BERNSTEIN-TYPE INEQUALITIES PRESERVED BY MODIFIED SMIRNOV OPERATOR

Wali Mohammad Shah ${ }^{\dagger}$ and Bhat Ishrat Ul Fatima*

Abstract

In this paper we consider a modified version of Smirnov operator and obtain some Bernstein-type inequalities preserved by this operator. In particular, we prove some results which in turn provide the compact generalizations of some well-known inequalities for polynomials.

1. Introduction

Let \mathbb{P}_{n} denote the class of polynomials $f(z)=\sum_{j=0}^{n} a_{j} z^{j}$ in \mathbb{C} of degree atmost $n \in \mathbb{N}$. Let \mathbb{D} be the open unit disk $\{z \in \mathbb{C} ;|z|<1\}$, so that $\overline{\mathbb{D}}$ is its closure and $\delta \mathbb{D}$ denotes the boundary. For any polynomial $f \in \mathbb{P}_{n}$, we have the following result due to Bernstein [3].

Theorem 1.1. Let $f \in \mathbb{P}_{n}$, then

$$
\begin{equation*}
\max _{z \in \delta \mathbb{D}}\left|f^{\prime}(z)\right| \leq n \max _{z \in \delta \mathbb{D}}|f(z)| . \tag{1}
\end{equation*}
$$

The result is best possible and equality holds for the polynomials having zeros at the origin.

Aziz and Dawood proved that if $f(z)$ has all its zeros in $\overline{\mathbb{D}}$, then

$$
\begin{equation*}
\min _{z \in \delta \mathbb{D}}\left|f^{\prime}(z)\right| \geq n \min _{z \in \delta \mathbb{D}}|f(z)| \tag{2}
\end{equation*}
$$

and for $R \geq 1$

$$
\begin{equation*}
\min _{z \in \delta \mathbb{D}}|f(R z)| \geq R^{n} \min _{z \in \delta \mathbb{D}}|f(z)| . \tag{3}
\end{equation*}
$$

Inequalities (2) and (3) are sharp and equality holds for the polynomials having all zeros at the origin.

Received November 11, 2021. Revised June 2, 2022. Accepted June 25, 2022.
2010 Mathematics Subject Classification: 30A10, 30C10, 30C15, 30C80.
Key words and phrases: Modified Smirnov operator, Polynomials, Bernstein inequality, Restricted zeros.

* Corresponding author.
\dagger This work was the financial support given by the Science and Engineering Research Board, Govt. of India under Mathematical Research Impact-Centric Sport(MATRICS) Scheme vide SERB Sanction order No: MTR /2017/000508, Dated 28-05-2018.
(C) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

For the class of polynomials having no zeros in \mathbb{D}, inequality (1.1) can be sharpened. In fact, if $f(z) \neq 0$ in \mathbb{D}, then

$$
\begin{equation*}
\max _{z \in \delta \mathbb{D}}\left|f^{\prime}(z)\right| \leq \frac{n}{2} \max _{z \in \delta \mathbb{D}}|f(z)| \tag{4}
\end{equation*}
$$

and for $R>1$,

$$
\begin{equation*}
\max _{z \in \delta \mathbb{D}}|f(R z)| \leq\left(\frac{R^{n}+1}{2}\right) \max _{z \in \delta \mathbb{D}}|f(z)| . \tag{5}
\end{equation*}
$$

Inequality (4) was conjectured by Erdös and later verified by Lax [8], whereas Ankeny and Rivilin [1] used (4) to prove (5). Inequalities (4) and (5) were further improved by Aziz and Dawood [2], where under the same hypothesis, it was shown that

$$
\begin{equation*}
\max _{z \in \delta \mathbb{D}}\left|f^{\prime}(z)\right| \leq \frac{n}{2}\left\{\max _{z \in \delta \mathbb{D}}|f(z)|-\min _{z \in \delta \mathbb{D}}|f(z)|\right\} \tag{6}
\end{equation*}
$$

and for $R>1$

$$
\begin{equation*}
\max _{z \in \delta \mathbb{D}}|f(R z)| \leq\left(\frac{R^{n}+1}{2}\right) \max _{z \in \delta \mathbb{D}}|f(z)|-\left(\frac{R^{n}-1}{2}\right) \min _{z \in \delta \mathbb{D}}|f(z)| . \tag{7}
\end{equation*}
$$

