COEFFICIENT ESTIMATES FOR GENERALIZED LIBERA TYPE BI-CLOSE-TO-CONVEX FUNCTIONS

Serap Bulut

Abstract

In a recent paper, Sakar and Güney introduced a new class of bi-close-to-convex functions and determined the estimates for the general Taylor-Maclaurin coefficients of functions therein. The main purpose of this note is to give a generalization of this class. Also we point out the proof by Sakar and Güney is incorrect and present a correct proof.

1. Introduction

Assume that \mathcal{H} is the class of analytic functions in the open unit disc

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions f normalized by

$$
f(0)=f^{\prime}(0)-1=0 .
$$

Each function $f \in \mathcal{A}$ can be expressed as

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) . \tag{1}
\end{equation*}
$$

We also denote by \mathcal{S} the subclass of \mathcal{A} whose members are univalent in \mathbb{U}.
A function $f \in \mathcal{A}$ is said to be starlike of order $\beta(0 \leq \beta<1)$ if it satisfies the inequality

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta \quad(z \in \mathbb{U})
$$

We denote the class which consists of all functions $f \in \mathcal{A}$ that are starlike of order β by $\mathcal{S}^{*}(\beta)$. It is well-known that $\mathcal{S}^{*}(\beta) \subset \mathcal{S}^{*}(0)=\mathcal{S}^{*} \subset \mathcal{S}$.

A function $f \in \mathcal{A}$ is said to be close-to-convex of order $\alpha(0 \leq \alpha<1)$ if there exists a function $g \in \mathcal{S}^{*}$ such that the inequality

$$
\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

Received April 25, 2022. Revised September 1, 2022. Accepted October 25, 2022.
2010 Mathematics Subject Classification: 30C45.
Key words and phrases: Analytic function, univalent function, bi-close-to-convex function, bistarlike function, Faber polynomial.
(C) The Kangwon-Kyungki Mathematical Society, 2022.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
holds. We denote the class which consists of all functions $f \in \mathcal{A}$ that are close-toconvex of order α by $\mathcal{C}(\alpha)$. It is well-known that $\mathcal{S}^{*}(\alpha) \subset \mathcal{C}(\alpha) \subset \mathcal{S}$ (see [10]).

Let $0 \leq \alpha, \beta<1$. A function $f \in \mathcal{A}$ is said to be close-to-convex of order α and type β if there exists a function $g \in \mathcal{S}^{*}(\beta)$ such that the inequality

$$
\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

holds. We denote the class which consists of all functions $f \in \mathcal{A}$ that are close-toconvex of order α and type β by $\mathcal{C}(\alpha, \beta)$. This class is introduced by Libera [18].

In particular, when $\beta=0$ we have $\mathcal{C}(\alpha, 0)=\mathcal{C}(\alpha)$ of close-to-convex functions of order α, and also we get $\mathcal{C}(0,0)=\mathcal{C}$ of close-to-convex functions introduced by Kaplan [17].

Let $0 \leq \alpha<1, \gamma \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}, 0 \leq \lambda \leq 1$. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{S C}(\gamma, \lambda, \alpha)$ if it satisfies the condition

$$
\Re\left(1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}-1\right)\right)>\alpha \quad(z \in \mathbb{U}) .
$$

This class is introduced by Altıntaş et al. [1]. Clearly, we have the following relationships: $\mathcal{S C}(1,0, \alpha)=\mathcal{S}^{*}(\alpha)$ and $\mathcal{S C}(1,0,0)=\mathcal{S}^{*}$.

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \mathbb{U}. Indeed, the Koebe one-quarter theorem [10] ensures that the image of \mathbb{U} under every univalent function f contains a disk with radius $1 / 4$. Thus, every function $f \in \mathcal{A}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) .
$$

The inverse function $F=f^{-1}$ is given by

$$
\begin{align*}
F(w) & =f^{-1}(w) \\
& =w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2}\\
& =w+\sum_{n=2}^{\infty} A_{n} w^{n} .
\end{align*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). For a brief history and interesting examples of functions in the class, see $[4,24]$.

