finite and have subgroup separability for some abelian subgroups in the
following sections. The author refers to readers Serre’s book [14] for the details about
a graph of groups.

A graph of groups (G, X) consists of a graph X, a vertex group Gv for each vertex
v in X, an edge group Ge for each edge e in X, and a monomorphism ie : Ge → Gv

for the edge e with the initial vertex v. We also require that Ge = Ge, where e is the
edge e with the opposite direction. Once a base point ∗ in X is fixed, one defines the
fundamental group π1(G, X, ∗) of a graph of groups based at ∗ and it turns out that
this definition is independent of the choice of a base point so that we just denote by
π1(G, X) (or π1(G), if the underlying graph is obvious). We denote ie(Ge) in Gv by
G−e and ie(Ge) by G+

e .
Given a graph of groups (G, X), there exists a tree T , called the Bass-Serre tree,

on which π1(G) acts by isometries. An element is called elliptic if it fixes a vertex in
T and hyperbolic, otherwise. If h ∈ π1(G) acts hyperbolically on T , there exists an
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infinite geodesic γ in T on which h acts by nontrivial translation. Finally, for some
k > 0, we say π1(G) is k-acylindrical if every element which pointwise fixes any path
in T of length ≥ k is automatically trivial.

For n ≥ 3, let N be a complete finite volume hyperbolic n-manifold with toric
cusps. It is well known that each cusp supports a canonical smooth foliation by
closed tori and defines a diffeomorphism between the cusp and Y n−1 × [0,∞), where
Y n−1 = Rn−1/Zn−1 is the standard torus. Note that we save the letter “T” for later

use. Truncate the cusps of N to set N = N \
⋃

(Y n−1 × (4,∞)). Denote the cusps

of N by Y1, · · · , Yk.

Theorem 2.1. [4, Corollary 11.5] For the inclusion i : ∂N → N , the induced map
i∗ : H1(∂N) → H1(N) is not injective. In other words, for each i = 1, · · · , k, there
exists bi ∈ H1(Yi) such that 0 6= b1 + · · ·+ bk ∈ H1(Y1)⊕ · · · ⊕H1(Yk) = H1(∂N), but
i∗(b1 + · · ·+ bk) = 0 in H1(N).

Let V = N × S1, where S1 is the standard circle. Note that, for each i = 1, · · · , k
and the natural projection p : V → N , p−1(Yi) is n-torus and denote by Ti. We obtain
the closed manifold D∗V of dimension n + 1 by gluing two pieces, say V − and V +,
of V in the following manner. For each i = 1, · · · , k, denote Yi and Ti in V − (V +,
respectively) by Y −i and T−i (Y +

i and T+
i , respectively). In the theorem above,

• if bi 6= 0 in H1(Yi), glue T+
i and T−i via the affine diffeomorphism ψi : T+

i → T−i
inducing (ψi)∗ : H1(Y

+
i ) ⊕H1(S

1) → H1(Y
−
i ) ⊕H1(S

1) such that (ψi)∗(v, 0) =
(v, 0) for all v ∈ H1(Y

+
i ) and (ψi)∗(0, λ) = (bi, λ), where λ is the positive gener-

ator of H1(S
1).

• if bi = 0 in H1(Yi), glue T+
i and T−i via the affine diffeomorphism ψi : T+

i → T−i
inducing (ψi)∗ : H1(Y

+
i ) ⊕H1(S

1) → H1(Y
−
i ) ⊕H1(S

1) such that (ψi)∗(v, 0) =
(v, 0) for all v ∈ H1(Y

+
i ) and (ψi)∗(0, λ) = (wi, λ), where λ is the positive

generator of H1(S
1) and wi is any nonzero element in H1(Y

−
i ).

For each case, (ψi)∗ can be written in the matrix form as follows : Id. bi

O 1


 Id. wi

O 1


,where (Id.)-matrix is of size (n−1)×(n−1) and bi and wi are written as (n−1)×1

matrices.
In general, the fundamental group of a graph n-manifold has the canonical structure

of the fundamental group of a graph of groups induced by the decomposition of the
manifold into“pieces”. We briefly explain the graph of groups structure only for
π1(D

∗V ). See [4, Section 2.3] for the general case.
The decomposition of D∗V into two pieces V ± induces on π1(D

∗V ) the fundamental
group of a graph of groups. More precisely, let (G, X) be the graph of groups defined
as follows : (1) the underlying graph X has two vertices and k- (undirected) edges.
(2) the vertex groups are Gv± = π1(V

±) and the edge groups are free abelian groups
of rank n. (3) the homomorphism of an edge group into the adjacent vertex group is
induced by the inclusion of T±i into V ±. Note that, for each edge e with the initial
vertex v−, ie ◦ i−1e = (ψi)∗. A basic property of the Bass-Serre theory implies that
π1(D

∗V ) is isomorphic to π1(G, X).
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Theorem 2.2. [4, Corollary 11.11] The closed manifold D∗V constructed as above
has the following properties.

