IDENTITIES PRESERVED UNDER EPIS OF PERMUTATIVE POSEMIGROUPS

Aftab Hussain Shah, Sakeena Bano*, and Shabir Ahmad Ahanger

Abstract

In 1985, Khan gave some sufficient conditions on semigroup identities to be preserved under epis of semigroups in conjunction with the general semigroup permutation identity. But determination of all identities which are preserved under epis in conjunction with the general permutation identity is an open problem in the category of all semigroups and hence, in the category of all posemigroups. In this paper, we first find some sufficient conditions on an identity to be preserved under epis of posemigroups in conjunction with any nontrivial general permutation identity. We also find some sufficient conditions on posemigroup identities to be preserved under epis of posemigroups in conjunction with the posemigroup permutation identity, not a general permutation identity.

1. Introduction

The determination of all identities which are preserved under epis in conjunction with the general permutation identity is an open problem in the category of all semigroups and hence, in the category of all posemigroups. However, in ([8], Theorem 4.7) Khan gave some sufficient conditions on semigroup identities to be preserved under epis of semigroups in conjunction with the general semigroup permutation identity. In this paper we are able to generalize the results due to Khan to posemigroups.

Also, in ([4], Theorem 3.9), Ahanger, Shah, and Khan partially generalized the results due of Khan ([8], Theorem 4.7) in the category of posemigroups. In this paper we fully generalize the above results of Khan by relaxing the assumption taken by Ahanger, Shah, and Khan [4]. We also find some sufficient conditions on posemigroup identities to be preserved under epis of posemigroups in conjunction with posemigroup permutation identity, not a general permutation identity.

2. Preliminaries

A partially ordered semigroup, briefly posemigroup is a pair (S, \leq) comprising a semigroup S and a partial order \leq on S that is compatible with its binary operation, i.e. for all $s_{1}, s_{2}, t_{1}, t_{2} \in S, s_{1} \leq t_{1}$ and $s_{2} \leq t_{2}$ implies $s_{1} s_{2} \leq t_{1} t_{2}$. We call $\left(U, \leq_{U}\right)$ a

Received September 30, 2021. Revised April 28, 2022. Accepted June 1, 2022.
2010 Mathematics Subject Classification: 06F05, 20M07, 20M10.
Key words and phrases: Posemigroups, Dominion, Zigzag, Identity.

* Corresponding author.
(C) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
subposemigroup of a posemigroup $\left(S, \leq_{S}\right)$ if U is subsemigroup of the semigroup S and $\leq_{U}=\leq_{S} \cap(U \times U)$.

A posemigroup morphism $f:\left(S, \leq_{S}\right) \rightarrow\left(T, \leq_{T}\right)$ is a monotone $\left(x \leq_{S} y \Rightarrow f(x) \leq_{T}\right.$ $f(y)$) semigroup morphism. We shall also denote posemigroups by S, T etc. whenever no explicit mention of the order relation is required.

A class of posemigroups is called a variety of posemigroups if it is closed under taking the products (endowed with componentwise operation and order), morphic images and subposemigroups. It is also possible to discribe posemigroup varieties alternatively with the help of inequalities using a Birkhoff type characterization; we refer to [5] for details.

Let S and T be posemigroups and $f: S \rightarrow T$ be a posemigroup morphism. Then f is said be an epimorphism (epi) if for any posemigroup W and any posemigroup morphisms $\alpha, \beta: T \rightarrow W, \alpha \circ f=\beta \circ f$ implies $\alpha=\beta$. We observe that $f: S \rightarrow T$ is necessarily a posemigroup epimorphism if $f: S \rightarrow T$ is semigroup epimorphism, where in the latter case we disregard the orders (and hence the monotonocity) and treat S and T as semigroups.

Let U be a subposemigroup of a posemigroup S and $d \in S$. We say that U dominates d if for all $\alpha, \beta: S \rightarrow T$ posemigroup morphisms, such that $\alpha(u)=\beta(u)$ for all $u \in U$, one has $\alpha(d)=\beta(d)$. The set of all elements of S that are dominated by U is called the posemigroup dominion of U in S and is denoted by $\widehat{\operatorname{Dom}}(U, S)$. One can easily verify that $\widehat{\operatorname{Dom}}(U, S)$ is a subposemigroup of S containing U.

An identity $u=v$ is said to be preserved under posemigroup epis if for all posemigroups U and S with U as a subposemigroup of S such that $\widehat{\operatorname{Dom}}(U, S)=S, U$ satisfies $u=v$ implies S also satisfies $u=v$.

The following characterization of posemigroup dominion is provided by Sohail and Tart called the Zigzag Theorem for posemigeroups and will frequently be used in whatever follows.

Theorem 2.1. ([9], Theorem 5) Let U be a subposemigroup of a posemigroup S. Then we have $d \in \widehat{\operatorname{Dom}}(U, S)$ if and only if $d \in U$ or

$$
\begin{align*}
d & \leq x_{1} u_{0}, & u_{0} & \leq u_{1} y_{1} \\
x_{i} u_{2 i-1} & \leq x_{i+1} u_{2 i}, & u_{2 i} y_{i} & \leq u_{2 i+1} y_{i+1}, 1 \leq i \leq n-1 \tag{1}\\
x_{n} u_{2 n-1} & \leq u_{2 n}, & u_{2 n} y_{n} & \leq d \\
v_{0} & \leq s_{1} v_{1}, & & d
\end{align*}
$$

where, $u_{0}, v_{0}, \ldots u_{2 n}, v_{2 m} \in U ; x_{1}, y_{1}, \ldots, x_{n}, y_{n}, s_{1}, t_{1}, \ldots, s_{m}, t_{m} \in S$.
Let us call the above inequalities, posemigroup zigzag inequalities in S over U with value d and length (n, m) and we say that it is of minimal length (n, m) if n and m are the least positive integers.

The next theorems are from [1] and are very important for our investigations.

Theorem 2.2. ([1], Lemma 3.2) Let $d \in \widehat{\operatorname{Dom}}(U, S) \backslash U$ and let (1) and (2) be the zigzag inequalities for d of minimal length (n, m), then $x_{i}, y_{i} \in S \backslash U$ for $i=1,2, \ldots, m$ and $s_{j}, t_{j} \in S \backslash U$ for all $j=1,2, \ldots, m^{\prime}$.

Theorem 2.3. ([1], Lemma 3.3) For any $d \in S \backslash U$ and for any positive integers k and k^{\prime} there exist $u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{k^{\prime}} \in U$ and $d_{k}, d_{k^{\prime}} \in S \backslash U$ such that $d=u_{1} u_{2} \cdots u_{k} d_{k}=d_{k^{\prime}} v_{k^{\prime}} v_{k^{\prime}-1} \cdots v_{2} v_{1}$.

Theorem 2.4. ([4], Theorem 2.1) If U is a permutative posemigroup and S is any posemigroup containing U properly as a subposemigroup such that $\widehat{\operatorname{Dom}}(U, S)=S$. Then S is also permutative.

Bracketed statements whenever used shall mean the dual to the other statements.

3. Main Results

A semigroup S is said to be permutative if S satisfies a permutation identity.

$$
\begin{equation*}
z_{1} z_{2} \cdots z_{n}=z_{i_{1}} z_{i_{2}} \cdots z_{i_{n}}(n \geq 2) \tag{3}
\end{equation*}
$$

where i is any non-trivial permutation of the set $\{1,2, \ldots, n\}$. A posemigroup S is said to be permutative if it is so as a semigroup.