Equality in (4)-(7) holds for the polynomials of the form $f(z)=\alpha z^{n}+\beta$, with $|\alpha|=|\beta|$. In 1930 Bernstein [4] also proved the following result:

Theorem 1.2. Let $F(z)$ be a polynomial in \mathbb{P}_{n} having all zeros in $\overline{\mathbb{D}}$ and $f(z)$ be a polynomial of degree not exceeding that of $F(z)$. If $|f(z)| \leq|F(z)|$ on $\delta \mathbb{D}$, then

$$
\left|f^{\prime}(z)\right| \leq\left|F^{\prime}(z)\right| \quad \text { for } z \in \mathbb{C} \backslash \mathbb{D}
$$

Equality holds only if $f=e^{i \gamma} F, \gamma \in \mathbb{R}$.
For $z \in \mathbb{C} \backslash \mathbb{D}$, denoting by $\Omega_{|z|}$ the image of the disc $\{t \in \mathbb{C} ;|t| \leq|z|\}$ under the mapping $\psi(t)=\frac{t}{1+t}$, Smirnov [9] as a generalization of Theorem 1.2 proved the following:

Theorem 1.3. Let f and F be polynomials possessing conditions as in Theorem 1.2. Then for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
\begin{equation*}
\left|\mathbb{S}_{\alpha}[f](z)\right| \leq\left|\mathbb{S}_{\alpha}[F](z)\right| \tag{8}
\end{equation*}
$$

for all $\alpha \in \overline{\Omega_{|z|}}$, with $\mathbb{S}_{\alpha}[f](z):=z f^{\prime}(z)-n \alpha f(z)$, where α is a constant.
For $\alpha \in \overline{\Omega_{|z|}}$ in (8) equality holds at a point $z \in \mathbb{C} \backslash \overline{\mathbb{D}}$ only if $f=e^{i \gamma} F, \gamma \in \mathbb{R}$.
We note that for fixed $z \in \mathbb{C} \backslash \mathbb{D}$, (8) can be replaced by (see for reference [6])

$$
\left|z f^{\prime}(z)-n \frac{a z}{1+a z} f(z)\right| \leq\left|z F^{\prime}(z)-n \frac{a z}{1+a z} F(z)\right|,
$$

where a is arbitrary number from $\overline{\mathbb{D}}$.
Equivalently for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq\left|\tilde{\mathbb{S}}_{a}[F](z)\right|
$$

where $\tilde{\mathbb{S}}_{a}[f](z)=(1+a z) f^{\prime}(z)-n a f(z)$ is known as modified Smirnov operator.
The modified Smirnov operator $\tilde{\mathbb{S}}_{a}$ is more preferred in a sense than Smirnov operator \mathbb{S}_{α}, because the parameter a of $\tilde{\mathbb{S}}_{a}$ does not depend on z unlike parameter α of \mathbb{S}_{α}.

2. Main Results

Before writing our main results, we prove the following lemmas which are required for their proofs.

Lemma 2.1. Let $F \in \mathbb{P}_{n}$, and has all zeros in $\overline{\mathbb{D}}$. Let $a \in \delta \mathbb{D}$ be not the exceptional value for F. Then all zeros of $\tilde{\mathbb{S}}_{a}[F]$ lie in $\overline{\mathbb{D}}$.

The above lemma is due to Ganenkova and Starkov [6].
Lemma 2.2. If $f \in \mathbb{P}_{n}$, such that $f(z) \neq 0$ in \mathbb{D}, then

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} \tag{9}
\end{equation*}
$$

where $g(z)=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}$.
Proof. Since $g(z)=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}$, therefore $|g(z)|=|f(z)|$ for $z \in \delta \mathbb{D}$, and hence $\frac{g(z)}{f(z)}$ is analytic in $\overline{\mathbb{D}}$. By Maximum Modulus Principle, we have

$$
|g(z)| \leq|f(z)| \text { for } z \in \overline{\mathbb{D}}
$$

Or equivalently,

$$
|f(z)| \leq|g(z)| \text { for } z \in \mathbb{C} \backslash \mathbb{D}
$$

Therefore for every β with $|\beta|>1$, the polynomial $f(z)-\beta g(z)$ has all zeros in $\mathbb{C} \backslash \mathbb{D}$. By Lemma 2.1, $\tilde{\mathbb{S}}_{a}[f-\beta g](z)$ has all its zeros in $\overline{\mathbb{D}}$. Since $\tilde{\mathbb{S}}_{a}$ is linear, therefore $\tilde{\mathbb{S}}_{a}[f](z)-\beta \tilde{\mathbb{S}}_{a}[g](z)$ has all its zeros in $\overline{\mathbb{D}}$, which in particular gives