1. D∗V is not locally CAT(0).
2. π1(D

∗V ) is 3-acylindrical.

Remark 2.3. In the construction, the requirement that wi is nonzero is necessary
for π1(D

∗V ) to be acylindrical and the acylindrical action of π1(D
∗V ) on the Bass-

Serre tree will be crucial when we classify abelian subgroups of π1(D
∗V ).

We close the section with the following simple lemma.

Lemma 2.4. Let φ : Zn−1 × Z → Zn−1 × Z be the element in GLn(Z) defined as
follows : φ(v, 0) = (v, 0), ∀v ∈ Zn−1 and φ(0, 1) = (α, 1) for some nonzero α ∈ Zn−1.
Let H be a subgroup of finite index in Zn−1. Then there exist infinitely many integers
k such that φ(H × kZ) = H × kZ.

Proof. Since H is a subgroup of finite index in Zn−1, there exists a positive integer
k such that kZn−1 ⊂ H. For (h, l) ∈ H×kZ, φ(h, l) = (h+lα, l) ∈ H×kZ. Therefore,
φ(H × kZ) ⊂ H × kZ. For the surjectivity, given (h, l) ∈ H × kZ, it can be easily
checked that φ(h − lα, l) = (h, l). In fact, any multiple of k has the same property.
Therefore, there exist infinitely many integers k such that φ(H × kZ) = H × kZ.

3. Residual Finiteness

In [7], Hempel analyzed the graph of groups structure induced by JSJ decompo-
sition to prove that every Haken 3-manifold group is residually finite. The main
ingredient of the proof is the existence of the compatible collection of normal sub-
groups of finite index, each obtained from pieces appeared in JSJ decomposition of
the manifold. Following Hempel’s argument, we prove that π1(D

∗V ) is residually
finite.

Definition 3.1. For a graph of groups (G, X), the collection of subgroups

{Hv ≤ Gv : v ∈ V (X)}, {He ≤ Ge : e ∈ E(X)}
is called a compatible collection of subgroups if

ie(Ge) ∩Hi(e) = ie(He)

, where V (X)(E(X), respectively) is the set of vertices (edges, respectively) in X and
ie : Ge → Gi(e) is the edge homomorphism from an edge group Ge to the initial vertex
group Gi(e).

For a graph of groups induced by the decomposition of a graph n-manifold M into
“pieces”, if we are given a compatible collection of normal subgroups of finite index,
then it is an elementary fact from covering space theory that we can find a finite cover
M of M with the property that π1(M) is the fundamental group of a graph of groups
such that vertex groups and edge groups are the fundamental groups of elements in
the collection. For the precise argument, see [7, Section 2], for example. Furthermore,

Theorem 3.2. [7, Theorem 3.1] For a graph of groups (G, X), let g ∈ Gv0 −
{1} be a nontrivial element in some vertex group Gv0 . Suppose that there exists a
compatible collection {Hv}, {He} of subgroups each normal and of finite index in the
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corresponding Gv, Ge with g /∈ Hv0 . Suppose further that if for some fixed e0 with
i(e0) = v0, g /∈ ie0(Ge0), we can choose the collection so that g /∈ Hv0 · ie0(Ge0). Then
there exists a subgroup K of finite index in π1(G, X) such that g /∈ K.

Theorem 3.3. π1(D
∗V ) is residually finite.

Proof. Let g ∈ π1(D∗V ) be a nontrivial element. There are two possibilities for g
depending how it acts on the Bass-Serre tree T .

1. Suppose that g is hyperbolic. In other words, g does not fix a vertex in T .
Consider the natural projection p : π1(D

∗V )(' π1(G, X)) → π1(X). Since g
is assumed to be hyperbolic, p(g) is nontrivial. Note that π1(X) is free and the
free group is residually finite. Therefore, there exists a normal subgroup H of
finite index in π1(X) such that p(g) /∈ H. It follows that p−1(H) is a subgroup
of finite index in π1(D

∗V ) not containing g.
2. Suppose that g is elliptic. In other words, g fixes a vertex in T .

