
Korean J. Math. 30 (2022), No. 1, pp. 131–146
http://dx.doi.org/10.11568/kjm.2022.30.1.131

GRADIENTS IN A DEEP NEURAL NETWORK AND THEIR

PYTHON IMPLEMENTATIONS

Young Ho Park

Abstract. This is an expository article about the gradients in deep neural network.
It is hard to find a place where gradients in a deep neural network are dealt in details
in a systematic and mathematical way. We review and compute the gradients and
Jacobians to derive formulas for gradients which appear in the backpropagation and
implement them in vectorized forms in Python.

1. Introduction

This is an expository article about the gradients appearing in neural networks. A
deep neural network nW ,b with weights W and biases b consists of an input layer,
one or more hidden layers HL1, · · · , HLL−1 and an output layer.

Figure 1. Deep neural networks

Mathematically, each hidden layer or a output layer is a function

HL` : Rn[`−1] → Rn[`]

a[`− 1] 7→ a[`]

which is a composition of a linear transformation

z[`] = W [`]a[`− 1] + b[`]

Received December 5, 2021. Revised February 22, 2022. Accepted March 1, 2022.
2010 Mathematics Subject Classification: 68T07.
Key words and phrases: gradients, deep neural networks, backpropagations, machine learning.
© The Kangwon-Kyungki Mathematical Society, 2022.
This is an Open Access article distributed under the terms of the Creative commons Attribu-

tion Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits un-
restricted non-commercial use, distribution and reproduction in any medium, provided the original
work is properly cited.

132 Young Ho Park

and an activation function

g[`] : Rn[`−1] → Rn[`], a[`] = g[`](z[`]).

Here W [`] ∈ Matn[`]×n[`−1](R) is a weight matrix and b[`] is a bias vector. The most
widely used activation function of the hidden layers are relu functions. The structure
of the output layer is the same as hidden layers except that the activation function
is usually the sigmoid for binary classification or the softmax function for multiclass
classification and the identity function for the regression.

Let the training data for the network nW ,b be given by

{(Xk,yk) | k = 1, · · · , N},
where Xk ∈ Rn, and yk ∈ Rm. {Xk} are samples and yk is the target or label of Xk.
Let ok = nW ,b(Xk) be the network’s output. We will consider the cost function

J(W , b) =
1

N

N∑
k=1

L(ok,yk)

defined by the average of the losses L(ok,yk) over the N samples. The loss function
L is usually one of the following:

1. L2-loss (regression)

L(o,y) =
1

2
||o− y||22 =

1

2
(o− y) · (o− y),

2. binary cross-entropy loss (binary classification, m = 1)

L(o,y) = −[y log o+ (1− y) log(1− o)],

3. categorical cross-entropy loss (multiclass classification)

L(o,y) = −
m∑
j=1

yj log oj.

We want to find a neural network which maps Xk as close to yk as possible and the
learning process is to find the parameters W and b such that the total cost J(W , b)
is as small as we want. This is basically done by the gradient descent algorithm:

W ←−W − α ∂J

∂W
, b←− b− α∂J

∂b
,

where α is a constant called the learning rate. The exact meaning of these gradients
will be given later.

The python packages such as TensorFlow and PyTorch automatically compute the
gradients according to the structure of the network, and hence the users of such
packages do not have to worry about the actual computation of gradients. See [1]
for example. However, we mathematicians care very much about how the formulas
are derived. One can find thousands of web pages in the internet, which explain the
mathematics of the gradients. However, it is hard to find an article which derive the
formulas in a systematic way. Furthermore, a lot of web pages use ugly notations and
sometimes the wrong formulas. Even a very famous professor gives partially incorrect
formulas for gradients, incorrect in the middle by a constant factor but correct in the
final formulas (Compare dZ, dW, db in [2] with ours in Python Code 4). This is the
motivation of this article presenting the exact mathematical computation of gradients

Gradients in a deep neural network and their Python implementations 133

and their python implementation. We hope that this article will be of some help to
those who study mathematics for neural networks.