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \text { for } z \in \mathbb{C} \backslash \mathbb{D} .
$$

Because, if this is not true, then there exists some z_{0} with $z_{0} \in \mathbb{C} \backslash \mathbb{D}$, such that

$$
\left|\tilde{\mathbb{S}}_{a}[f]\left(z_{0}\right)\right|>\left|\tilde{\mathbb{S}}_{a}[g]\left(z_{0}\right)\right| .
$$

Choosing $\beta=\frac{\tilde{\mathbb{S}}_{a}[f]\left(z_{0}\right)}{\tilde{\mathbb{S}}_{a}[g]\left(z_{0}\right)}$, so that $|\beta|>1$. For this value of $\beta, \tilde{\mathbb{S}}_{a}[f](z)-\beta \tilde{\mathbb{S}}_{a}[g](z)=0$ for some $z=z_{0} \in \mathbb{C} \backslash \mathbb{D}$, which is a contradiction. Therefore

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \text { for } z \in \mathbb{C} \backslash \mathbb{D} .
$$

Lemma 2.3. If $f \in \mathbb{P}_{n}$ with $|f(z)| \leq \mathbb{M}$ for $z \in \delta \mathbb{D}$. Then

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq \mathbb{M}\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D}
$$

Proof. Since $|f(z)| \leq \mathbb{M}$ for $z \in \delta \mathbb{D}$. If λ is a complex number with $|\lambda|>1$. Then

$$
|f(z)|<\left|\lambda \mathbb{M} z^{n}\right| \quad \text { for } \quad z \in \delta \mathbb{D} .
$$

Since $\lambda \mathbb{M} z^{n}$ has all zeros in $\overline{\mathbb{D}}$, therefore by Rouche's theorem all zeros of $f(z)-\lambda \mathbb{M} z^{n}$ lie in $\overline{\mathbb{D}}$. Hence by Lemma 2.1, all zeros of $\tilde{\mathbb{S}}_{a}\left[f(z)-\lambda \mathbb{M} z^{n}\right]$ lie in $\overline{\mathbb{D}}$. Since $\tilde{\mathbb{S}}_{a}$ is linear, it follows that $\tilde{\mathbb{S}}_{a}[f](z)-\tilde{\mathbb{S}}_{a}\left[\lambda \mathbb{M} z^{n}\right]$ has all zeros in $\overline{\mathbb{D}}$.
This gives

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq \mathbb{M}\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} \tag{10}
\end{equation*}
$$

Because if this is not true, then there exists some $z_{0} \in \mathbb{C} \backslash \mathbb{D}$, such that

$$
\left|\tilde{\mathbb{S}}_{a}[f]\left(z_{0}\right)\right|>\mathbb{M}\left|\tilde{\mathbb{S}}_{a}\left[z_{0}^{n}\right]\right|
$$

Choosing $\lambda=\frac{\tilde{\mathbb{S}}_{a}[f]\left(z_{0}\right)}{\mathbb{M} \tilde{\mathbb{S}}_{a}\left[z_{0}^{n}\right]}$, so that $|\lambda|>1$. With this choice of λ, we get a contradiction and hence (10) is true.