By a basic property of the Bass-Serre theory, g is conjugate to an element
in a vertex group. Without loss of generality, we assume g ∈ Gv−(= π1(V

−)).
Note that π1(V

−) ' π1(N) × Z. Write g = (g1, g2) ∈ π1(N) × Z. If g1 is the
identity in π1(N), choose any integer l > 1 such that g2 /∈ lZ. Take

Hv+ = Hv− = π1(N)× lZ
and, for each edge e,

He = Zn−1 × lZ.
It can be easily verified that this choice of subgroups is the compatible collection
of normal subgroups of finite index. By Theorem 3.2, there exists a subgroup
K of finite index in π1(D

∗V ) not containing g.
Suppose that g1 is not the identity. By Malcev’s lemma, π1(N), as a linear

group, is residually finite. (See [9].) Therefore, there exists a normal subgroup
H of finite index in π1(N) such that g1 /∈ H. For each i = 1, · · · , k, by Lemma
2.4, there exist infinitely many integers li such that ψi((H ∩ π1(Yi)) × liZ) =
(H ∩ π1(Yi))× liZ. Let l be the product of such li’s and take

Hv+ = Hv− = H × lZ
and for each edge e.

He = (H ∩ Zn−1)× lZ.
By construction, this choice of subgroups is the compatible collection of normal
subgroups of finite index. By Theorem 3.2, there exists a subgroup K of finite
index in π1(G) not containing g.

4. Abelian Subgroup Separability

For n ≥ 4, it has been proved in [13] that the fundamental group of noncompact
arithmetic hyperbolic n-manifold is non-LERF. Since subgroup separability inherits
into a subgroup, it is unlikely that π1(D

∗V ) is subgroup separable. As for abelian
subgroup separability, Hamilton proved in [6] that, for Haken 3-manifolds and closed
hyperbolic n-orbifolds, its fundamental group is abelian subgroup separable. In the
case of finite volume hyperbolic manifolds, she also applied the same idea in [6] to prove
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that every infinite cyclic subgroup generated by a loxodromic element is separable.
But it is unknown whether an abelian subgroup contained in a cusp subgroup is
separable or not. We firstly classify abelian subgroups in π1(D

∗V ) and prove that an
abelian subgroup H of π1(D

∗V ) is separable unless H is contained in π1(Ti).

Lemma 4.1. Let (G, X) be a graph of groups and H be a nontrivial abelian sub-
group in π1(G). Suppose π1(G)-action on the Bass-Serre tree T is 3-acylindrical. Then
H is either infinite cyclic generated by a hyperbolic element or H is conjugate to a
subgroup of a vertex group.

Proof. Note that, by the Bass-Serre theory, if H fixes a vertex in T , then H is
conjugate to a subgroup of a vertex group. Suppose that H does not fix a vertex in
T . At first, we prove that H has a hyperbolic element. If H consists only in elliptic
elements, then, by [2, Proposition 3.7], there exists an infinite path in T , say with
vertices v0, · · · , vn, · · · such that Hvi ⊂ Hvi+1

for every i ≥ 0 and H = ∪Hvi . But
π1(G)-action on T is assumed 3-acylindrical. Therefore, H must be trivial, which is a
contradiction. By [10, Section 2], there are two possibilities for H.

1. There exists an infinite geodesic γ in T such that H is a subgroup of the sta-
bilizers of γ. Since H leaves γ invariant, we obtain the following short exact
sequence:

0→ Hγ → H → IsomH(γ)→ 0,

where Hγ is the subgroup of H which fixes γ pointwise and IsomH(γ) is the
image of H in the group of isometries of γ. Note that π1(G)-action on T is 3-
acylindrical. Therefore, Hγ is trivial and H is isomorphic to IsomH(γ). On the
other hand, IsomH(γ) is a subgroup of the group of simplicial automorphisms of
R, which is either 1,Z2,Z or D∞(infinite dihedral). It follow that H is infinite
cyclic (generated by a hyperbolic element).

2. H is a subgroup of Stab(E), where E is an end of T and Stab(E) is the stabilizers
of E . In this case, one can invoke the basic properties of the relative translation
length to define a homomorphism α : Stab(E) → Z and obtain the following
short exact sequence: (See [10, Lemma 4].)

0→ H0 → H → Z→ 0,

where H0 = H ∩ ker(α), which consists in elliptic elements. By the discussion
above, H0 is trivial, and therefore H is infinite cyclic (generated by a hyperbolic
element).

Lemma 4.2. Let B be an abelian subgroup in π1(N) × Z and B the image of B
under the natural projection ρ : π1(N) × Z → π1(N). Suppose that B is nontrivial.
Then B is either infinite cyclic generated by a loxodromic element or contained in
π1(Yi) for some i.