2. Jacobians

Suppose f : Rn → Rm with y = f(x). The Jacobian of f at a point x ∈ Rn is the
m× n matrix of partial derivatives

∂y

∂x
=

[
∂yi
∂xj

]
=


∂y1
∂x1

· · · ∂y1
∂xn

...
∂ym
∂x1

· · · ∂ym
∂xn

 ∈Mm×n(R), x =

x1...
xn

 , y =

y1...
ym

 .
Jacobian tells us the relation between the changes in the input and changes in the
output

f(x+ ∆x) ' y +
∂y

∂x
∆x.

Moreover, if we have another function g : Rm → Rk with z = g(y), then g ◦ f : Rn →
Rk and

∂z

∂x
=
∂z

∂y

∂y

∂x
.

For a scalar function g : Rn → R, y = g(x), we define its gradient as the column
vector

∇xg =


∂g
∂x1
...
∂g
∂xn

 .
Notice that the gradient is the transpose of Jacobian:

∇xg =

[
∂g

∂x

]T
.

See any calculus text, such as [5], for Jacobians and gradients,

3. Activation functions

We will mainly consider the following activation functions.

• relu : The function relu : R→ R is defined by

relu(z) = max(0, z).

We naturally extend relu to matrices as relu : Matm×n(R)→ Matm×n(R) by

relu([xij]) = [relu(xij)].

• sigmoid: The sigmoid function σ : R→ R is defined by

σ(z) =
1

1 + e−z
.

The sigmoid also extends to matrices.

134 Young Ho Park

• softmax: The softmax is a function from s : Rm → (0, 1]m defined by

s(z) =

[
ezi∑m
k=1 e

zk

]
∈Mm×1(R).

It is a generalization of sigmoid function.

The relu function itself is not differentiable at z = 0. However we use a little trick
to modify the definition as follows:

reluε(x) =

{
− 2
ε3
z4 − 3

ε2
z3 + z, z ∈ [−ε, 0],

relu(z), elsewhere.

Figure 2. Plot of reluε with ε = 10−32

The following is easy to check.

Lemma 3.1. reluε is a differentiable function such that

relu′ε(z) =

{
1, if z ≥ 0

0, if z ≤ −ε.

We take ε to be smaller than the precision of the computer, so that any δ < ε will
be treated as 0 and then relu and reluε will be the same functions to the computer.
Thus we may replace relu with reluε and simply put

(1) relu′(z) =

{
1, z ≥ 0,

0, z < 0.

In a similar manner, we might choose that relu′(z) is 1 for z > 0 and 0 for z ≤ 0.
On the other hand, the derivative of the sigmoid activation σ is given by

(2) σ′(z) = σ(z)(1− σ(z)).

Python Code 1. Activation functions and their derivatives are defined for numpy
arrays. The softmax activation is used only at the output layer and its derivative is
not explicitly required but given in the equation (39).

Gradients in a deep neural network and their Python implementations 135

import numpy as np

def sigmoid(Z):

A = 1/(1+np.exp(-Z))

return A

def d_sigmoid(Z):

s = sigmoid(Z)

return s * (1 - s)

def relu(Z):

A = np.maximum(0,Z)

return A

def d_relu(Z):

return (Z>=0)*1.0

def softmax(Z):

Z_exp = np.exp(Z)

Z_sum = np.sum(Z_exp, axis=1, keepdims=True)

A = Z_exp/Z_sum

return A

4. Flow of network functions

In order to simplify notations, we fix a hidden layer or the output layer and omit
the index `. Output layer will be treated at a later section in details.

x

n

z

m

a

m

(W , b) g

Figure 3. Hidden or output layer

Let x ∈ Rn be the input vector to the layer, W = [wij] ∈ Matm×n(R) be a weight
matrix, b ∈ Rm be a bias vector and

(3) z = Wx+ b ∈ Rm

be the linear output. Let g : R→ R be the activation function in the layer. We then
always extends g to g : Rm → Rm in an obvious way.

a = g(z) =

[
g(z1)

...
g(zm)

]
.(4)

The case of the softmax activation function will be treated in later section. Let a =
g(z) be the output of the layer.