In order to prove the main theorems of this section we first prove the following.
Lemma 3.1. ([4], Lemma 3.2) Let S be any posemigroup satisfying (3) with $n \geq 3$, the following hold:
(i) For each $j \in\{2,3, \ldots, n\}$ such that $z_{j-1} z_{j}$ is not a subword of $z_{i_{1}} z_{i_{2}} \cdots$
$z_{i_{n}}, S$ satisfies the permutation identity

$$
z_{1} z_{2} \cdots z_{j-1} x y z_{j} \cdots z_{n}=z_{1} z_{2} \cdots z_{j-1} y x z_{j} \cdots z_{n}
$$

(ii) If $z_{i_{n}} \neq z_{n}$, then S also satisfies the permutation identity

$$
z_{1} z_{2} \cdots z_{n} x y=z_{1} z_{2} \cdots z_{n} y x
$$

Lemma 3.2. Let S be any permutative posemigroup satisfying a permutation identity (3) with $n \geq 3$. Then for each $j \in\{2,3, \ldots, n\}$ such that $z_{j-1} z_{j}$ is not a subword of $z_{i_{1}} z_{i_{2}} \cdots z_{i_{n}}$, for all $r \geq j-1, s \geq n-j+1$ and for all $u \in S^{r}, v \in S^{s}$ we have

$$
u x_{1} x_{2} v=u x_{2} x_{1} v, \text { for all } x_{1}, x_{2} \in S
$$

In particular S^{k} is medial for all $k \geq \max (j-1, n-j+1)$.
Proof. The proof follows from ([7], Proposition 6.3).
The next lemma easily follows from Lemma 3.2.
Lemma 3.3. Let S be any permutative posemigroup satisfying a permutation identity (3) with $n \geq 3$. If $j \in\{2,3, \ldots, n\}$ such that $z_{j-1} z_{j}$ is not a subword of $z_{i_{1}} z_{i_{2}} \cdots z_{i_{n}}$. Then for all $r \geq j-1, s \geq n-j+1$ and for all $u \in S^{r}, v \in S^{s}$, we have

$$
u z_{1} z_{2} \cdots z_{l} v=u z_{h_{1}} z_{h_{2}} \cdots z_{h_{l}} v
$$

for all $z_{1}, z_{2}, \ldots, z_{l} \in S(l \geq 2)$, where h is any permutation of the set $\{1,2, \ldots, l\}$.

Lemma 3.4. Let S be any permutative posemigroup satisfying a permutation identity (3) with $n \geq 3$. If $j \in\{2,3, \ldots, n\}$ such that $z_{j-1} z_{j}$ is not a subword of $z_{i_{1}} z_{i_{2}} \cdots z_{i_{n}}$. Then for all $r \geq j-1, s \geq n-j+1$ and for all $x \in S^{r}, z \in S^{s}$ and $y \in S,(x y z)^{k}=x^{k} y^{k} z^{k}$ for all $k \geq 1$.

Proof. For $k=1$, the result is vacuously true. We shall prove it for $k>1$. Now

$$
\begin{aligned}
(x y z)^{k} & =(x y z)(x y z)^{k-2}(x y z) \\
& =x y z x^{k-2} y^{k-2} z^{k-2} x y z\left(\text { by Lemma } 3.3 \text { as } x \in S^{r}, z \in S^{s}\right) \\
& =x^{k} y^{k} z^{k}\left(\text { by Lemma } 3.3 \text { as } x \in S^{r}, z \in S^{s}\right) .
\end{aligned}
$$

In the following results, let U and S be any posemigroups with U as a proper subposemigroup of S such that U satisfies (3) and $\widehat{\operatorname{Dom}}(U, S)=S$.

Lemma 3.5. ([2], Lemma 3.3) For any $z_{1}, z_{2} \in S$ and $x, y \in S \backslash U, x z_{1} z_{2} y=x z_{2} z_{1} y$.
Corollary 3.6. For any $x, y \in S \backslash U, z_{1}, z_{2}, \ldots, z_{k} \in S$ and for any permutation j of the set $\{1,2, \ldots, k\}$, we have

$$
x z_{1} z_{2} \cdots z_{k} y=x z_{j_{1}} z_{j_{2}} \cdots z_{j_{k}} y
$$

Lemma 3.7. If $i_{n} \neq n$ in (3), then $x z_{1} z_{2}=x z_{2} z_{1}$ for all $z_{1}, z_{2} \in S$ and $x \in S \backslash U$.
Proof. Since S is permutative, by Lemma 3.1 (ii), S also satisfies the following permutation identity:

$$
z_{1} z_{2} \cdots z_{n} s t=z_{1} z_{2} \cdots z_{n} t s
$$

By Theorem 2.3, for any $x \in S \backslash U$ and for every integer k, we have $x \in S^{k}$. Therefore the proof of the lemma follows.

Corollary 3.8. If $i_{n} \neq n$ in (3), then for any $z_{1}, z_{2}, \ldots, z_{k} \in S, x \in S \backslash U$ and for any permutation j of the set $\{1,2, \ldots, k\}$, we have

$$
x z_{1} z_{2} \cdots z_{k}=x z_{j_{1}} z_{j_{2}} \cdots z_{j_{k}}
$$

Proposition 3.9. Let U be any permutative posemigroup satisfying permutation identity (3) and let S be any posemigroup with U as a proper subposemigroup of S such that $\widehat{\operatorname{Dom}}(U, S)=S$. Then for any $d \in S \backslash U$ there exist $z \in U^{r}, w \in U^{s}$ and $x \in S \backslash U$ with $r \geq j-1, s \geq n-j+1$ such that $d^{k}=z^{k} x^{k} w^{k}$ for all $k \geq 1$.

Proof. Suppose that U satisfies permutation identity (3). By Theorem 2.4, S also satisfies permutation identity (3). Let $d \in S \backslash U$. By Theorems 2.2 and 2.3 together we can write $d=z x w$ for some $z \in U^{r}, w \in U^{s}$ and $x \in S \backslash U$. Now for $k \geq 1$, we have

$$
\begin{aligned}
d^{k} & =(z x w)^{k} \\
& =z^{k} x^{k} w^{k}\left(\text { by Lemma } 3.4 \text { as } z \in U^{r}, w \in U^{s}\right) .
\end{aligned}
$$

THEOREM 3.10. Non-trivial identities I of the following forms are preserved under epis of posemigroups in conjunction with permutation identity (3):
(i) at least one side of I has no repeated variable;
(ii) $z_{1}^{p}=z_{2}^{q}, p, q>0$;
(iii) $z_{1}^{p} z_{2}^{p} \cdots z_{l}^{p}=z_{1}^{q} z_{2}^{q} \cdots z_{l}^{q}, p, q>0, l \geq 1$;
(iv) $z_{1}^{p}=0, p>0$.

Proof. Take any posemigroups U and S with U as a proper subposemigroup of S such that $\operatorname{Dom}(U, S)=S$. Suppose that U satisfies the permutation identity (3) and any non-trivial identity I. Then by Theorem $2.4, S$ also satisfies the permutation identity (3). We will show that S satisfies each of the identities (i) to (iv).
(i) Assume U satisfies (i), then by ([3], Theorem 3.1), S also satisfies (i).
(ii) Assume U satisfies (ii). In order to prove that S satisfies (ii), we first prove the following lemma.