Proof. Note that π1(N) acts by isometries on the hyperbolic space Hn−1. Since
every nonelementary discrete group of isometries of Hn−1 has a non-abelian free group
(See [11, Exercise 12.2.15]), B must be elementary. Furthermore, B, as a subgroup of
discrete torsion free subgroup of Isom(Hn−1), is torsion free, i.e., it does not contain
any elliptic element. Therefore, B is contained in either infinite cyclic subgroup of
π1(N) or π1(Yi) for some i.
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Let H be a nontrivial abelian subgroup of π1(D
∗V ) and A be the maximal abelian

subgroup containing H. Then, by Lemma 4.1 and Lemma 4.2, there are three types
for A and H.

1. A does not fix a vertex in the Bass-Serre tree T . In this case, A is infinite cyclic
and H is a subgroup of A.

2. A is conjugate to a subgroup of a vertex group. If we assume that A is contained
in a vertex group, then, by Lemma 4.2 and the maximality of A, A is the product
of an infinite cyclic group generated by a loxodromic element in π1(N) and Z,
and H is an abelian subgroup of A.

3. If we assume that A is contained in a vertex group, then, by Lemma 4.2 and
the maximality of A, A is isomorphic to π1(Ti) for some i and H is an abelian
subgroup of A.

Theorem 4.3. An abelian subgroup in π1(D
∗V ) is separable, unless it is of type

3.

Proof. Let H be an abelian subgroup in π1(D
∗V ) and g /∈ H be an element in

π1(D
∗V ). Since we proved that π1(D

∗V ) is residually finite, let us assume that H is
nontrivial. Suppose that A is the maximal abelian subgroup containing H. By [6,
Proposition 1], A is separable and therefore if g /∈ A, then there exists a subgroup K
of finite index such that H ⊂ A ⊂ K and g /∈ K. It suffices to consider the case that
g ∈ A\H.

Suppose that A does not fix a vertex in the Bass-Serre tree T . By Lemma 4.1, A is
infinite cyclic generated by an element h which acts on T hyperbolically. LetH = 〈hm〉
and g = ha with m - a. Consider the natural projection p : π1(D

∗V )→ π1(X). Note
that h is hyperbolic so that p(h) is nontrivial. Since π1(X) is free and the free group
is residually finite, there exist a finite group F and a homomorphism β : π1(X)→ F
such that β(p(h)m) is not the identity. By precomposing with p, it follows that there
exist a finite group F and a homomorphism φ : π1(D

∗V ) → F such that φ(hm) is
not the identity. Note that m divides the order of φ(h) in F . Let K = φ−1〈φ(hm)〉.
Then K is a subgroup of finite index in π1(D

∗V ), K contains H and, by construction,
g = ha /∈ K.

Suppose that A fixes a vertex in T . Then A is conjugate to a subgroup of a vertex
group. Without loss of generality, assume that A is contained inGv− . By the argument
above (and we only consider type 2), A is a free abelian group of rank 2, which is the
product of infinite cyclic generated by a loxodromic element and Z(= π1(S

1)), and
H, as a subgroup of free abelian groups, has rank ≤ 2.

1. Suppose that H is of rank 1. Let A = 〈h, λ〉 ≤ π1(N)×π1(S1)(= Gv−), where h
is a generator for an infinite cyclic group generated by a loxodromic element in
π1(N) and λ is the positive generator for π1(S

1), H = 〈haλb〉 and g = hxλy. Note
that a 6= 0. (If a = 0, then H is a subgroup of the form {1}×H ′ ≤ π1(N)×π1(S1)
and this is of type 3). Depending on whether a divides x and/or b divides y,
we have several cases. Most of the cases are very straight forward so that the
argument in Section 3 is applicable.

Suppose that a does not divide x. Let {h1, · · · , ha−1} be a set of nontrivial
coset representatives of 〈h〉/〈ha〉. By [6] , every abelian subgroup in π1(N) gen-
erated by a loxodromic element is separable. Therefore, there exists a subgroup
K of finite index in π1(N) such that 〈ha〉 ⊂ K, but K ∩ {h1, · · · , ha−1} = ∅.
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Then K ∩ 〈h〉 = 〈ha〉. By using the method in Theorem 3.3, we obtain a sub-
group K of finite index in π1(D

∗V ) with the property that K∩Gv− = K× lZ for
some l. K contains a normal subgroup K0 of finite index in π1(D

∗V ) and it is
obvious that the subgroup HK0 is of finite index in π1(D

∗V ) and contains H. In
order to complete the case, it remains to show that g /∈ HK0. For this, it suffices
to prove that g /∈ HK, and moreover, by a basic property from the Bass-Serre
theory, this is equivalent to proving that g /∈ H((K× lZ)∩A). By construction,
since H = 〈haλb〉, K ∩〈h〉 = 〈ha〉 and a - x, it follows that g /∈ H((K× lZ)∩A),
as required.