136 Young Ho Park

Equation (1) can be written componentwise:

(5) zi =
n∑
j=1

wijxj + bi.

Now we compute various Jacobians. From (5), we get

∂zi
∂xj

= wij,
∂zi
∂bj

= δij.

From (4), we have that ai = g(zi), and hence

∂ai
∂zj

= g′(zi)
∂zi
∂zj

= g′(zi)δij.

Let S be any real-valued function of z. Then S = S(z(W)) is a function of W .
Notice that ∇WS is a mn × 1 matrix. However, it will be inconvenient with this
notation to do the gradient descent algorithm

W ←−W − α∇WS.

Hence we follow the convention to reshape the gradients:

Convention. The shape of the gradient is the same as the shape of parameters.

Following this convention, we reshape the gradient of S with respect to W as

∇WS =

[
∂S

∂wij

]
∈Mm×n(R).

Note that this convention can also be applied to vectors, without a contradiction. For
example, the convention says that

∇xg =


∂g
∂x1
...
∂g
∂xn

 =

[
∂g

∂x

]T
,

which agrees with the usual definition.
Since S is a function of components zk’s of z, we have that

(6)
∂S

∂wij
=

m∑
k=1

∂S

∂zk

∂zk
∂wij

.

Recalling the equation (5)

zk = wk1x1 + wk2x2 + · · ·+ wknxn + bk,

we get ∂zk
∂wij

= δikxj. Thus

∂S

∂wij
=

m∑
k=1

∂S

∂zk
δkixj =

∂S

∂zi
xj.

Gradients in a deep neural network and their Python implementations 137

Therefore,

∇WS =

[
∂S

∂wij

]
=

[
∂S

∂zi
xj

]
=


∂S
∂z1
x1

∂S
∂z1
x2 · · · ∂S

∂z1
xn

∂S
∂z2
x1

∂S
∂z2
x2 · · · ∂S

∂z2
xn

...
∂S
∂zm

x1
∂S
∂zm

x2 · · · ∂S
∂zm

xn


=

[
∂S

∂z

]T
xT = (∇zS)xT .

Now we collect various gradients we have computed.

Theorem 4.1. For z = Wx+ b, a = g(z) and any scalar function S = S(z),

∂z

∂x
= W ,(7)

∂z

∂b
= I,(8)

∂a

∂z
= diag(g′(z)),(9)

∇WS = (∇zS)xT .(10)

Here diag(g′(z)) = diag(g′(z1), · · · , g′(zm)) for g : R→ R.

5. Backpropagation through a layer

5.1. Function flow through a network. Consider the function flow of the `-th
layer of a network with the input x[`], the weightW [`], the bias b[`] and the activation
g[`]:

x[`] = a[`− 1] ∈ Rn[`−1] (input into l-th layer)

z[`] = W [`]x[`] + b[`] ∈ Rn[`] (linear output)

a[`] = g[`](z[`]) ∈ Rn[`] (activation).

We will simplify the notations a little bit by dropping the indices and writing a[`] as
a and a[`− 1] as a/, etc.

z/

n/

a/
||
x

n/

z

n

a
||

x[l + 1]

n

o

n[L]

y

n[L]

g/ (W , b) g L

Figure 4. (`− 1)-th and `-th layers with output layer

Let L = L(x,W , b, · · ·) be any loss function such as the cross-entropy we previ-
ously considered. We assume that we already have computed

∂L
∂z

= (∇zL)T ∈M1×m(R).

138 Young Ho Park

We will inductively compute the gradients

∇WL, ∇bL, ∇z/L.

It is customary to write

δ = ∇zL, δ/ = ∇z/L
excerpted from the name delta rule [4]. These are the error signals passed down to z
when we do the backpropagation. We will find the recurrence relation between δ and
δ/. Equation (10) gives us

(11) ∇WL = (∇zL)xT = δxT = δa/
T .