Lemma 3.11. For any $y \in S \backslash U$ and $u \in U, y^{p}=y^{q}=u^{p}\left(=u^{q}\right)$.
Proof. Since $y \in S \backslash U$. Then by Proposition 3.9, $y^{p}=z^{p} x^{p} w^{p}$ for some $z \in U^{r}, w \in$ U^{s} and $x \in S \backslash U$. Let (1) and (2) be the zigzag inequalities for x of minimal length (n, m). Now

$$
\begin{align*}
& y^{p}=z^{p}\left(x_{1} u_{0}\right)^{p} w^{p}(\text { by zigzag inequalities }(1)) \\
&=z^{p} x_{1}^{p} u_{0}^{p} w^{p}(\text { by Lemma } 3.3) \\
&=z^{p} x_{1}^{p} u_{1}^{p} w^{p}(\text { as } U \text { satisfies (ii) }) \\
&=z^{p}\left(x_{1} u_{1}\right)^{p} w^{p}(\text { by Lemma } 3.3) \\
& \leq z^{p}\left(x_{2} u_{2}\right)^{p} w^{p}(\text { by zigzag inequalities (1) }) \\
&=z^{p} x_{2}^{p} u_{2}^{p} w^{p}(\text { by Lemma } 3.3) \\
&=z^{p} x_{2}^{p} u_{3}^{p} w^{p}(\text { as } U \text { satisfies (ii) }) \\
& \vdots \\
&=z^{p} x_{n}^{p} u_{2 n-1}^{p} w^{p} \\
&=z^{p}\left(x_{n} u_{2 n-1}\right)^{p} w^{p}(\text { by Lemma 3.3) } \\
&=z^{p} u_{2 n}^{p} w^{p} \\
&=\left(z u_{2 n} w\right)^{p}(\text { by Lemma 3.3) } \\
&=u^{p}(\text { as } U \text { satisfies (ii) }) . \tag{4}
\end{align*}
$$

On similar lines for any $y \in S \backslash U$ and $u \in U$, we can get

$$
\begin{equation*}
y^{q} \geq u^{q} \tag{5}
\end{equation*}
$$

On combining (4) and (5), we get $y^{p} \leq u^{p}=u^{q} \leq y^{q}$. Similarly, we can show that $y^{p} \geq u^{p}=u^{q} \geq y^{q}$. Therefor, $y^{p}=y^{q}=u^{p}\left(=u^{q}\right)$, as required.

Now to complete the proof of (ii), take any $z_{1}, z_{2} \in S$. If $z_{1} \in S \backslash U$ and $z_{2} \in U$, then the result follows by Lemma 3.11. Assume that $z_{1}, z_{2} \in S \backslash U$. Now

$$
\begin{aligned}
z_{1}^{p} & =u^{p}\left(\text { where } u \in U, \text { by Lemma } 3.11 \text { as } z_{1} \in S \backslash U\right) \\
& =u^{q}(\text { as } U \text { satisfies (ii) }) \\
& =z_{2}^{q}\left(\text { by Lemma } 3.11 \text { as } z_{2} \in S \backslash U\right),
\end{aligned}
$$

as required. This completes the proof of (ii).
(iii) Assume U satisfies (iii). For $j=1,2, \ldots, l$, let $z_{1}^{p} z_{2}^{p} \cdots z_{j}^{p}$ be the word in S of length $j p$. To prove that S satisfies (iii), we use induction on j by assuming that the remaining element $z_{j+1}, \ldots, z_{l} \in U$. For $j=0$, the equation (iii) is vacuously satisfied. Assume inductively that the equation (iii) is true for all $z_{1}, z_{2}, \ldots, z_{j-1} \in S$ and for all $z_{j}, z_{j+1}, \ldots, z_{l} \in U$. We will prove that this assumption also holds for all $z_{1}, z_{2}, \ldots, z_{j} \in S$ and for all $z_{j+1}, \cdots, z_{l} \in U$. There is no need to consider the case $z_{j} \in U$. So, assume that $z_{j} \in S \backslash U$, then by Proposition 3.9,

$$
\begin{equation*}
z_{j}^{p}=z^{p} x^{p} w^{p} \tag{6}
\end{equation*}
$$

for some $z \in U^{r}, w \in U^{s}$ and $x \in S \backslash U$. Let (1) and (2) be the zigzag inequalities for x of minimal length (n, m). For each $k=1,2, \ldots, m-1$, Theorems 2.2 and 2.3 together allow us to write $s_{k}=s_{k}^{\prime} b_{1}^{(k)} b_{2}^{(k)} \cdots b_{j-2}^{(k)}$ and $t_{k}=c_{j+1}^{(k)} c_{j+1}^{(k)} \cdots c_{l}^{(k)} t_{k}^{\prime}$, where $b_{1}^{(k)}, b_{2}^{(k)}, \ldots, b_{j-2}^{(k)}, c_{j+1}^{(k)}, c_{j+1}^{(k)}, \ldots, c_{l}^{(k)} \in U$ and $x_{k}^{\prime}, y_{k}^{\prime} \in S \backslash U$.

For each $k=1,2, \ldots, m-1$, in whatever follows, we shall be using phrases expanding t_{k}, expanding s_{k} and collapsing t_{k}^{\prime}, collapsing s_{k}^{\prime} to mean that $t_{k}=c_{j+1}^{(k)} \cdots c_{l}^{(k)} t_{k}^{\prime}$, $s_{k}=s_{k}^{\prime} b_{1}^{(k)} b_{2}^{(k)} \cdots b_{j-2}^{(k)}$ and $c_{j+1}^{(k)} \cdots c_{l}^{(k)} t_{k}^{\prime}=t_{k}, s_{k}^{\prime} x_{k}^{\prime} b_{1}^{(k)} b_{2}^{(k)} \cdots b_{j-2}^{(k)}$
$=s_{k}$, respectively.
For each $k=1,2, \ldots, m-1$, consider the product

$$
P_{k}=: z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{k}^{\prime q} b_{1}^{(k)^{p}} b_{2}^{(k)^{p}} \cdots b_{j-1}^{(k) p}\left(v_{2 k-1} t_{k}\right)^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p}
$$

Lemma 3.12. For $k=1,2, \ldots, m-1, P_{k} \leq P_{k+1}$ and $P_{m-1} \leq z_{1}^{q} z_{2}^{q} \cdots z_{l}^{q}$.
Proof. Assume that $1 \leq j \leq l$. We essentially prove the lemma when $1<j<l$. The proof in the cases when $j=l$ and $j=l$ follows by slight modification (see Remark 3.14). Now

$$
\begin{aligned}
P_{k} & =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{k}^{\prime q} b_{1}^{(k)^{p}} b_{2}^{(k)^{p}} \cdots b_{j-1}^{(k)^{p}}\left(v_{2 k-1} t_{k}\right)^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& \leq z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{k}^{\prime q} b_{1}^{(k)^{p}} \cdots b_{j-1}^{(k)^{p}}\left(v_{2 k} t_{k+1}\right)^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p}
\end{aligned}
$$