Suppose that x is divisible by a. Note that if b = y = 0, then g ∈ H.
• Suppose that b = 0 and y 6= 0. Choose any integer s0 such that λy /∈ s0Z ≤
π1(S

1) and, as in Theorem 3.3, take

Hv+ = Hv− = π1(N)× s0Z

and, for each edge e,

He = Zn−1 × s0Z.

It can be easily verified that this choice of subgroups is the compatible
collection of normal subgroups of finite index. By Theorem 3.2, there exists
a subgroup K of finite index in π1(D

∗V ) such that H ⊂ K, but g /∈ K.
• Suppose that b 6= 0 and b - y. Replace −b, if b < 0 and take

Hv+ = Hv− = π1(N)× bZ

and, for each edge e,

He = Zn−1 × bZ.

It can be easily verified that this choice of subgroups is the compatible
collection of normal subgroups of finite index. By Theorem 3.2, there exists
a subgroup K of finite index in π1(D

∗V ) such that H ⊂ K, but g /∈ K.
The remaining nontrivial case is when b|y (and a|x). Since a|x and b|y,

g = hxλy can be written g = ha1(haλb)u for some integer a1 6= 0 and u. Since
π1(N) is residually finite, there exists a normal subgroup K of finite index in
π1(N) such that ha1 /∈ K. Suppose that [π1(N) : K] = d. Then, for any integer
c, ha1dc+a1 /∈ K. Recall that, in Theorem 3.3, we chose the integer l in order for
the choice of subgroups to be compatible. In fact, it can be easily verified that
any multiple of l has the same property. At this time, choose any integer l′ such
that l′ is divisible by dba1 and the following choice of subgroups is the collection
of normal subgroups of finite index :

Hv+ = Hv− = K × l′Z

and for each edge e.

He = (K ∩ Zn−1)× l′Z.
As in Theorem 3.3, we can construct a subgroup K of finite index in π1(D

∗V )
with the property that K ∩ Gv− = K × l′Z. Take the normal closure K0 of
K. Then HK0 is a subgroup of finite index in π1(D

∗V ) and it contains H. It
remains to show that g /∈ HK0. Furthermore, in order to do this, it suffices to
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show that ha1 /∈ H((K × l′Z) ∩ A). The generic element in H((K × l′Z) ∩ A)
can be written as, for some integers m1,m2 and m3,

(haλb)m1(hm2λl
′m3) = ham1+m2λbm1+l′m3 .

Therefore, in order for ha1 ∈ H((K × l′Z) ∩ A), there exist m1,m2 and m3

satisfying the following equations.:

am1 +m2 = a1, bm1 + l′m3 = 0

By the choice of l′, m1 must be divisible by da1, and therefore m2 must be of
the form a1dc

′ + a1 for some integer c′. But ha1dc
′+a1 /∈ K, by construction.

Therefore, ha1 /∈ H((K × l′Z) ∩ A)
2. Suppose that H is of rank 2. Write g ∈ A\H as g = (g1, g2) ∈ π1(N)× π1(S1).

Let p1 : π1(N) × π1(S
1) → π1(N) and p2 : π1(N) × π1(S

1) → π1(S
1) be the

natural projections. Since g /∈ H, either g1 /∈ p1(H) or g2 /∈ p2(H).
Suppose that g1 /∈ p1(H). By [6], there exists a subgroup K of finite index

in π1(N) such that K ∩ p1(A) = p1(H), but g1 /∈ K. By using the construction
in Theorem 3.3, we obtain a subgroup K of finite index in π1(D

∗V ) with the
property that K ∩ Gv− = K × lZ for some l. K contains a normal subgroup,
say K0, of finite index. It is obvious that HK0 is of finite index in π1(D

∗V ) and
contains H. Furthermore, by construction, g /∈ HK0.

Suppose that g2 /∈ p2(H). Note that p2(H) is an infinite cyclic subgroup in
π1(S

1), say sZ. Take, as in Theorem 3.3,

Hv+ = Hv− = π1(N)× sZ
and, for each edge e,

He = Zn−1 × sZ.
It can be easily verified that this choice of subgroups is the compatible collec-

tion of normal subgroups of finite index. By Theorem 3.2, there exists a subgroup
K of finite index in π1(D

∗V ). Furthermore, by construction, K contains H, but
g /∈ K.
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