The chain rule ∂L
∂b

= ∂L
∂z

∂z
∂b

together with (8) gives us

(12) ∇bL = δ.

From (7) we obtain
∂L
∂x

=
∂L
∂z

∂z

∂x
=
∂L
∂z
W .

Thus

∇xL = ∇a/L =

(
∂L
∂x

)T
= W Tδ.(13)

By the chain rule again, we obtain

δT/ =
∂L
∂z/

=
∂L
∂a/

∂a/
∂z/

=
(
δTW

)
g′/(z/1) 0 · · · 0

0 g′/(z/2) · · · 0
...
0 0 · · · (g′/(z/n)

 ,
which implies

(14) δ/ =


g′/(z/1) 0 · · · 0

0 g′/(z/2) · · · 0
...
0 0 · · · (g′/(z/n)

(W Tδ
)
.

Now W Tδ has shape (n ×m)(m × 1) = (n × 1), and thus it is a column vector. By
noticing that

diag(d1, d2, · · · , dn) · (c1, c2, · · · , cn)T = (d1c1, d2c2, · · · , dncn)T ∈ Matn×1(R)

and using the notation g(z) = (g(z1), · · · , g(zn))T as before, we obtain

(15) δ/ = g′/(z/) ∗.
(
W Tδ

)
=
(
W Tδ

)
∗. g′/(z/)

where ∗. denotes the componentwise multiplication. Now we have proved the following
theorem:

Theorem 5.1. For any scalar function L = L(x,W , b, · · ·) with δ = ∇zL and
δ/ = ∇z/L, we have that

δ/ = g′/(z/) ∗. (W Tδ).

Gradients in a deep neural network and their Python implementations 139

Moreover,

∇a/L = W Tδ,

δ = g′(z) ∗. ∇aL,
∇WL = δa/

T ,

∇bL = δ.

If we use the layer numbers ` = 1, · · · , L (the 0-th layer is the input layer), the
identities become

∇a[`−1]L = W [`]Tδ[`],(16)

δ[`− 1] = g[`− 1]′(z[`− 1]) ∗. (W [`]Tδ[`]),(17)

∇W [`]L = δ[`]a[`− 1]T ,(18)

∇b[`]L = δ[`].(19)

Here, a[0] denotes a sample input data in {Xk}.

5.2. Vectorization. Now we vectorize all these results for a fixed `-th layer. Vector-
ization is a style of computer programming where operations are applied to whole ar-
rays instead of individual samples. The numpy package automatically vectorize many
numpy operations. Even though these activation functions are defined for real num-
bers, numpy automatically vectorize these functions and we can apply relu to numpy
arrays. Utilizing this property, we can simplify the network computation and get sim-
ple formulas for gradients.

As earlier, the training dataset is given by (Xk,yk) for k = 1, · · · , N . Each sample
Xk flows through the each layer and gives zk’s, ak’s for each layer until it produces
the network output ok at the output layer. The vectorization means to pack up the
input dataset into a big matrix

X = [X1 X2 · · · XN] ∈ Matn×N(R)

whose columns are samples Xk, k = 1, · · · , N and process it in a unified fashion.

Remark 5.2. However, we must note that in this current world of data science, it
is customary that data samples are packed into rows of the dataset under the influence
of engineers, which makes us to take transposed versions of our formulas. Refer to [1]
for example and for generalities of the machine learning.

We use the capital letters Z = Z[`] and A = A[`] to denote the packages of linear
outputs and activation outputs at the `-th layer (dropping the index ` temporarily)

Z = [z1 z2 · · · zN], A = [a1 a2 · · · aN] ∈ Matm×N(R)

where
zk = Wa/,k + b, ak = g(zk)

corresponding to the initial sample Xk. Notice that the parameters W = W [`] and
b = b[`] are independent on Z,A, but only dependent on the layers. Weights and
biases are updated after all inputs Xk are processed (under the assumption that we
use the batch gradient descent algorithm). The total cost function is

J(W , b, · · ·) =
1

N

N∑
k=1

Lk(W , b, · · ·),

140 Young Ho Park

where Lk(W , b) = L(ok,yk,W , b) is the individual loss from an input Xk. As before,
we write

δk = ∇zk
L ∈ Matn×1(R)

for k = 1, · · · , N and

∆ = ∇ZL.
More precisely,

∆ =


∂L
∂z11

· · · ∂L
∂zN1

...
...