(by zigzag inequalities (2))
$=w_{1} s_{k}^{\prime q} b_{1}^{(k)^{p}} b \cdots b_{j-1}^{(k)^{p}}\left(v_{2 k} t_{k+1}\right)^{p} w_{2}$
(where $w_{1}=z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q}, w_{2}=w^{p} z_{j+1}^{p} \cdots z_{l}^{p}$)
$=w_{1} s_{k}^{\prime q} b_{1}^{(k)^{p}} \cdots b_{j-1}^{(k)^{p}} v_{2 k}^{p} c_{j+1}^{(k+1)^{p}} \cdots c_{l}^{(k+1)^{p}} t_{k+1}^{\prime p} w_{2}$
(by expanding t_{k+1} and Corollary 3.6 as $s_{k}^{\prime}, t_{k+1}^{\prime} \in S \backslash U$)
$=w_{1} s_{k}^{\prime q} b_{1}^{(k)^{q}} \cdots b_{j-1}^{(k)} v_{2 k}^{q} c_{j+1}^{(k+1)^{q}} \cdots c_{l}^{(k+1)^{q}} t_{k+1}^{\prime p} w_{2}$ (as U satisfies (iii))
$=w_{1} s_{k}^{q} v_{2 k}^{q} c_{j+1}^{(k+1)^{q}} \cdots c_{l}^{(k+1)^{q}} t_{k+1}^{\prime p} w_{2}$ (by collapsing s_{k}^{\prime} and
Corollary 3.6 as $\left.s_{k}^{\prime}, t_{k+1}^{\prime} \in S \backslash U\right)$
$=w_{1}\left(s_{k} v_{2 k}\right)^{q} c_{j+1}^{(k+1)^{q}} \cdots c_{l}^{(k+1)^{q}} t_{k+1}^{\prime p} w_{2}\left(\right.$ by Corollary 3.6 as $\left.s_{k}, t_{k+1}^{\prime} \in S \backslash U\right)$
$\leq w_{1}\left(s_{k+1} v_{2 k+1}\right)^{q} c_{j+1}^{(k+1)^{q}} \cdots c_{l}^{(k+1)^{q}} t_{k+1}^{\prime p} w_{2}$ (by zigzag inequalities (2))
$=w_{1} s_{k+1}^{q} v_{2 k+1}^{q} c_{j+1}^{(k+1)^{q}} \cdots c_{l}^{(k+1)^{q}} t_{k+1}^{\prime p} w_{2}$
(by Corollary 3.6 as $s_{k+1}, t_{k+1}^{\prime} \in S \backslash U$)
$=w_{1} s_{k+1}^{\prime q} b_{1}^{(k+1)^{q}} \cdots b_{j-1}^{(k+1)^{q}} v_{2 k+1}^{q} c_{j+1}^{(k+1)^{q}} \cdots c_{l}^{(k+1)^{q}} t_{k+1}^{\prime p} w_{2}$
(by expanding s_{k+1}^{\prime} and Corollary 3.6 as $s_{k+1}, t_{k+1}^{\prime} \in S \backslash U$)
(by Corollary 3.6 as $s_{k+1}^{\prime}, t_{k+1} \in S \backslash U$)

$$
=z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{k+1}^{\prime q} b_{1}^{(k+1)^{p}} \cdots b_{j-1}^{(k+1)^{p}}\left(v_{2 k+1} t_{k+1}\right)^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p}
$$

$$
\left(\text { since } w_{1}=z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q}, w_{2}=w^{p} z_{j+1}^{p} \cdots z_{l}^{p}\right)
$$

$$
=P_{k+1}
$$

In particular it shows that
as required.
Lemma 3.13.

$$
z_{1}^{p} z_{2}^{p} \cdots z_{l}^{p} \leq P_{1} .
$$

Proof.

$$
\begin{aligned}
z_{1}^{p} z_{2}^{p} \cdots z_{q} \cdots z_{l}^{p} & =z_{1}^{p} z_{2}^{p} \cdots z_{j-1}^{p} z^{p} x^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \text { (by equation (6)) } \\
& \leq z_{1}^{p} z_{2}^{p} \cdots z_{j-1}^{p} z^{p}\left(v_{0} t_{1}\right)^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \text { (by zigzag inequalities (2)) } \\
& =z_{1}^{p} z_{2}^{p} \cdots z_{j-1}^{p} z^{p} v_{0}^{p} c_{j+1}^{(1)^{p}} \cdots c_{l}^{(1) p} t_{1}^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p}
\end{aligned}
$$

(by expanding t_{1} and Lemma 3.3, as $z \in U^{r}$ and $w \in U^{s}$)

$$
=z_{1}^{p} z_{2}^{p} \cdots z_{j-1}^{p} z^{p}\left(v_{0} c_{j+1}^{(1)}\right)^{p} c_{j+2}^{(1)^{p}} \cdots c_{l}^{(1)^{p}} t_{1}^{p p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p}
$$

(by Lemma 3.3, as $z \in U^{r}$ and $w \in U^{s}$)

$$
\begin{aligned}
& P_{m-1} \leq w_{1} s_{m}^{\prime q} b_{1}^{(m)^{p}} \cdots b_{j-1}^{(m)^{p}} v_{2 m-1}^{p} t_{m}^{p} w_{2} \\
& =w_{1} s_{m}^{\prime q} b_{1}^{(m)^{p}} \cdots b_{j-1}^{(m)^{p}}\left(v_{2 m-1} t_{m}\right)^{p} w_{2} \\
& \text { (by Corollary } 3.6 \text { as } s_{m}^{\prime}, t_{m} \in S \backslash U \text {) } \\
& \leq w_{1} s_{m}^{\prime q} b_{1}^{(m)^{p}} \cdots b_{j-1}^{(m)^{p}} v_{2 m}^{p} w_{2} \text { (by zigzag inequalities (2)) } \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{m}^{\prime q} b_{1}^{(m)^{p}} \cdots b_{j-1}^{(m)^{p}} v_{2 m}^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{m}^{\prime q} b_{1}^{(m)^{p}} \cdots b_{j-1}^{(m)^{p}}\left(v_{2 m} w\right)^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& \text { (by Lemma 3.3, as } z \in U^{r} \text { and } w \in U^{s} \text {) } \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{m}^{\prime q} b_{1}^{(m)^{q}} \cdots b_{j-1}^{(m)^{q}}\left(v_{2 m} w\right)^{q} z_{j+1}^{q} \cdots z_{l}^{q} \\
& \text { (as } U \text { satisfies (iii)) } \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{m}^{q} v_{2 m}^{q} w^{q} z_{j+1}^{q} \cdots z_{l}^{q} \text { (by collapsing } s_{m}^{\prime} \text { and } \\
& \text { Lemma 3.3, as } \left.z \in U^{r} \text { and } w \in U^{s}\right) \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q}\left(s_{m} v_{2 m}\right)^{q} w^{q} z_{j+1}^{q} \cdots z_{l}^{q} \\
& \text { (by Lemma 3.3, as } z \in U^{r} \text { and } w \in U^{s} \text {) } \\
& \leq z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} x^{q} w^{q} z_{j+1}^{q} \cdots z_{l}^{q} \text { (by zigzag inequalities (2)) } \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j}^{q} z_{j+1}^{q} \cdots z_{l}^{q},
\end{aligned}
$$