The Faber polynomials introduced by Faber [11] play an important role in various areas of mathematical sciences, especially in geometric function theory. The recent publications like [5,6,14-16,27] applying the Faber polynomial expansions to analytic bi-univalent functions motivated us to apply this technique to classes of analytic biunivalent functions.

Making use of the Faber polynomial expansion of function $f \in \mathcal{A}$ with the form (1), the coefficients of its inverse map $F=f^{-1}$ may be expressed as follows (see [2,3]):

$$
F(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right) w^{n} .
$$

In general, for any $p \in \mathbb{Z}:=\{0, \pm 1, \pm 2, \ldots\}$, an expansion of K_{n-1}^{p} is given by (see [2])

$$
\begin{gathered}
K_{n-1}^{p}=p a_{n}+\frac{p(p-1)}{2} D_{n-1}^{2}+\frac{p!}{(p-3)!3!} D_{n-1}^{3}+\cdots \\
+\frac{p!}{(p-n+1)!(n-1)!} D_{n-1}^{n-1}
\end{gathered}
$$

where $D_{n-1}^{p}=D_{n-1}^{p}\left(a_{2}, a_{3}, \ldots, a_{n}\right)$. In view of [25], we see that

$$
D_{n-1}^{m}\left(a_{2}, \ldots, a_{n}\right)=\sum \frac{m!}{j_{1}!\ldots j_{n-1}!} a_{2}^{j_{1}} \ldots a_{n}^{j_{n-1}}
$$

and the sum is taken over all non-negative integers j_{1}, \ldots, j_{n-1} satisfying

$$
\left\{\begin{array}{l}
j_{1}+i_{2}+\cdots+j_{n-1}=m \\
j_{1}+2 j_{2}+\cdots+(n-1) j_{n-1}=n-1
\end{array}\right.
$$

It is clear that $D_{n-1}^{n-1}\left(a_{2}, \ldots, a_{n}\right)=a_{2}^{n-1}$.
In particular, the first three terms of K_{n-1}^{-n} are

$$
K_{1}^{-2}=-2 a_{2}, \quad K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right), \quad K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) .
$$

Hamidi and Jahangiri [13] introduced the class of bi-close-to-convex functions of order α as follows: For $\alpha(0 \leq \alpha<1)$, a function $f \in \mathcal{A}$ is said to be bi-close-to-convex of order α if both f and its inverse map $F=f^{-1}$ are close-to-convex of order α in \mathbb{U}. We denote the class which consists of all functions $f \in \Sigma$ that are bi-close-to-convex of order α by $\mathcal{C}_{\Sigma}(\alpha)$. In particular, we set $\mathcal{C}_{\Sigma}(0)=\mathcal{C}_{\Sigma}$ for the class of bi-close-to-convex functions. For recent works on bi-close-to-convex functions, please see $[7-9,12,13,21-23,26]$.

In a very recent paper, the author introduced Libera type bi-close-to-convex functions as follows.

Definition 1.1. [8] Let $0 \leq \alpha, \beta<1$. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{C}_{\Sigma}(\alpha, \beta)$ of bi-close-to-convex functions of order α and type β (or Libera type bi-close-to-convex functions) if there exists the functions $g, G \in \mathcal{S}^{*}(\beta)$ such that

$$
\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha \quad \text { and } \quad \Re\left(\frac{w F^{\prime}(w)}{G(w)}\right)>\alpha \quad(z, w \in \mathbb{U})
$$

where the function $F=f^{-1}$ is defined by (2).
In particular, we get the class $\mathcal{C}_{\Sigma}(\alpha, 0)=\mathcal{C}_{\Sigma}(\alpha)$ of bi-close-to-convex functions of order α.