∂L
∂z1n

· · · ∂L
∂zNn

 = [δ1 δ2 · · · δN].

where

Z =

z11 · · · zN1
...

...
z1n · · · zNn

 ∈ Matn×N(R)

(∆ and Z have the same shape.) Notice that ∆ 6= ∇ZJ . In fact,

∇zk
J =

1

N

N∑
k′=1

∇zk
Lk′ =

1

N
∇zk
Lk =

1

N
δk,

so that

∇ZJ =
1

N
∇ZL =

1

N
∆.

Similarly,

∇A/J = [∇a/1J · · · ∇a/N
J] =

1

N
[W Tδ1 · · · W TδN] =

1

N
W T∆ = W T (∇ZJ).

Now the gradient of W is computed as follow:

∇WJ =
1

N

N∑
k=1

∇WLk =
1

N

N∑
k=1

δka
T
/k

=
1

N
[δ1 δ2 · · · δN]


aT/1
aT/2

...
aT/N

 =
1

N
∆AT

/ = (∇ZJ)AT
/ .

For the gradient ∇bJ , we use the equation (12) to obtain

(20) ∇bJ =
1

N

N∑
k=1

∇bLk =
1

N

N∑
k=1

δk =
N∑
k=1

∇zk
J,

which is the sum of the columns of∇ZJ . We have finally proved the following formulas
about the gradients we need for the backpropagations.

Remark 5.3. For a function J = J(T), let us use the notation

dT = ∇TJ.

This notation is useful when we carry out the python coding.

Gradients in a deep neural network and their Python implementations 141

Theorem 5.4. For ` = 1, · · · , L, let ∆[`] = ∇Z[`]L. Then

dZ[`] =
1

N
∆[`](21)

and the vectorized gradients at the `-layer for the backpropagation are

dA[`− 1] = W [`]TdZ[`](22)

dZ[`− 1] = g′(Z[`− 1]) ∗. dA[`− 1](23)

dW [`] = dZ[`]A[`− 1]T(24)

db[`] = sum of columns of dZ[`](25)

Python Code 2. (propagation at a relu layer)
We assume that the activation function is given by relu at the given i-th layer

(1 ≤ i < L). The letters Z,A,W , b are written as Z, A, W, b at the code.

Z[i] = W[i] @ A[i-1] + b[i]

A[i] = relu(Z[i])

dA[i] = W[i+1].T @ dZ[i+1]

dZ[i] = d_relu(Z[i]) * dA[i]

dW[i] = dZ[i] @ A[i-1].T

db[i] = np.sum(dZ[i], axis=1, keepdims=True)

6. At the output layer

We consider the function flow of the output layer (L-th layer), where x = aL−1:

x

n

z

m

a = o

m

y

m

(W , b) g L

Figure 5. Last(L-th) layer

6.1. Linear logistic regression. Suppose we are given a set of data {(Xk,yk) | k =
1, · · · , N}. We want to find a ‘good’ linear function (called hypothesis)

h(X) = WX + b

such that h(Xk) ≈ yk for all k, where W ∈ Mat1×n(R) and b ∈ R. Actually, the good
function means that the total error

J =
1

N

N∑
k=1

L(h(Xk),yk)

is as small as possible.

L(h(X),y) =
1

2
‖h(X)− y‖2(26)

142 Young Ho Park

X

n

z

1

a

1

y

1

(W , b) I L

Figure 6. Neural network for a logistic regression

is the L2-loss (or mean squared error) for the data sample (X ,y). In this way, we can
use h(X) to predict the value of y at a new input X .