$$
\begin{aligned}
& =w_{1} s_{k+1}^{\prime q} b_{1}^{(k+1)^{p}} \cdots b_{j-1}^{(k+1)^{p}} v_{2 k+1}^{p} c_{j+1}^{(k+1)^{p}} \cdots c_{l}^{(k+1)^{p}} t_{k+1}^{\prime p} w_{2}(\text { as } U \text { satisfies (iii)) } \\
& =w_{1} s_{k+1}^{\prime q} b_{1}^{(k+1)^{p}} \cdots b_{j-1}^{(k+1)^{p}} v_{2 k+1}^{p} t_{k+1}^{p} w_{2} \text { (by collapsing } t_{k+1}^{\prime} \text { and } \\
& \text { Corollary } \left.3.6 \text { as } s_{k+1}^{\prime}, t_{k+1}^{\prime} \in S \backslash U\right) \\
& =w_{1} s_{k+1}^{q} b_{1}^{(k+1)^{p}} \cdots b_{j-1}^{(k+1)^{p}}\left(v_{2 k+1} t_{k+1}\right)^{p} w_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q}\left(v_{0} c_{j+1}^{(1)}\right)^{q} c_{j+2}^{(1)^{q}} \cdots c_{l}^{(1)^{q}} t_{1}^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& \text { (as } U \text { satisfies (iii)) } \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} v_{0}^{q} c_{j+1}^{(1)^{q}} c_{j+2}^{(1)^{q}} \cdots c_{l}^{(1)^{q}} t_{1}^{p p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& \text { (by Lemma 3.3, as } z \in U^{r} \text { and } w \in U^{s} \text {) } \\
& \leq z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q}\left(s_{1} v_{1}\right)^{q} c_{j+1}^{(1)^{q}} c_{j+2}^{(1)^{q}} \cdots c_{l}^{(1)^{q}} t_{1}^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& \text { (by zigzag inequalities (2)) } \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{1}^{q} v_{1}^{q} c_{j+1}^{(1)^{q}} \cdots c_{l}^{(1)^{q}} t_{1}^{\prime p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& \text { (by Corollary } 3.6 \text { as } s_{1}, t_{1}^{\prime} \in S \backslash U \text {) } \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{1}^{\prime q} b_{1}^{(1)^{q}} \cdots b_{j-1}^{(1)^{q}} v_{1}^{q} c_{j+1}^{(1)^{q}} \cdots c_{l}^{(1)^{q}} t_{1}^{p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& \text { (by expanding } s_{1} \text { and Corollary } 3.6 \text { as } s_{1}^{\prime}, t_{1}^{\prime} \in S \backslash U \text {) } \\
& =z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q} z^{q} s_{1}^{\prime q} b_{1}^{(1)^{p}} \cdots b_{j-1}^{(1)^{p}} v_{1}^{p} c_{j+1}^{(1)^{p}} \cdots c_{l}^{(1)^{p}} t_{1}^{\prime p} w^{p} z_{j+1}^{p} \cdots z_{l}^{p} \\
& \text { (as } U \text { satisfies (iii)) } \\
& =P_{1} \text {, }
\end{aligned}
$$

as required.
Now, by Lemmas 3.12 and 3.13, we have

$$
z_{1}^{p} z_{2}^{p} \cdots z_{l}^{p} \leq P_{1} \leq \cdots P_{m-1} \leq z_{1}^{q} z_{2}^{q} \cdots z_{l}^{q}
$$

Similarly, we can show that $z_{1}^{p} z_{2}^{p} \cdots z_{l}^{p} \geq z_{1}^{q} z_{2}^{q} \cdots z_{l}^{q}$. Therefore $z_{1}^{p} z_{2}^{p} \cdots z_{l}^{p}=z_{1}^{q} z_{2}^{q} \cdots z_{l}^{q}$, as required.

REMARK 3.14. The proof when $j=l$ or $j=1$ is obtained by making the following conventions:
(i) the word $z_{1}^{q} z_{2}^{q} \cdots z_{j-1}^{q}=1$,
(ii) the word $b_{1}^{(i)^{p}} \cdots b_{j-1}^{(i)^{p}}=1=b_{1}^{(i)^{q}} \cdots b_{j-1}^{(i)^{q}}$ and $s_{i}^{\prime}=s_{i}$ for $i=1,2, \ldots, m$.

Dually when $j=1$,
(i) the word $z_{j+1}^{p} \cdots z_{l}^{p}=1$,
(ii) the word $c_{j+1}^{(i)^{p}} \cdots c_{l}^{(i)^{p}}=1=c_{j+1}^{(i)^{q}} \cdots c_{l}^{(i)^{q}}$ and $t_{i}^{\prime}=t_{i}$ for $i=1,2, \ldots, m$.
(iv) Assume U satisfies (iv). Let $z_{1} \in S \backslash U$, then by Proposition $3.9, z_{1}^{p}=z^{p} x^{p} w^{p}$ for some $z \in U^{r}, w \in U^{s}$ and $x \in S \backslash U$. Let (1) and (2) be the zigzag inequalities for x of minimal length (n, m). Now

$$
\begin{aligned}
z_{1}^{p} & \leq z^{p}\left(v_{0} t_{1}\right)^{p} w^{p}(\text { by zigzag inequalities }(2)) \\
& =z^{p} v_{0}^{p} t_{1}^{p} w^{p}\left(\text { by Lemma } 3.3 \text { as } z \in U^{r} \text { and } w \in U^{s}\right) \\
& =z^{p} v_{1}^{p} t_{1}^{p} w^{p}(\text { as } U \text { satisfies }(\text { iv })) \\
& =z^{p}\left(v_{1} t_{1}\right)^{p} w^{p}\left(\text { by Lemma } 3.3 \text { as } z \in U^{r} \text { and } w \in U^{s}\right) \\
& \leq z^{p}\left(v_{2} t_{2}\right)^{p} w^{p}(\text { by zigzag inequalities }(2)) \\
& =z^{p} v_{2}^{p} t_{2}^{p} w^{p}\left(\text { by Lemma } 3.3 \text { as } z \in U^{r} \text { and } w \in U^{s}\right) \\
& =z^{p} v_{3}^{p} t_{2}^{p} w^{p}(\text { as } U \text { satisfies }(\text { iv }))
\end{aligned}
$$

$$
\begin{aligned}
& =z^{p} v_{2 m-1}^{p} t_{m}^{p} w^{p} \\
& \left.=z^{p}\left(v_{2 m-1} t_{m}\right)^{p} w^{p} \text { (by Lemma } 3.3 \text { as } z \in U^{r} \text { and } w \in U^{s}\right) \\
& \leq z^{p} v_{2 m}^{p} w^{p}(\text { by zigzag inequalities }(2)) \\
& =\left(z v_{2 m} w\right)^{p}\left(\text { by Lemma } 3.3 \text { as } z \in U^{r} \text { and } w \in U^{s}\right) \\
& =0(\operatorname{as} U \text { satisfies (iv) }) .
\end{aligned}
$$

Thus $z_{1}^{p} \leq 0$. Similarly, we can show that $z_{1}^{p} \geq 0$. Hence $z_{1}^{p}=0$, as required. This completes proof of the Theorem 3.10.

In the following results U is any proper subposemigroup of a posemigroup S satisfying (3), such that $\widehat{\operatorname{Dom}}(U, S)=S$.

Lemma 3.15. ([4], Lemma 3.4) If $i_{n} \neq n$ and $i_{2} \neq 2$ then for any $z_{1}, z_{3} \in U$ and $z_{2} \in S \backslash U, z_{1} z_{2} z_{3}=z_{1} z_{3} z_{2}$.

Corollary 3.16. If $i_{n} \neq n$ and $i_{2} \neq 2$ in (3), then for any $z_{1}, z_{2}, \ldots, z_{k} \in S$ such that $z_{q} \in S \backslash U$ for some $q \in\{2,3, \ldots, k\}$ and for any permutation j of the set $\{2,3, \ldots, k\}$. We have

$$
z_{1} z_{2} \cdots z_{k}=z_{1} z_{j_{2}} z_{j_{3}} \cdots z_{j_{k}} .
$$

Proof. We have,

$$
\begin{aligned}
z_{1} z_{2} \cdots z_{q} \cdots z_{k} & =z_{1} z_{q} z_{2} \cdots z_{q-1} z_{q+1} \cdots z_{k}\left(\text { by Lemma } 3.15 \text { as } z_{q} \in S \backslash U\right) \\
& =z_{1} z_{q} z_{j_{2}} \cdots z_{j_{l-1}} z_{j_{l+1}} \cdots z_{j_{k}}\left(\text { where } z_{q}=z_{j_{l}}, \text { by Corollary } 3.8\right) \\
& =z_{1} z_{j_{2}} \cdots z_{j_{l-1}} z_{q} z_{j_{l+1}} \cdots z_{j_{k}}\left(\text { by Lemma } 3.15 \text { as } z_{q} \in S \backslash U\right) \\
& =z_{1} z_{j_{2}} z_{j_{3}} \cdots z_{j_{k}},
\end{aligned}
$$

as required.
Lemma 3.17. If $i_{n} \neq n$ and $i_{2} \neq 2$ in (3), then for all $z_{1} \in U$ and $z_{2} \in S \backslash U$, $\left(z_{1} z_{2}\right)^{k}=z_{1}^{k} z_{2}^{k}$ for all positive integers k.