Remark 1.2. We note that when $\beta=\alpha, g=f$ and $G=F$, the class $\mathcal{C}_{\Sigma}(\alpha, \beta)$ reduces to the class $\mathcal{S}_{\Sigma}^{*}(\alpha)$ of bi-starlike functions of order $\alpha(0 \leq \alpha<1)$ which consists of functions $f \in \Sigma$ satisfying

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad \text { and } \quad \Re\left(\frac{w F^{\prime}(w)}{F(w)}\right)>\alpha \quad(z, w \in \mathbb{U})
$$

where the function $F=f^{-1}$ is defined by (2).
Now, we introduce a new generalization of Libera type bi-close-to-convex functions of complex order as follows.

Definition 1.3. Let $0 \leq \alpha, \beta<1,0 \leq \lambda, \delta \leq 1$ and $\gamma, \tau \in \mathbb{C}^{*}$. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$ if there exists the functions $g, G \in \mathcal{S C}(\tau, \delta, \beta)$ such that

$$
\begin{equation*}
\Re\left(1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}-1\right)\right)>\alpha \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(1+\frac{1}{\gamma}\left(\frac{w\left[(1-\lambda) F(w)+\lambda w F^{\prime}(w)\right]^{\prime}}{(1-\lambda) G(w)+\lambda w G^{\prime}(w)}-1\right)\right)>\alpha \quad(w \in \mathbb{U}) \tag{4}
\end{equation*}
$$

where the function $F=f^{-1}$ is defined by (2).
Remark 1.4. If we set $\beta=0, \delta=0$ and $\gamma=\tau=1$ in Definition 1.3, then the class $\mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$ reduces to the class $\mathcal{T}_{\Sigma}(\lambda, \alpha)$ which consists of functions $f \in \Sigma$ satisfying

$$
\Re\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

and

$$
\Re\left(\frac{w\left[(1-\lambda) F(w)+\lambda w F^{\prime}(w)\right]^{\prime}}{(1-\lambda) G(w)+\lambda w G^{\prime}(w)}\right)>\alpha \quad(w \in \mathbb{U})
$$

where $g, G \in \mathcal{S}^{*}$ and the function $F=f^{-1}$ is defined by (2). This class is introduced by Sakar and Güney [21]. The authors investigated the coefficient bounds for a_{n} of functions belong to the class $\mathcal{T}_{\Sigma}(\lambda, \alpha)$. They proved their main result by making use of the assertion: if an analytic function f of the form (1) is in the class $\mathcal{T}(\lambda, \alpha)$, that is, if it satisfies the condition

$$
\Re\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}\right)>\alpha, \quad g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}^{*} \quad(z \in \mathbb{U}),
$$

and if $a_{k}=0(2 \leq k \leq n-1)$, then the coefficients $b_{k}=0 \quad(2 \leq k \leq n-1)$. But we can provide a counterexample to illuminate the above assertion is wrong. For example, by choosing the functions f and g as

$$
f(z)=z \quad \text { and } \quad g(z)=z-\frac{z^{2}}{2}
$$

clearly, we see that $g \in \mathcal{S}^{*}$ and $f \in \mathcal{T}(1 / 2,1 / 2)$. It is worthy to note that for these functions $a_{2}=0$ but $b_{2}=-1 / 2 \neq 0$ (see Figure 1).

Remark 1.5. If we set $\lambda=\delta=0$ and $\gamma=\tau=1$, then the class $\mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$ reduces to the class $\mathcal{C}_{\Sigma}(\alpha, \beta)$ of Libera type bi-close-to-convex functions defined in Definition 1.1.

2. Preliminary Lemmas

Let the class \mathcal{P} be defined by

$$
\mathcal{P}=\{p \in \mathcal{H}: p(0)=1 \quad \text { and } \quad \Re(p(z))>0(z \in \mathbb{U})\}
$$

Assume that

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots(z \in \mathbb{U}) . \tag{5}
\end{equation*}
$$

Figure 1.
Lemma 2.1. (Carathéodory Lemma [19]) Let $p \in \mathcal{P}$ given by (5). Then

$$
\left|c_{n}\right| \leq 2 \quad(n \in \mathbb{N})
$$

Lemma 2.2. [10] If $p \in \mathcal{P}$ given by (5) and $\mu \in \mathbb{C}$, then