In this case, the network has no hidden layer, and the activation function is the
identity so that z = a = o = h(X) . Thus

∂L
∂z

=
∂L
∂a

= (a− y)T

from (26) and hence

δ = ∇zL = a− y(27)

∇WL = δxT(28)

∇bL = δ(29)

In vectorized notations, we have that

dZ =
1

N
(A− Y)(30)

dW = dZX T(31)

db = sum of columns of dZ(32)

where Y = [y1 · · · yN].

Python Code 3. The training data is given by (X, y) with X ∈ Matn×N(R),
y ∈ Mat1×N(R).

Linear Regression

After reading in the data (X,y):

X = matrix of shape (n, N) whose columns are samples

y = array of shape (1,N)

initialization

n, N = X.shape

W = np.random.rand(1,n)*0.01

b = 0

def forward_propagation(X, W, b):

Z = W @ X + b

A = Z # not necessary in practice

return A

Gradients in a deep neural network and their Python implementations 143

def back_propagation(X, y, W, b)

A = forward_propagation(X, W, b)

N = X.shape[1]

dZ = 1/N * (A - y)

dW = dZ @ X.T

db = np.sum(dZ, axis=1, keepdims=True)

return dW, db

def update_params(W, b, dW, db, learning_rate=0.1):

W -= learning_rate * dW

b -= learning_rate * db

return W, b

def cost(A,y):

return np.sum(((A-y)**2)) / (2*N)

Gradient Descent Algorithm

hyperparameters

n_iter = 300

learning_rate = 0.01

cost_history = []

for i in range(n_iter):

A = forward_propagation(X, W, b)

dW, db = backward_propagation(X, y, W, b)

W, b = update_params(W, b, dW, db, learning_rate)

cost_history.append(cost(A,y))

print(f’Final cost : {cost_history[-1]}’)

print(f’W = {W}’)

print(f’b = {b}’)

6.2. Binary classification. In this case, notice that z,a,y ∈ R.

x

n

z

1

o = a

1

y

1

(W , b) σ L

Figure 7. Last layer with sigmoid activation

We have the sigmoid activation function g = σ and the binary cross-entropy loss

L(a,y) = −
[
y loga+ (1− y) log(1− a)

]
.

144 Young Ho Park

From a = σ(z), we know that a′(z) = a(1− a). Thus

dL
dz

= −ya(1− a)

a
− (1− y)

−a(1− a)

1− a
= a− y.

In a vectorized notation, we therefore have that

δ = ∇ZL = a− y,(33)

∇WL = ∆xT ,(34)

∇bL = ∆.(35)

Notice that they are exactly the same as the linear logistic regression case. The vec-
torized gradients at this last L-th layer are

dZ[L] =
1

N
(A[L]− Y),(36)

dW [L] = dZ[L]A[L− 1]T ,(37)

db[L] = sum of columns of dZ[L].(38)

6.3. Softmax output. Suppose that the softmax activation function o = s(z) is
used at the last L-th layer. It is defined to be the function from Rm → (0, 1]m for
classifying the inputs into m objects:

o = s(z) =

[
ezi∑n
k=1 e

zk

]
∈Mm×1(R).

z

m

a = o

m

y

m

s L

In this case, we assume that the labels {yk} are given by the one-hot vectors. For
example, the class 0 is represented by yk = (1, 0, · · · , 0)T .

We need to compute ∂o
∂z

=
[
∂oi
∂zj

]
. Since

oi =
ezi

ez1 + · · ·+ ezi + · · ·+ ezm

we have that

∂oi
∂zj

=
δije

zi(
∑
ezk)− eziezj

(
∑
ezk)2

=

{
oi(1− oj), i = j

−oioj, i 6= j
= oi(δij − oj).

