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QUADRATIC MAPPINGS ASSOCIATED WITH INNER
PRODUCT SPACES

SuNG JIN LEE

ABSTRACT. In [7], Th.M. Rassias proved that the norm defined over
a real vector space V is induced by an inner product if and only if
for a fixed integer n > 2
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holds for all z1,--- ,z, € V.
Let V, W be real vector spaces. It is shown that if an even map-
ping f : V — W satisfies
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for all zy,--- ,x9, € V, then the even mapping f : V — W is
quadratic.

Furthermore, we prove the generalized Hyers-Ulam stability of
the quadratic functional equation (0.1) in Banach spaces.

1. Introduction

The stability problem of functional equations was originated from a
question of Ulam [15] concerning the stability of group homomorphisms.
Hyers [5] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for
additive mappings and by Th.M. Rassias [6] for linear mappings by con-
sidering an unbounded Cauchy difference. The paper of Th.M. Rassias
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[6] has provided a lot of influence in the development of what we call gen-
eralized Hyers-Ulam stability of functional equations. A generalization
of the Th.M. Rassias theorem was obtained by Gavruta [4] by replacing
the unbounded Cauchy difference by a general control function in the
spirit of Th.M. Rassias’ approach.

A square norm on an inner product space satisfies the important
parallelogram equality

2+ ylI* + llz — gl = 2||=[* + 2]ly|]*.
The functional equation

fl@+y)+ flx—y)=2f(x) +2f(y)

is called a quadratic functional equation. In particular, every solution
of the quadratic functional equation is said to be a quadratic mapping.
A generalized Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [14] for mappings f : X — Y, where X
is a normed space and Y is a Banach space. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain X is replaced
by an Abelian group. In [3], Czerwik proved the generalized Hyers-
Ulam stability of the quadratic functional equation. Several functional
equations have been investigated in [8]-[13].

Throughout this paper, assume that n is a fixed positive integer. Let
X be a real normed vector space with norm || - ||, and Y a real Banach
space with norm || - ||.

In this paper, we investigate the quadratic functional equation (0.1),
and prove the generalized Hyers-Ulam stability of the quadratic func-
tional equation (0.1) in Banach spaces.

2. Quadratic mappings associated with inner product spaces

We investigate the quadratic functional equation (0.1).

LEMMA 2.1. Let V and W be real vector spaces. If an even mapping
f:V — W satisfies

2n 2n 2n 2n
1 1
i=1 j=1 i=1 i=1
for all xq,--- ,x9, € V, then the mapping f : V — W is quadratic, i.e.,

flx+y) + flo—y) =2f(x) +2f(y)
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forall z,y € V.

Proof. Assume that f: V — W satisfies (2.1).
Letting 1 = -+ =2, = &, Tpy1 = -+ = Tg, = y in (2.1), we get

of (0= 552 ) nr (v= 252 ) =ns@) + nste) - 2nf (50

for all xz,y € V. Since f:V — W is even,

2nf< ) 2) + nfly) — 2n f(x“/)

for all z,y € V. So

o (3

for all x,y € V. Letting x = y
y =0in (2.2), we get f(%) 1/
that

) ~ f@)+ 1)

2
0 in (2.2), we get f(0) = 0. Letting
) for all z € V. It follows from (2.2)

o

flx+y)+ flx —y) =2f(x) +2f(y)
for all z,y € V. O

COROLLARY 2.2. Let V and W be real vector spaces. An even map-
ping f :V — W satisfies

(2.3) f(x—%) " f(y-l“gy)
- f<x>+f<)—2f(“y)

for all z,y € V' if and only if the mapping f : V — W is quadratic.

Proof. By Lemma 2.1, it is enough to show that if f : V — W is
quadratic, then f:V — W satisfies (2.3).