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\}
$$

Lemma 2.3. [1] If $g \in \mathcal{S C}(\tau, \delta, \beta) \quad\left(0 \leq \beta<1,0 \leq \delta \leq 1, \tau \in \mathbb{C}^{*}\right)$ with $g(z)=$ $z+\sum_{n=2}^{\infty} b_{n} z^{n}$, then

$$
\left|b_{n}\right| \leq \frac{\prod_{j=0}^{n-2}[j+2|\tau|(1-\beta)]}{(n-1)![1+\delta(n-1)]} \quad\left(n \in \mathbb{N}^{*}:=\mathbb{N} \backslash\{1\}=\{2,3, \ldots\}\right) .
$$

Lemma 2.4. If $g \in \mathcal{S C}(\tau, \delta, \beta) \quad\left(0 \leq \beta<1,0 \leq \delta \leq 1, \tau \in \mathbb{C}^{*}\right)$ with $g(z)=z+$ $\sum_{n=2}^{\infty} b_{n} z^{n}$, then for $\mu \in \mathbb{C}$

$$
\left|b_{3}-\mu b_{2}^{2}\right| \leq \frac{|\tau|(1-\beta)}{1+2 \delta} \max \left\{1,\left|1+2 \tau(1-\beta)\left(1-\frac{2(1+2 \delta)}{(1+\delta)^{2}} \mu\right)\right|\right\}
$$

Proof. Let $0 \leq \beta<1,0 \leq \delta \leq 1$ and $\tau \in \mathbb{C}^{*}$. If $g \in \mathcal{S C}(\tau, \delta, \beta)$, then we have

$$
\Re\left(1+\frac{1}{\tau}\left(\frac{z G_{\delta}^{\prime}(z)}{G_{\delta}(z)}-1\right)\right)>\beta \quad(z \in \mathbb{U})
$$

where

$$
G_{\delta}(z)=(1-\delta) g(z)+\delta z g^{\prime}(z)
$$

Then there exist a positive real part function $h(z)=1+\sum_{n=1}^{\infty} h_{n} z^{n} \in \mathcal{P}$ in \mathbb{U} such that

$$
\begin{equation*}
1+\frac{1}{\tau}\left(\frac{z G_{\delta}^{\prime}(z)}{G_{\delta}(z)}-1\right)=\beta+(1-\beta) h(z)=1+(1-\beta) \sum_{n=1}^{\infty} h_{n} z^{n} . \tag{6}
\end{equation*}
$$

From (6), we have

$$
\begin{gather*}
b_{2}=\frac{\tau(1-\beta)}{1+\delta} h_{1}, \tag{7}\\
b_{3}=\frac{\tau(1-\beta)}{2(1+2 \delta)}\left[h_{2}+\tau(1-\beta) h_{1}^{2}\right] . \tag{8}
\end{gather*}
$$

Taking into account (7) and (8), we obtain

$$
\begin{equation*}
b_{3}-\mu b_{2}^{2}=\frac{\tau(1-\beta)}{2(1+2 \delta)}\left(h_{2}-\nu h_{1}^{2}\right), \tag{9}
\end{equation*}
$$

where

$$
\nu=-\tau(1-\beta)\left(1-\frac{2(1+2 \delta)}{(1+\delta)^{2}} \mu\right) .
$$

Our result now follows by an application of Lemma 2.2. This completes the proof of Lemma 2.4.