That is,

(39)
∂o

∂z
= [oi(δij − oj)] =


o1(1− o1) −o1o2 · · · −o1om
−o2o1 o2(1− o2) · · · −o2om

...
−omo1 −omo2 · · · om(1− om)

 .
The categorical cross-entropy function for the softmax activation is defined to be

L(o,y) = −
m∑
i=1

yi log(oi), o = s(z)

Gradients in a deep neural network and their Python implementations 145

Recalling that
∑

i oi = 1, we get

∂L
∂zj

= −
∑
i

yi
∂ log(oi)

∂zj
= −

∑
i

oi
1

oi

∂oi
∂zj

= −
∑
i

oi
1

oi
· oi(δij − oj) = −

∑
i

oi(δij − oj)

=
∑
i 6=j

yioj + yj(−1 + oj) = (
∑
i

yi)oj − yj = oj − yj

Hence the final answer is again

δ = o− y.(40)

Theorem 6.1. For each of the following output layer of

1. the linear logistic regression (identity activation, L2-loss),
2. the binary classification(sigmoid activation, cross-entropy loss)
3. the multi-class classification (softmax activation, cross-entropy loss),

we have the same gradient
δ = ∇zL = o− y.

at the last layer for single data input.

We consider the deep neural network for the classification into m-classes (m ≥
3). The training data is given by (X, Y) with X ∈ Matn×N(R), Y ∈ Matm×N(R).
We assume that the activation at the hidden layers are given by relu function and
activation at the output layer is given by the softmax. We only give the forward and
backward propagations using Numpy.

Python Code 4.
multiclass classification (softmax output)

After reading in the data (X,y):

X = numpy array of shape (n, N) whose columns are samples.

Y = numpy array of shape (m,N) whose columns are one-hot vectors.

W, b are list of weights and biases at the layers.

dW, db are list of gradients of the cost with respect to weights

and biases.

Z, A are list of linear outputs and activation outputs at the layers.

dZ, dA are lists of gradients of the cost with respect to Z and A

Set A[0] = X

def forward_propagation(X, W, b):

for i in range(1, L):

Z[i] = W[i] @ A[i-1] + b[i]

A[i] = relu(Z[i])

Z[L] = W[L] @ A[L-1] + b[L]

A[L] = softmax(Z[L])

return Z, A

def back_propagation(X, Y, W, b)

Z, A = forward_propagation(X, W, b)

146 Young Ho Park

N = X.shape[1]

dZ[L] = 1/N * (A[L] - Y)

dW[L] = dZ[L] @ A[L-1].T

db[L] = np.sum(dZ[L], axis=1, keepdims=True)

for i in range(L-1,0,-1):

dA[i] = Ws[i+1].T @ dZ[i+1]

dZ[i] = d_relu(Z[i]) * dA[i]

dW[i] = dZ[i] @ A[i-1].T

db[i] = np.sum(dZ[i], axis=1, keepdims=True)

return dW, db

Finally, we carry out an experiment to calculate the gradients using our formulas
given in Theorem 5.4 and check if they agree with the gradients computed by autograd
in PyTorch. The result can be found in [3].

References

[1] A. Géron, Hands-on Machine Learning with Scikit-Learn & TensorFlow (핸즈온머신러닝), Han-
bit Media, 2018

[2] Andrew Ng, Note on neural network and deep learning,
https://github.com/ashishpatel26/Andrew-NG-Notes, accessed February 23, 2022

[3] Y.H. Park, Verifying gradient formulas by PyTorch,
https://deepmath.kangwon.ac.kr/∼yhpark/verify gradients.pdf, accessed February 23, 2022

[4] T. Rashid, Make your own neural network (신경망 첫걸음), Hanbit Media, 2017
[5] J. Stewart, Calculus, Books-Hill, 2021

Young Ho Park
Department of Mathematics, Kangwon National University,
Chuncheon 24341, Korea.
E-mail : yhpark@kangwon.ac.kr

	1. Introduction
	2. Jacobians
	3. Activation functions
	4. Flow of network functions
	5. Backpropagation through a layer
	5.1. Function flow through a network
	5.2. Vectorization

	6. At the output layer
	6.1. Linear logistic regression
	6.2. Binary classification
	6.3. Softmax output

	References