Proof. For $k=1$, the result is vacously true. Assume $k>1$, we have

$$
\begin{aligned}
\left(z_{1} z_{2}\right)^{k} & =z_{1} z_{2}\left(z_{1} z_{2}\right)^{k-1} \\
& =z_{1} z_{2} z_{1}^{k-1} z_{2}^{k-1} \text { (by Corollary } 3.8, \text { as } z_{2} \in S \backslash U \\
& =z_{1}^{k} z_{2}^{k}\left(\text { by Corollary 3.16, as } i_{n} \neq n \text { and } i_{2} \neq 2 \text { and } z_{2} \in S \backslash U .\right.
\end{aligned}
$$

Lemma 3.18. If $i_{n} \neq n$ in (3), then for all $z_{1} \in S \backslash U$ and $z_{2} \in U,\left(z_{1} z_{2}\right)^{k}=z_{1}^{k} z_{2}^{k}$ for all positive integers k.

Proof. For $k=1$, the result is vacously true. Assume $k>1$, we have

$$
\begin{aligned}
\left(z_{1} z_{2}\right)^{k} & =z_{1} z_{2}\left(z_{1} z_{2}\right)^{k-1} \\
& =z_{1} z_{2} z_{1}^{k-1} z_{2}^{k-1} \quad \text { by Corollary } 3.8, \text { as } i_{n} \neq n \text { and } z_{1} \in S \backslash U \\
& =z_{1}^{k} z_{2}^{k}\left(\text { by Corollary } 3.8, \text { as } i_{n} \neq n \text { and } z_{1} \in S \backslash U\right.
\end{aligned}
$$

Theorem 3.19. A nontrivial identity I is preserved under the epis of posemigroups in conjunction with the permutation identity (3), with $i_{n} \neq n$ and $i_{2} \neq 2\left[i_{1} \neq 1\right.$ and $\left.i_{n-1} \neq n-1\right]$ if I has one of the following forms:
(i) $z_{1}^{p} z_{2}^{q}=z_{2}^{r} z_{1}^{s}, p, q, r, s>0$;
(ii) $z_{1}^{p} z_{2}^{q}=0, p, q>0$.

Proof. Let U and S be any posemigroups with U as a proper subposemigroup of S such that $\widehat{\operatorname{Dom}}(U, S)=S$. Assume that U satisfies (3) with $i_{n} \neq n$ and $i_{2} \neq 2$ and any nontrivial identity I. By Theorem 2.4, S also satisfies permutation identity (3). We will show that S also satisfies the identities (i) and (ii).
(i) Assume U satisfies (i) and let $z_{1}, z_{2} \in S$. We consider the following cases.

Case a: $z_{1} \in S \backslash U$ and $z_{2} \in U$. Let (1) and (2) be the zigzag inequalities for z_{1} of minimal length (n, m). Now, we prove inductively that

$$
\begin{equation*}
z_{1}^{p} z_{2}^{p} \leq x_{k}^{p} z_{2}^{r}\left(u_{2 k-1} y_{k}\right)^{s} \tag{7}
\end{equation*}
$$

holds for all $k=1,2, \ldots, n-1$. For $k=1$, we have

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq\left(x_{1} u_{0}\right)^{p} z_{2}^{q} \text { (by zigzag inequalities }(1) \\
& =x_{1}^{p} u_{0}^{p} z_{2}^{q}\left(\text { by Lemma } 3.18, \text { as } x_{1} \in S \backslash U\right) \\
& =x_{1}^{p} z_{2}^{r} u_{0}^{s} \text { (since } U \text { satisfies (i)) } \\
& \leq x_{1}^{p} z_{2}^{r}\left(u_{1} y_{1}\right)^{s}(\text { by zigzag inequalities }(1)) .
\end{aligned}
$$

Thus (7) holds for $k=1$. Assume inductively that it holds for $k=l<n-1$. We will show that it also holds for $k=l+1$. Now

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq x_{l}^{p} z_{2}^{r}\left(u_{2 l-1} y_{l}\right)^{s} \quad \text { (by inductive hypothesis) } \\
& \left.=x_{l}^{p} z_{2}^{r} u_{2 l-1}^{s} y_{l}^{s} \quad \text { by Corollary 3.6, as } x_{l}, y_{l} \in S \backslash U\right) \\
& =x_{l}^{p} u_{2 l-1}^{p} z_{2}^{q} y_{l}^{s} \text { (as } U \text { satisfies (i)) } \\
& \left.=\left(x_{l} u_{2 l-1}\right)^{p} z_{2}^{q} y_{l}^{s} \quad \text { by Corollary 3.6, as } x_{l}, y_{l} \in S \backslash U\right) \\
& \leq\left(x_{l+1} u_{2 l}\right)^{p} z_{2}^{q} y_{l}^{s} \text { (by zigzag inequalities (1)) } \\
& \left.=x_{l+1}^{p} u_{2 l}^{p} z_{2}^{q} y_{l}^{s} \text { (by Corollary 3.6, as } x_{l+1}, y_{l} \in S \backslash U\right) \\
& =x_{l+1}^{p} z_{2}^{r} u_{2 l}^{s} y_{l}^{s}(\text { as } U \text { satisfies (i)) } \\
& =x_{l+1}^{p} z_{2}^{r}\left(u_{2 l} y_{l}\right)^{s}\left(\text { by Corollary 3.6, as } x_{l+1}, y_{l} \in S \backslash U\right) \\
& \leq x_{l+1}^{p} z_{2}^{r}\left(u_{2 l+1} y_{l+1}\right)^{s} \text { (by zigzag inequalities }(1) \text {), }
\end{aligned}
$$

as required.
Now to complete the proof of Case a, letting $k=n-1$ in (7), we have

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq x_{n}^{p} z_{2}^{r}\left(u_{2 n-1} y_{n}\right)^{s} \\
& =x_{n}^{p} z_{2}^{r} u_{2 n-1}^{s} y_{n}^{s}\left(\text { by Corollary 3.6, as } x_{n}, y_{n} \in S \backslash U\right) \\
& =x_{n}^{p} u_{2 n-1}^{p} z_{2}^{q} y_{n}^{s}(\text { as } U \text { satisfies (i)) } \\
& =\left(x_{n} u_{2 n-1}\right)^{p} z_{2}^{q} y_{n}^{s}\left(\text { by Corollary } 3.6, \text { as } x_{n}, y_{n} \in S \backslash U\right) \\
& \leq\left(u_{2 n}\right)^{p} z_{2}^{q} y_{n}^{s}(\text { by zigzag inequalities (1)) } \\
& =z_{2}^{r} u_{2 n}^{s} y_{n}^{s}(\text { as } U \text { satisfies (i)) } \\
& =z_{2}^{r}\left(u_{2 n} y_{n}\right)^{s}\left(\text { by Lemma } 3.17 \text { as } y_{n} \in S \backslash U\right) \\
& \leq z_{2}^{r} z_{1}^{s}(\text { by zigzag inequalities (1)) } .
\end{aligned}
$$

Thus $z_{1}^{p} z_{2}^{q} \leq z_{2}^{r} z_{1}^{s}$. Similarly, we can show that $z_{1}^{p} z_{2}^{q} \geq z_{2}^{r} z_{1}^{s}$. Hence, $z_{1}^{p} z_{2}^{q}=z_{2}^{r} z_{1}^{s}$ as required.