3. Main Results

Theorem 3.1. For $0 \leq \alpha, \beta<1,0 \leq \lambda, \delta \leq 1$ and $\gamma, \tau \in \mathbb{C}^{*}$, let $f \in \mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$. If $a_{k}=0(2 \leq k \leq n-1)$, then for $n \geq 3$,

$$
\begin{aligned}
\left|a_{n}\right| \leq & \frac{\prod_{j=0}^{n-2}[j+2|\tau|(1-\beta)]}{n![1+\delta(n-1)]}+\frac{2|\gamma|(1-\alpha)}{n[1+(n-1) \lambda]} \\
& +\frac{1}{n[1+(n-1) \lambda]} \sum_{l=1}^{n-2} \frac{[1+(n-l-1) \lambda] \prod_{j=0}^{n-l-2}[j+2|\tau|(1-\beta)]}{(n-l-1)![1+\delta(n-l-1)]} \Omega_{l}^{\lambda} .
\end{aligned}
$$

where
(10)
$\Omega_{l}^{\lambda}=\min \left\{\left|K_{l}^{-1}\left((1+\lambda) b_{2}, \ldots,(1+l \lambda) b_{l+1}\right)\right|,\left|K_{l}^{-1}\left((1+\lambda) B_{2}, \ldots,(1+l \lambda) B_{l+1}\right)\right|\right\}$.
Proof. For $0 \leq \alpha, \beta<1,0 \leq \lambda, \delta \leq 1$ and $\gamma, \tau \in \mathbb{C}^{*}$, let the function f given by (1) satisfies the hypothesis of the theorem, that is, let f belongs to the class $\mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$. Then there exist the functions
(11) $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S C}(\tau, \delta, \beta) \quad$ and $\quad G(w)=w+\sum_{n=2}^{\infty} B_{n} w^{n} \in \mathcal{S C}(\tau, \delta, \beta)$,
such that (3) and (4) hold. The Faber polynomial expansion for

$$
1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}-1\right)
$$

and

$$
1+\frac{1}{\gamma}\left(\frac{w\left[(1-\lambda) F(w)+\lambda w F^{\prime}(w)\right]^{\prime}}{(1-\lambda) G(w)+\lambda w G^{\prime}(w)}-1\right)
$$

are obtained by

$$
1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}-1\right)=1+\sum_{n=2}^{\infty}\left\{\frac{1+(n-1) \lambda}{\gamma}\left(n a_{n}-b_{n}\right)\right.
$$

$$
\begin{equation*}
\left.+\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{\gamma} K_{l}^{-1}\left((1+\lambda) b_{2}, \ldots,(1+l \lambda) b_{l+1}\right)\left[(n-l) a_{n-l}-b_{n-l}\right]\right\} z^{n-1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w\left[(1-\lambda) F(w)+\lambda w F^{\prime}(w)\right]^{\prime}}{(1-\lambda) G(w)+\lambda w G^{\prime}(w)}-1\right)=1+\sum_{n=2}^{\infty}\left\{\frac{1+(n-1) \lambda}{\gamma}\left(n A_{n}-B_{n}\right)\right. \tag{13}
\end{equation*}
$$

$\left.+\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{\gamma} K_{l}^{-1}\left((1+\lambda) B_{2}, \ldots,(1+l \lambda) B_{l+1}\right)\left[(n-l) A_{n-l}-B_{n-l}\right]\right\} w^{n-1}$,
respectively. On the other hand by (3) and (4), we see that there exist two positive real part functions

$$
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{P} \quad \text { and } \quad q(w)=1+\sum_{n=1}^{\infty} d_{n} w^{n} \in \mathcal{P}
$$

in \mathbb{U} such that

$$
\begin{align*}
1+\frac{1}{\gamma}\left(\frac{z\left[(1-\lambda) f(z)+\lambda z f^{\prime}(z)\right]^{\prime}}{(1-\lambda) g(z)+\lambda z g^{\prime}(z)}-1\right) & =\alpha+(1-\alpha) p(z) \\
& =1+(1-\alpha) \sum_{n=1}^{\infty} c_{n} z^{n} \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
1+\frac{1}{\gamma}\left(\frac{w\left[(1-\lambda) F(w)+\lambda w F^{\prime}(w)\right]^{\prime}}{(1-\lambda) G(w)+\lambda w G^{\prime}(w)}-1\right) & =\alpha+(1-\alpha) q(w) \\
& =1+(1-\alpha) \sum_{n=1}^{\infty} d_{n} w^{n} \tag{15}
\end{align*}
$$