Lemma 2.4. If $f \in \mathbb{P}_{n}$, then for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right|+\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \leq\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|+n|a|\right\} \max _{|z|=1}|f(z)| \tag{11}
\end{equation*}
$$

where $g(z)=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}$.
Proof. Let $\mathbb{M}=\max _{z \in \delta \mathbb{D}}|f(z)|$, then $|f(z)| \leq \mathbb{M}$ for $z \in \overline{\mathbb{D}}$.
If λ is any real or complex number with $|\lambda|>1$, then by Rouche's theorem

$$
P(z)=f(z)-\lambda \mathbb{M}
$$

does not vanish in $\overline{\mathbb{D}}$. Hence by Lemma 2.2

$$
\left|\tilde{\mathbb{S}}_{a}[P](z)\right| \leq\left|\tilde{\mathbb{S}}_{a}[Q](z)\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D}
$$

where

$$
\begin{aligned}
Q(z) & =z^{n} P \overline{\left(\frac{1}{\bar{z}}\right)} \\
& =z^{n} f \overline{\left(\frac{1}{\bar{z}}\right)}-z^{n} \lambda \mathbb{M} \\
& =g(z)-\lambda \mathbb{M} z^{n} .
\end{aligned}
$$

That is

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)-\mathbb{M} \lambda \tilde{\mathbb{S}}_{a}[1]\right| \leq\left|\tilde{\mathbb{S}}_{a}[g](z)-\mathbb{M} \lambda \tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D}
$$

Using the fact $\tilde{\mathbb{S}}_{a}[1]=-n a$, we get

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)-\mathbb{M} \lambda(-n a)\right| \leq\left|\tilde{\mathbb{S}}_{a}[g](z)-\mathbb{M} \lambda \tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D}
$$

This gives

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)\right|-|n a \mathbb{M} \lambda| \leq\left|\tilde{\mathbb{S}}_{a}[g](z)-\mathbb{M} \lambda \tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D}
$$

Choosing argument of λ suitably, which is possible by Lemma 2.3, we get

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)\right|-n \mathbb{M}|a||\lambda| \leq \mathbb{M}|\lambda|\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|-\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D}
$$

Making $|\lambda| \rightarrow 1$, we get

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)\right|+\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \leq\left\{n|a|+\mid \tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right\} \mathbb{M}
$$

This proves Lemma 2.4.
We now prove the following result which is a compact generalization of inequalities (2) and (3).

Theorem 2.5. If $f \in \mathbb{P}_{n}$ with $f(z) \neq 0$ in $\mathbb{C} \backslash \overline{\mathbb{D}}$. Then

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \geq\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \min _{z \in \delta \mathbb{D}}|f(z)| . \tag{12}
\end{equation*}
$$

Equivalently

$$
\begin{equation*}
\left|(1+a z) f^{\prime}(z)-n a f(z)\right| \geq n|z|^{n-1} \min _{z \in \delta \mathbb{D}}|f(z)| \tag{13}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $f(z)=c z^{n} ;|c| \neq 0$.
Proof. If $f(z)$ has a zero on $\delta \mathbb{D}$, then there is nothing to prove as $\min _{z \in \delta \mathbb{D}}|f(z)|=0$. Suppose all zeros of $f(z)$ lie in \mathbb{D}, then $\min _{z \in \delta \mathbb{D}}|f(z)|=m>0$ and we have

$$
m \leq|f(z)| \quad \text { for } \quad z \in \delta \mathbb{D}
$$

Equivalently for every λ with $|\lambda|<1$, we have

$$
\begin{equation*}
\left|m \lambda z^{n}\right|<|f(z)| \quad \text { for } \quad z \in \delta \mathbb{D} \tag{14}
\end{equation*}
$$

Therefore by Rouche's theorem it follows that all zeros of $f(z)-\lambda m z^{n}$ lie in \mathbb{D}. This gives by Lemma 2.1 that all the zeros of $\tilde{\mathbb{S}}_{a}\left[f(z)-\lambda m z^{n}\right]$ and hence $\tilde{\mathbb{S}}_{a}[f](z)-m \lambda \tilde{\mathbb{S}}_{a}\left[z^{n}\right]$ lie in \mathbb{D}.
This implies

$$
\begin{equation*}
m\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \leq\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} . \tag{15}
\end{equation*}
$$

Because if this is not true then there exists a point $z_{0} \in \mathbb{C} \backslash \mathbb{D}$, such that

$$
m\left|\tilde{\mathbb{S}}_{a}\left[z_{0}^{n}\right]\right|>\left|\tilde{\mathbb{S}}_{a}[f]\left(z_{0}\right)\right| .
$$