Case b: $z_{2} \in S \backslash U$ and $z_{1} \in U$. Let (1) and (2) be the zigzag inequalities for z_{2} of minimal length (n, m). Now, we prove inductively that

$$
\begin{equation*}
z_{1}^{p} z_{2}^{q} \leq\left(s_{k} v_{2 k-1}\right)^{r} z_{1}^{s} t_{k}^{q} \tag{8}
\end{equation*}
$$

holds for all $k=1,2, \ldots, m-1$. For $k=1$, we have

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq z_{1}^{p}\left(v_{0} t_{1}\right)^{q}(\text { by zigzag inequalities }(2)) \\
& =z_{1}^{p} v_{0}^{q} t_{1}^{q}\left(\text { by Lemma } 3.17 \text { as } t_{1} \in S \backslash U\right) \\
& =v_{0}^{r} z_{1}^{s} t_{1}^{q}(\text { since } U \text { satisfies (i)) } \\
& \leq\left(s_{1} v_{1}\right)^{r} z_{1}^{s} t_{1}^{q}(\text { by zigzag inequalities }(2))
\end{aligned}
$$

Thus (8) holds for $k=1$. Assume inductively that it holds for $k=l<m-1$. We will show that it also holds for $k=l+1$. Now

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq\left(s_{l} v_{2 l-1}\right)^{r} z_{1}^{s} t_{l}^{q} \text { (by inductive hypothesis) } \\
& \left.=s_{l}^{r} v_{2 l-1}^{r} z_{1}^{s} t_{l}^{q} \text { (by Corollary 3.6, as } s_{l}, t_{l} \in S \backslash U\right) \\
& =s_{l}^{r} z_{1}^{p} v_{2 l-1}^{q} t_{l}^{q} \text { (since } U \text { satisfies (i)) } \\
& =s_{l}^{r} z_{1}^{p}\left(v_{2 l-1} t_{l}\right)^{q}\left(\text { by Corollary 3.6, as } s_{l}, t_{l} \in S \backslash U\right) \\
& \left.=s_{l}^{r} z_{1}^{p}\left(v_{22} t_{l+1}\right)^{q} \text { (by zigzag inequalities }(2)\right) \\
& =s_{l}^{r} z_{1}^{p} v_{2 l}^{q} t_{l+1}^{q}\left(\text { by Corollary 3.6, as } s_{l}, t_{l+1} \in S \backslash U\right) \\
& =s_{l}^{r} v_{2 l}^{r} z_{1}^{s} t_{l+1}^{q} \text { (since } U \text { satisfies (i)) } \\
& \left.=\left(s_{l} v_{2 l}\right)^{r} z_{1}^{s} t_{l+1}^{q} \text { (by Corollary 3.6, as } s_{l}, t_{l+1} \in S \backslash U\right) \\
& =\left(s_{l+1} v_{2 l+1}\right)^{r} z_{1}^{s} t_{l+1}^{q} \text { (by zigzag inequalities }(2) \text {) },
\end{aligned}
$$

as required.
Now to complete the proof of Case b, letting $k=m-1$ in (8), we have

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq\left(s_{m} v_{2 m-1}\right)^{r} z_{1}^{s} t_{m}^{q} \\
& \left.=s_{m}^{r} v_{2 m-1}^{r} z_{1}^{s} t_{m}^{q} \text { (by Corollary 3.6, as } s_{m}, t_{m} \in S \backslash U\right) \\
& =s_{m}^{r} z_{1}^{p} v_{2 m-1}^{q} t_{m}^{q} \text { (since } U \text { satisfies (i)) } \\
& \left.=s_{m}^{r} z_{1}^{p}\left(v_{2 m-1} t_{m}\right)^{q} \text { (by Corollary 3.6, as } s_{m}, t_{m} \in S \backslash U\right) \\
& \leq s_{m}^{r} z_{1}^{p} v_{2 m}^{q}(\text { by zigzag inequalities }(2)) \\
& =s_{m}^{r} v_{2 m}^{r} z_{1}^{s} \text { (since } U \text { satisfies (i)) } \\
& \left.=\left(s_{m} v_{2 m}\right)^{r} z_{1}^{s} \text { (by Lemma 3.18, as } s_{m} \in S \backslash U\right) \\
& \leq z_{2}^{r} z_{1}^{s}(\text { by zigzag inequalities (2)). }
\end{aligned}
$$

Thus $z_{1}^{p} z_{2}^{q} \leq z_{2}^{r} z_{1}^{s}$. Similarly, we can show that $z_{1}^{p} z_{2}^{q} \geq z_{2}^{r} z_{1}^{s}$. Hence $z_{1}^{p} z_{2}^{q}=z_{2}^{r} z_{1}^{s}$, as required.

Case c: $z_{1}, z_{2} \in S \backslash U$ and let (1) and (2) be the zigzag inequalities for z_{1} of minimal length (n, m). Then

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq\left(x_{1} u_{0}\right)^{p} z_{2}^{q}(\text { by zigzag inequalities }(1) \\
& \left.=x_{1}^{p} u_{0}^{p} z_{2}^{q} \quad \text { by Lemma } 3.18\right) \\
& =x_{1}^{p} z_{2}^{r} u_{0}^{s} \text { (by Case b) }
\end{aligned}
$$

```
\(\leq x_{1}^{p} z_{2}^{r}\left(u_{1} y_{1}\right)^{s}\) (by zigzag inequalities (1))
\(=x_{1}^{p} z_{2}^{r} u_{1}^{s} y_{1}^{s}\) (by Corollary 3.6, as \(x_{1}, y_{1} \in S \backslash U\) )
\(=x_{1}^{p} u_{1}^{p} z_{2}^{q} y_{1}^{s}\) (by Case b)
\(=\left(x_{1} u_{1}\right)^{p} z_{2}^{q} y_{1}^{s}\) (by Corollary 3.6, as \(x_{1}, y_{1} \in S \backslash U\) )
\(\leq\left(x_{2} u_{2}\right)^{p} z_{2}^{q} y_{1}^{s}\) (by zigzag inequalities (1))
\(=x_{2}^{p} u_{2}^{p} z_{2}^{q} y_{1}^{s}\) (by Corollary 3.6, as \(x_{2}, y_{1} \in S \backslash U\) )
\(=x_{2}^{p} z_{2}^{r} u_{2}^{s} y_{1}^{s}\) (by Case b)
\(=x_{2}^{p} z_{2}^{r}\left(u_{2} y_{1}\right)^{s}\) (by Corollary 3.6, as \(x_{2}, y_{1} \in S \backslash U\) )
\(\leq x_{2}^{p} z_{2}^{r}\left(u_{3} y_{2}\right)^{s}\) (by zigzag inequalities (1))
\(\vdots\)
\(\leq x_{n}^{p} z_{2}^{r}\left(u_{2 n-1} y_{n}\right)^{s}\)
\(=x_{n}^{p} z_{2}^{r} u_{2 n-1}^{s} y_{n}^{s}\) (by Corollary 3.6, as \(x_{n}, y_{n} \in S \backslash U\) )
\(=x_{n}^{p} u_{2 n-1}^{p} z_{2}^{q} y_{n}^{s}\) (by Case b)
\(=\left(x_{n} u_{2 n-1}\right)^{p} z_{2}^{q} y_{n}^{s}\) (by Corollary 3.6, as \(x_{n}, y_{n} \in S \backslash U\) )
\(\leq u_{2 n}^{p} z_{2}^{q} y_{n}^{s}\) (by zigzag inequalities (1))
\(=z_{2}^{r} u_{2 n}^{s} y_{n}^{s}\) (by Case b)
\(=z_{2}^{r}\left(u_{2 n} y_{n}\right)^{s}\) (by Lemma 3.17)
\(\leq z_{2}^{r} z_{1}^{s}\) (by zigzag inequalities (1)).
```