Assume that f : V' — W is quadratic. Since f(2z) = 4f(x) for all
zeV, f(&)=1f(zx)forallz e V. So

2 (552) 21 (T52) = ) + 1)
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for all x,y € V. Thus
T +y T+y
(=) <)

= 2 ("3Y) = @)+ s 27 (P57

for all z,y € V, as desired. O

For a given mapping f : X — Y, we define

2n 2n 2n 2n
Df(xy,--+ ,29,) i= Zf (:z:l — %Z%) — Zf(xz) +2nf (%Z@)
j j i=1 i=1

i=1 7j=1
for all zq,--- , 29, € X.
Now we prove the generalized Hyers-Ulam stability of the quadratic
functional equation D f(xy,- -+ ,x9,) = 0 in real Banach spaces.

THEOREM 2.3. Let f: X — Y be a mapping satisfying f(0) = 0 for
which there exists a function ¢ : X*" — [0, 00) such that

(2.4) Glar, - L)1 = 24” (2] . x?n)@q

97
(2.5) |Df(x1,-- - @0,)| < @(xl,"',$2n)

for all x1,--- ,x2, € X. Then there exists a unique quadratic mapping
Q) : X — Y satisfying (2.1) such that

(2.6) [[f(x) + f(=z) = Q)]

1 1
S—QO(x,"‘,37,0,“',O)‘i‘—QO(—.’E,"',—SC,O,"',O)
N SN—~— N——_——r N N— ——r
n times n times n times n times
for all x € X.
Proof. Letting 1 = -+ =z, =z and x,41 = -+ = 9, = 0 in (2.5),
we get
xr
(2.7) ’3nf (§>+nf< 5 > —nf(z)
Sw(’x’.--”x’o,-.-’o)
——— N —

n times n times
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for all x € X. Replacing = by —z in (2.7), we get

3nf( > +nf( ) — nf(—z)

SQO(—LU, ,—.T,O,"' 70)
——— ——

n times n times

(28) |

for all z € X. Let g(x) := f(z) + f(—=z) for all z € X. It follows from
(2.7) and (2.8) that

T
29 |jtng (5) ~ no()|
<z, ,z,0,---,0)+@(—z,---,—2,0,---,0)
——— —— N ,

n times n times n times n times

for all z € X. So

1 1
< —p(z, - ,x,0,--,0)+ —p(—z, - ,—x,0,---,0)
n %/—’A,—J N e et e

n times n times n times n times

for all z € X. Hence

3
L

T T 47 T T
dgXy —amg(2y < S 2o Z 0 20,0
a5y —amg )l < S oL L
J=l \ n times
n times
(2.10) + 4 v L0, .0
° / ngp 2]7 Y 2]7 9 Y
j=l ) n times
n times

for all nonnegative integers m and [ with m > [ and all z € X. It
follows from (2.4) and (2.10) that the sequence {4¥g(Z%)} is Cauchy for
all z € X. Since Y is complete, the sequence {4*¢(Z%)} converges. So
one can define the mapping () : X — Y by

Q(z) == lim 4*¢ (%)

k—o00

forall z € X.
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By (2.4) and (2.5),
1DQ(ar, -+ wan)| = Jim 4* | Dg (S5 50 ) |

. k T Lan Ty Lan _
< fim (o (G0 50 ) +e (S50 - 50) ) =0

for all x1, -, 29, € X. So DQ(x1,--+ ,x9,) = 0. By Lemma 2.1, the
mapping @) : X — Y is quadratic. Moreover, letting [ = 0 and passing
the limit m — oo in (2.10), we get (2.6). So there exists a quadratic
mapping () : X — Y satisfying (2.1) and (2.6).

Now, let @' : X — Y be another quadratic mapping satisfying (2.1)

and (2.6). Then we have
lQ@) - Q@I =4 (5) -2 (5)]

o(2)-1(2) -1 ()

< 47

T T —X
q U i — ) — -
e (5)-1)-1(5))
2.49 _ 2.49 | — _
S 2 %7"'7%a07"'70 + @ 2_q$7"'72_qx707"'707
n —— n ——
m n times mrfnes_/ n times

which tends to zero as ¢ — oo for all x € X. So we can conclude that
Q(z) = Q'(x) for all z € X. This proves the uniqueness of Q. ]

COROLLARY 2.4. Let p > 2 and 6 be positive real numbers, and let
f: X — Y be a mapping such that

2n
(2.11) IDf (@, s wan) | 0D [fagllP
j=1
for all x1,--- ,x9, € X. Then there exists a unique quadratic mapping
Q : X — Y satisfying (2.1) such that
2rFLg
17 (@) + f(=2) = Q@) = 55— I«

forallz € X.