We note that

$$
\begin{equation*}
\left|c_{n}\right| \leq 2 \quad \text { and } \quad\left|d_{n}\right| \leq 2 \quad(n \in \mathbb{N}) \tag{16}
\end{equation*}
$$

by Lemma 2.1. Comparing the corresponding coefficients of (12) and (14), for any $n \geq 2$, yields
(17)

$$
\begin{aligned}
& \frac{1+(n-1) \lambda}{\gamma}\left(n a_{n}-b_{n}\right) \\
& +\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{\gamma} K_{l}^{-1}\left((1+\lambda) b_{2}, \ldots,(1+l \lambda) b_{l+1}\right)\left[(n-l) a_{n-l}-b_{n-l}\right] \\
& = \\
& (1-\alpha) c_{n-1}
\end{aligned}
$$

Similarly, it follows from (13) and (15) that

$$
\begin{align*}
& \frac{1+(n-1) \lambda}{\gamma}\left(n A_{n}-B_{n}\right) \tag{18}\\
& +\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{\gamma} K_{l}^{-1}\left((1+\lambda) B_{2}, \ldots,(1+l \lambda) B_{l+1}\right)\left[(n-l) A_{n-l}-B_{n-l}\right] \\
= & (1-\alpha) d_{n-1} .
\end{align*}
$$

By the hypothesis $a_{k}=0(2 \leq k \leq n-1)$, we find from (17) and (18) that

$$
\begin{align*}
& \frac{1+(n-1) \lambda}{\gamma}\left(n a_{n}-b_{n}\right) \\
& -\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{\gamma} b_{n-l} K_{l}^{-1}\left((1+\lambda) b_{2}, \ldots,(1+l \lambda) b_{l+1}\right) \\
= & (1-\alpha) c_{n-1}, \tag{19}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1+(n-1) \lambda}{\gamma}\left(n A_{n}-B_{n}\right) \\
& -\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{\gamma} B_{n-l} K_{l}^{-1}\left((1+\lambda) B_{2}, \ldots,(1+l \lambda) B_{l+1}\right) \\
= & (1-\alpha) d_{n-1}, \tag{20}
\end{align*}
$$

respectively. Also the equality $a_{k}=0(2 \leq k \leq n-1)$ implies that $A_{n}=-a_{n}$. Thus (19) and (20) gives

$$
\begin{align*}
& \frac{n[1+(n-1) \lambda]}{\gamma} a_{n}=\frac{1+(n-1) \lambda}{\gamma} b_{n}+(1-\alpha) c_{n-1} \\
& +\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{\gamma} b_{n-l} K_{l}^{-1}\left((1+\lambda) b_{2}, \ldots,(1+l \lambda) b_{l+1}\right) \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
& -\frac{n[1+(n-1) \lambda]}{\gamma} a_{n}=\frac{1+(n-1) \lambda}{\gamma} B_{n}+(1-\alpha) d_{n-1} \\
& +\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{\gamma} B_{n-l} K_{l}^{-1}\left((1+\lambda) B_{2}, \ldots,(1+l \lambda) B_{l+1}\right), \tag{22}
\end{align*}
$$

respectively.
On the other hand, by the hypothesis (11), since $g, G \in \mathcal{S C}(\tau, \delta, \beta)$ we obtain the coefficient inequalities

$$
\left|b_{n}\right| \leq \frac{\prod_{j=0}^{n-2}[j+2|\tau|(1-\beta)]}{(n-1)![1+\delta(n-1)]} \quad \text { and } \quad\left|B_{n}\right| \leq \frac{\prod_{j=0}^{n-2}[j+2|\tau|(1-\beta)]}{(n-1)![1+\delta(n-1)]}
$$

from Lemma 2.3. Considering the above coefficient bounds and the inequalities in (16), from (21) and (22) we get