We take $\lambda=\frac{\tilde{\mathbb{S}}_{a}[f]\left(z_{0}\right)}{m \tilde{\mathbb{S}}_{a}\left[z_{0}^{n}\right]}$, so that $|\lambda|<1$. For this value of $\lambda, \tilde{\mathbb{S}}_{a}[f](z)-m \lambda \tilde{\mathbb{S}}_{a}\left[z^{n}\right]=0$ for some $z=z_{0} \in \mathbb{C} \backslash \mathbb{D}$. This is a contradiction and hence we conclude

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \geq\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \min _{z \in \delta \mathbb{D}}|f(z)| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} \tag{16}
\end{equation*}
$$

This completes proof of Theorem 2.5.
Remark 2.6. If we choose $a=0$ in (13), we get

$$
\left|f^{\prime}(z)\right| \geq n|z|^{n-1} \min _{z \in \delta \mathbb{D}}|f(z)| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D}
$$

This in particular gives inequality (2).
Next choosing $a=-\frac{1}{z}$ in inequality (13), we get for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
|f(z)| \geq|z|^{n} \min _{z \in \delta \mathbb{D}}|f(z)|
$$

Taking in particular $z=R e^{i \theta}, 0 \leq \theta<2 \pi, R \geq 1$, we get for $z \in \delta \mathbb{D}$

$$
|f(R z)| \geq R^{n} \min _{z \in \delta \mathbb{D}}|f(z)|
$$

which is equivalent to (3).
The next result we prove, gives a compact generalization of inequalities (4) and (5).

Theorem 2.7. If $f \in \mathbb{P}_{n}$, with $f(z) \neq 0$ in \mathbb{D}. Then for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq \frac{1}{2}\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|+n|a|\right\} \max _{z \in \delta \mathbb{D}}|f(z)| . \tag{17}
\end{equation*}
$$

Or, equivalently

$$
\begin{equation*}
\left|(1+a z) f^{\prime}(z)-n a f(z)\right| \leq \frac{1}{2}\left\{n|z|^{n-1}+n|a|\right\} \max _{z \in \delta \mathbb{D}}|f(z)| . \tag{18}
\end{equation*}
$$

The result is best possible and equality holds for the polynomials having all zeros on unit disk.

Proof. Note that $f(z)$ is a polynomial not vanishing inside \mathbb{D}. Therefore, if $g(z)=$ $z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}$, then by Lemma 2.2

$$
2\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq\left|\tilde{\mathbb{S}}_{a}[f](z)\right|+\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} .
$$

Using Lemma 2.4, we get

$$
\begin{aligned}
2\left|\tilde{\mathbb{S}}_{a}[f](z)\right| & \leq\left|\tilde{\mathbb{S}}_{a}[f](z)\right|+\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \\
& \leq\left\{n|a|+\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|\right\} \max _{z \in \delta \mathbb{D}}|f(z)| .
\end{aligned}
$$

That is

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq \frac{1}{2}\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|+n|a|\right\} \max _{z \in \delta \mathbb{D}}|f(z)| . \tag{19}
\end{equation*}
$$

This proves Theorem 2.7.
Remark 2.8. If we choose $a=0$ in inequality (18), we get

$$
\left|f^{\prime}(z)\right| \leq \frac{n}{2}|z|^{n-1} \max _{z \in \delta \mathbb{D}}|f(z)| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} .
$$

Choosing $a=-\frac{1}{z}$ in (18), we get

$$
|f(z)| \leq \frac{1}{2}\left(|z|^{n}+1\right) \max _{z \in \delta \mathbb{D}}|f(z)| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} .
$$

Taking in particular $z=R e^{i \theta}, 0 \leq \theta<2 \pi$, so that $|z|=R \geq 1$, we get for $z \in \delta \mathbb{D}$

$$
|f(R z)| \leq \frac{R^{n}+1}{2} \max _{z \in \delta \mathbb{D}}|f(z)| .
$$

As a refinement of Theorem 2.7, we next prove the following result which is a compact generalization of inequalities (6) and (7).