Thus $z_{1}^{p} z_{2}^{q} \leq z_{2}^{r} z_{1}^{s}$. Similarly, we can show that $z_{1}^{p} z_{2}^{q} \geq z_{2}^{r} z_{1}^{s}$. Hence $z_{1}^{p} z_{2}^{q}=z_{2}^{r} z_{1}^{s}$, as required. This completes the proof of part (i).
(ii) Assume U satisfies (ii), then for all $u, v \in U, u^{p} v^{q}=0$. Let $z_{1}, z_{2} \in S$. Then we have the folowing cases.

Case a: $z_{1} \in U, z_{2} \in S \backslash U$. Let (1) and (2) be the zigzag inequalities for z_{2} of minimal length (n, m). Then

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq z_{1}^{p}\left(v_{0} t_{1}\right)^{q}(\text { by zigzag inequalities }(2)) \\
& =z_{1}^{p} v_{0}^{q} t_{1}^{q}\left(\text { by Lemma } 3.17 \text { as } t_{1} \in S \backslash U\right) \\
& =z_{1}^{p} v_{1}^{q} t_{1}^{q}(\text { since } U \text { satisfies (ii) }) \\
& =z_{1}^{p}\left(v_{1} t_{1}\right)^{q}\left(\text { by Lemma } 3.17 \text { as } t_{1} \in S \backslash U\right) \\
& \leq z_{1}^{p}\left(v_{2} t_{2}\right)^{q}(\text { by zigzag inequalities }(2)) \\
& =z_{1}^{p} v_{2}^{q} 2_{2}^{q}\left(\text { by Lemma } 3.17 \text { as } t_{2} \in S \backslash U\right) \\
& =z_{1}^{p} v_{3}^{q} t_{2}^{q}(\text { since } U \text { satisfies (ii) }) \\
& \vdots \\
& =z_{1}^{p} v_{2 m-1}^{q} t_{m}^{q} \\
& =z_{1}^{p}\left(v_{2 m-1} t_{m}\right)^{q}\left(\text { by Lemma } 3.17 \text { as } t_{m} \in S \backslash U\right) \\
& \leq z_{1}^{p} v_{2 m}^{p}(\text { by zigzag inequalities }(2)) \\
& =0(\text { since } U \text { satisfies (ii) }) .
\end{aligned}
$$

Thus $z_{1}^{p} z_{2}^{q} \leq 0$. Similarly, we can show that $z_{1}^{p} z_{2}^{q} \geq 0$. Hence $z_{1}^{p} z_{2}^{q}=0$, as required.
Case b: $z_{1} \in S \backslash U, z_{2} \in U$. It follows on similar lines as Case a, by applying zigzag inequalities (1) and Lemma 3.18.

Case c: $z_{1}, z_{2} \in S \backslash U$ and let (1)and (2) be the zigzag inequalities for z_{1} of minimal length (n, m). Then

$$
\begin{aligned}
z_{1}^{p} z_{2}^{q} & \leq\left(x_{1} u_{0}\right)^{p} z_{2}^{q}(\text { by zigzag inequalities }(2)) \\
& =x_{1}^{p} u_{0}^{p} z_{2}^{q}\left(\text { by Lemma } 3.18 \text { as } x_{1} \in S \backslash U\right) \\
& =x_{1}^{p} u_{1}^{p} z_{2}^{q} \text { (by Case a) } \\
& =\left(x_{1} u_{1}\right)^{p} z_{2}^{q}\left(\text { by Lemma } 3.18 \text { as } x_{1} \in S \backslash U\right) \\
& \leq\left(x_{2} u_{2}\right)^{p} z_{2}^{q}(\text { by zigzag inequalities }(1)) \\
& \left.=x_{2}^{p} u_{2}^{p} z_{2}^{q} \text { (by Lemma } 3.18 \text { as } x_{2} \in S \backslash U\right) \\
& =x_{2}^{p} u_{3}^{p} z_{2}^{q} \text { (by Case a) } \\
& \vdots \\
& =x_{n}^{p} u_{2 n-1}^{p} z_{2}^{q} \\
& \left.=\left(x_{m} u_{2 n-1}\right)^{p} z_{2}^{q} \text { (by Lemma } 3.18 \text { as } x_{m} \in S \backslash U\right) \\
& \left.\leq u_{2 n}^{p} z_{2}^{q} \text { (by zigzag inequalities }(1)\right) \\
& =0(\text { by Case a). }
\end{aligned}
$$

Thus $z_{1}^{p} z_{2}^{q} \leq 0$. Similarly, we can show that $z_{1}^{p} z_{2}^{q} \geq 0$. Hence $z_{1}^{p} z_{2}^{q}=0$, as required. This completes proof of the Theorem 3.19.

References

[1] Ahanger, S. A., Shah, A. H., Epis, Dominions and Varieties of Commutative Posemigroups, Asian-Eur. J. Math., 14 (4) (2021), 2150048.
[2] Ahanger, S. A., Shah, A. H., Khan, N. M., On Saturated Varieties of Permutative Posemigroups, Algebra Univers., 81 (48) (2020), 1-11.
[3] Ahanger, S. A., Shah, A. H., Bano, S., Epis and Varieties of Posemigroups, submitted (2020).
[4] Ahanger, S. A., Shah, A. H., Khan, N. M., Permutative Varieties of Posemigroups, Commun. Algebra, 49 (7) (2021), 2758-2774.
[5] Bloom L. S., Variety of ordered algebras, J. Comput. System Sci. 13 (1976), 200-212.
[6] Howie, J. M., Fundamentals of Semigroup Theory, Clarendon Press, Oxford (1995).
[7] Khan, N.M., On Saturated Permutative Varieties and Consequences of Permutation Identities, J. Aust. Math. Soc., 38 (Series A) (1985), 186-197.
[8] N. M. Khan, Epimorphically Closed Permutative Varieties, Trans. Amer. Math. Soc., 287 (2) (1985), 507-528.
[9] Sohail, N., Tart, L., Dominions, Zigzags and Epimorphism for partially ordered semigroups, Acta Commen. Univ. Tartu. Math., 18 (1) (2014), 81-91.

Aftab Hussain Shah
Department of Mathematics, Central University of Kashmir, Ganderbal 191131, India
E-mail: aftabshah@cukashmir.ac.in
\section*{Sakeena Bano}
Department of Mathematics, Central University of Kashmir, Ganderbal 191131, India
E-mail: sakeenabano@cukashmir.ac.in
Shabir Ahmad Ahanger
Department of Mathematics, Central University of Kashmir. Ganderbal 191131, India
E-mail: sakeenabano@cukashmir.ac.in