Proof. Define p(z1,--+ ,x9,) =0 ZJQL ||z;||P, and apply Theorem 2.3
to get the desired result. O
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COROLLARY 2.5. Let f : X — Y be an even mapping satisfying
f(0) = 0 for which there exists a function ¢ : X** — [0,00) satisfying
(2.4) and (2.5). Then there exists a unique quadratic mapping @) : X —
Y satisfying (2.1) such that

If(z) = Q)| < —&(z,- -, 2,0,---,0)

—— ——

n times n times

3|

for all x € X, where ¢ is defined in (2.4).

THEOREM 2.6. Let f: X — Y be a mapping satisfying f(0) = 0 for
which there exists a function ¢ : X** — [0, 00) satisfying (2.5) such that

(212)  Blar,- - w20) 1= Y AT 0(Pmy, -+, Vi) < 00
j=1

for all xy,--- ,x2, € X. Then there exists a unique quadratic mapping
Q : X — Y satisfying (2.1) such that

(2.13)  [[f(x) + f(=z) = Q)]

1_ 1.
S _SO(ZE7 71:)07"' ,0)+—Q0(—[E, ,—.%',O,"' 70)
R e N ——r e et
n times n times n times n times
for all x € X.
Proof. 1t follows from (2.9) that
1 1
— —q(2 < —p2z.--- 22.0.--- .0
g(x) 49( I) —_ 47’1/%0( x’ Y x? bl ) )
n times n times
1
+—o(—2x,-+- ,—22,0,---,0)
4n S——— —
n times n times

forall z € X. So

m

1 1 1 . .
—g(2'z) — —g(2™ < —p(Yx, - 22,0,---,0
| o) = otz < 3 g 20
- n times n times
1 . .
2.14 —op(—2x,--- ,—272,0,---,0
( ) + ‘7;14‘7”@(\ x? v? 'Zg? 7 ) )
- n times n times

for all nonnegative integers m and [ with m > [ and all z € X. It follows
from (2.12) and (2.14) that the sequence {;zg(2"z)} is Cauchy for all
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z € X. Since Y is complete, the sequence {1z g(2"z)} converges. So one
can define the mapping @) : X — Y by

for all z € X.
By (2.5) and (2.12),

.1
IDQo,++ swan)l| = Jim | Dg(2as, 20|

1
< lim —(gp(?kxl, e ,le’gn) + gp(—Qkxl, cee —Qkxzn)) =0
k—oo 4k

for all xy, -+, 29, € X. So DQ(x1,--+ ,x9,) = 0. By Lemma 2.1, the
mapping @ : X — Y is quadratic. Moreover, letting [ = 0 and passing
the limit m — oo in (2.14), we get (2.13). So there exists a quadratic
mapping @ : X — Y satisfying (2.1) and (2.13).

The rest of the proof is similar to the proof of Theorem 2.3. m

COROLLARY 2.7. Let p < 2 and 6 be positive real numbers, and let
f: X — Y be a mapping satistying (2.11). Then there exists a unique
quadratic mapping @) : X — Y satisfying (2.1) such that

2r g
4 —2p

1f(2) + f(=2) = Q)]| <

||| |7
forallz € X.

Proof. Define p(xy, -+ ,x9,) =0 Z?Zl ||z;||P, and apply Theorem 2.6
to get the desired result. O]

COROLLARY 2.8. Let f : X — Y be an even mapping satisfying
f(0) = 0 for which there exists a function ¢ : X** — [0,00) satisfying
(2.5) and (2.12). Then there exists a unique quadratic mapping @ :
X — Y satisfying (2.1) such that

S|

Hf(x)_Q('T>H§ QZ(J},"',LL’,O,"',O)

—_— ——

n times n times

for all x € X, where ¢ is defined in (2.12).
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