Theorem 2.9. If $f \in \mathbb{P}_{n}$ such that $f(z) \neq 0$ for $z \in \mathbb{D}$. Then for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq \frac{1}{2}\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|+n|a|\right\} \max _{z \in \delta \mathbb{D}}|f(z)|-\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|-n|a|\right\} \min _{z \in \in \mathbb{D}}|f(z)| . \tag{20}
\end{equation*}
$$

Equivalently
$\left|(1+a z) f^{\prime}(z)-n a f(z)\right| \leq \frac{1}{2}\left\{n|z|^{n-1}+n|a|\right\} \max _{z \in \mathcal{D} \mathbb{D}}|f(z)|-\frac{1}{2}\left\{n|z|^{n-1}-n|a|\right\} \min _{z \in \delta \mathbb{D}}|f(z)|$.
The result is best possible and equality holds for the polynomials having all zeros on unit disk.

Proof. If $f(z)$ has a zero on $\delta \mathbb{D}$, then $m=0$ and the result follows from Theorem 2.7. We suppose that all the zeros of $f(z)$ lie in $\mathbb{C} \backslash \overline{\mathbb{D}}$, so that $m>0$ and

$$
m \leq|f(z)| \quad \text { for } \quad z \in \delta \mathbb{D}
$$

Therefore for every complex number β with $|\beta|<1$, we have $|f(z)|>m|\beta|$. Hence by Rouche's theorem all zeros of $F(z)=f(z)-m \beta$ lie in $\mathbb{C} \backslash \overline{\mathbb{D}}$. We note that $F(z)$ has no zeros on $\delta \mathbb{D}$, because if for some $z=z_{0}$, with $z_{0} \in \delta \mathbb{D}$ is a zero of $F(z)$, then

$$
F\left(z_{0}\right)=f\left(z_{0}\right)-m \beta=0
$$

This gives $\left|f\left(z_{0}\right)\right|=m|\beta|<m$, a contradiction.
Now if $G(z)=z^{n} \overline{F\left(\frac{1}{\bar{z}}\right)}=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}-\bar{\beta} m z^{n}=g(z)-\bar{\beta} m z^{n}$, then all zeros of $G(z)$ lie in \mathbb{D} and $|G(z)|=|F(z)|$ for $z \in \delta \mathbb{D}$. Therefore for every γ with $|\gamma|>1$, the polynomial $F(z)-\gamma G(z)$ has all its zeros in \mathbb{D}. This gives by Lemma 2.1 all zeros of $\tilde{\mathbb{S}}_{a}[F(z)-\gamma G(z)]$ and hence $\tilde{\mathbb{S}}_{a}[F](z)-\gamma \tilde{\mathbb{S}}_{a}[G](z)$ lie in \mathbb{D}.
From this as before we conclude

$$
\left|\tilde{\mathbb{S}}_{a}[F](z)\right| \leq\left|\tilde{\mathbb{S}}_{a}[G](z)\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} .
$$

Substituting for $F(z)$ and $G(z)$ and making use of the fact that $\tilde{\mathbb{S}}_{a}$ is linear and $\tilde{\mathbb{S}}_{a}[1]=-n a$, we get

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)-m \beta(-n a)\right| \leq\left|\tilde{\mathbb{S}}_{a}[g](z)-\bar{\beta} m \tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D}
$$

Choosing argument of β on right hand side suitably which is possible by Lemma 2.3 and making $|\beta| \rightarrow 1$, we get

$$
\left|\tilde{\mathbb{S}}_{a}[f](z)\right|-n|a| m \leq\left|\tilde{\mathbb{S}}_{a}[g](z)\right|-m\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} .
$$

This gives

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq\left|\tilde{\mathbb{S}}_{a}[g](z)\right|-\left\{\tilde{\mathbb{S}}_{a}\left[z^{n}\right]|-n| a \mid\right\} m \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} . \tag{22}
\end{equation*}
$$

Inequality (22) along with Lemma 2.4, yields for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
\begin{aligned}
2\left|\tilde{\mathbb{S}}_{a}[f](z)\right| & \leq\left|\tilde{\mathbb{S}}_{a}[f](z)\right|+\left|\tilde{\mathbb{S}}_{a}[g](z)\right|-\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|-n|a|\right\} m \\
& \leq\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|+n|a|\right\} \max _{z \in \delta \mathbb{D}}|f(z)|-\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|-n|a|\right\} \min _{z \in \delta \mathbb{D}}|f(z)| .
\end{aligned}
$$

This proves Theorem 2.9 completely.
Remark 2.10. Taking $a=0$ in inequality (21), we get inequality (6) and if we take $a=-\frac{1}{z}$ in (21), we get inequality (7).

Definition 2.11. A polynomial $f \in \mathbb{P}_{n}$ is said to be a self-inversive polynomial, if $f(z) \equiv u g(z)$, where $u \in \delta \mathbb{D}$, and $g(z)=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}$.

THEOREM 2.12. If $f(z)$ is a self-inversive polynomial of degree n, then for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
\begin{equation*}
\left|\tilde{\mathbb{S}}_{a}[f](z)\right| \leq \frac{1}{2}\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|+n|a|\right\} \max _{z \in \delta \mathbb{D}}|f(z)| . \tag{23}
\end{equation*}
$$

Equivalently

$$
\begin{equation*}
\left|(1+a z) f^{\prime}(z)-n a f(z)\right| \leq \frac{1}{2}\left\{n|z|^{n-1}+n|a|\right\} \max _{z \in \delta \mathbb{D}}|f(z)| . \tag{24}
\end{equation*}
$$

The result is sharp and equality holds for the polynomial $f(z)=z^{n}+1$.

Proof. Since $f(z)$ is a self-inversive polynomial. Therefore, we have

$$
f(z)=g(z)=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)} .
$$

Equivalently

$$
\tilde{\mathbb{S}}_{a}[f](z)=\tilde{\mathbb{S}}_{a}[g](z) .
$$

Therefore by Lemma 2.4, we have

$$
\begin{aligned}
2\left|\tilde{\mathbb{S}}_{a}[f](z)\right| & =\left|\tilde{\mathbb{S}}_{a}[f](z)\right|+\left|\tilde{\mathbb{S}}_{a}[g](z)\right| \\
& \leq\left\{\left|\tilde{\mathbb{S}}_{a}\left[z^{n}\right]\right|+n|a|\right\} \max _{z \in \delta \mathbb{D}}|f(z)|,
\end{aligned}
$$

from which the desired result follows.
Remark 2.13. If we choose $a=0$ in inequality (24), we get

$$
\left|f^{\prime}(z)\right| \leq \frac{n}{2}|z|^{n-1} \max _{z \in \delta \mathbb{D}}|f(z)| \quad \text { for } \quad z \in \mathbb{C} \backslash \mathbb{D} .
$$

Next choosing $a=-\frac{1}{z}$ in (24), we obtain the following
Corollary 2.14. If $f \in \mathbb{P}_{n}$ is a self-inversive polynomial, then for $z \in \mathbb{C} \backslash \mathbb{D}$

$$
|f(z)| \leq \frac{|z|^{n}+1}{2} \max _{z \in \delta \mathbb{D}}|f(z)| .
$$

The result is best possible and equality holds for polynomial $f(z)=z^{n}+1$.

3. Acknowledgement

The authors are highly grateful to the refree for his/her useful suggestions.

References

[1] N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
[2] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), 306-313.
[3] S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donńe, Memoires de l'Academie Royals de Belgique 4 (1912), 1-103.
[4] S. Bernstein, Sur la limitation des derivees des polynomes, C. R. Acad. Sci. Paris. 190 (1930), 338-340.
[5] E. G. Ganenkova and V. V. Starkov, The Möbius Transformation and Smirnov's Inequality for Polynomials, Mathematical Notes 2 (2019), 216-226.
[6] E. G. Ganenkova and V. V. Starkov, Variations on a theme of the Marden and Smirnov operators, differential inequalities for polynomials, J. Math. Anal. Appl. 476 (2019), 696-714.
[7] E. Kompaneets and V. Starkov, Generalization of Smirnov Operator and Differential inequalities for polynomials, Lobachevskii Journal of Mathematics, 40, (2019), 2043-2051.
[8] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
[9] V. I. Smirnov and N. A. Lebedev, Constructive theory of functions of a complex variable, (Nauka, Moscow, 1964) [Russian].

Wali Mohammad Shah
Department of Mathematics, Central University of Kashmir, Ganderbal 191201
E-mail: wmshah@rediffmail.com
Bhat Ishrat Ul Fatima
Department of Mathematics, Central University of Kashmir Ganderbal 191201
E-mail: ishratsartaj@cukashmir.ac.in