$$
\begin{gathered}
\frac{n[1+(n-1) \lambda]}{|\gamma|}\left|a_{n}\right| \\
\leq \frac{1+(n-1) \lambda}{|\gamma|}\left|b_{n}\right|+(1-\alpha)\left|c_{n-1}\right| \\
+\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{|\gamma|}\left|b_{n-l}\right|\left|K_{l}^{-1}\left((1+\lambda) b_{2}, \ldots,(1+l \lambda) b_{l+1}\right)\right|
\end{gathered}
$$

$$
\leq \frac{[1+(n-1) \lambda] \prod_{j=0}^{n-2}[j+2|\tau|(1-\beta)]}{|\gamma|(n-1)![1+\delta(n-1)]}+2(1-\alpha)
$$

$$
\begin{equation*}
+\sum_{l=1}^{n-2} \frac{[1+(n-l-1) \lambda]}{|\gamma|(n-l-1)![1+\delta(n-l-1)]}\left|K_{l}^{-1}\left((1+\lambda) b_{2}, \ldots,(1+l \lambda) b_{l+1}\right)\right| \tag{23}
\end{equation*}
$$

and

$$
\begin{gathered}
\frac{n[1+(n-1) \lambda]}{|\gamma|}\left|a_{n}\right| \\
\leq \frac{1+(n-1) \lambda}{|\gamma|}\left|B_{n}\right|+(1-\alpha)\left|d_{n-1}\right| \\
+\sum_{l=1}^{n-2} \frac{1+(n-l-1) \lambda}{|\gamma|}\left|B_{n-l}\right|\left|K_{l}^{-1}\left((1+\lambda) B_{2}, \ldots,(1+l \lambda) B_{l+1}\right)\right| \\
\leq \frac{[1+(n-1) \lambda] \prod_{j=0}^{n-2}[j+2|\tau|(1-\beta)]}{|\gamma|(n-1)![1+\delta(n-1)]}+2(1-\alpha)
\end{gathered}
$$

$$
\begin{equation*}
+\sum_{l=1}^{n-2} \frac{[1+(n-l-1) \lambda] \prod_{j=0}^{n-l-2}[j+2|\tau|(1-\beta)]}{|\gamma|(n-l-1)![1+\delta(n-l-1)]}\left|K_{l}^{-1}\left((1+\lambda) B_{2}, \ldots,(1+l \lambda) B_{l+1}\right)\right|, \tag{24}
\end{equation*}
$$

respectively. Consequently, by comparing (23) and (24), we get the coefficient bounds for $\left|a_{n}\right|$ as asserted in Theorem 3.1.

By setting $\delta=0, \beta=0$ and $\gamma=\tau=1$ in Theorem 3.1, we get the following result.
Corollary 3.2. For $0 \leq \alpha<1$ and $0 \leq \lambda \leq 1$, let $f \in \mathcal{T}_{\Sigma}(\lambda, \alpha)$. If $a_{k}=$ $0(2 \leq k \leq n-1)$, then for $n \geq 3$,

$$
\begin{aligned}
\left|a_{n}\right| \leq & 1+\frac{2(1-\alpha)}{n[1+(n-1) \lambda]} \\
& +\frac{1}{n[1+(n-1) \lambda]} \sum_{l=1}^{n-2}[1+(n-l-1) \lambda](n-l) \Omega_{l}^{\lambda} .
\end{aligned}
$$

where Ω_{l}^{λ} is defined by (10).
By setting $\lambda=\delta=0$ and $\gamma=\tau=1$ in Theorem 3.1, we have the following consequence.

Corollary 3.3. [8] For $0 \leq \alpha, \beta<1$, let $f \in \mathcal{C}_{\Sigma}(\alpha, \beta)$. If $a_{k}=0(2 \leq k \leq n-1)$, then for $n \geq 3$,

$$
\begin{aligned}
\left|a_{n}\right| \leq & \frac{\prod_{j=0}^{n-2}[j+2(1-\beta)]}{n!}+\frac{2(1-\alpha)}{n} \\
& +\frac{1}{n} \sum_{l=1}^{n-2} \frac{\prod_{j=0}^{n-2}[j+2(1-\beta)]}{(n-l-1)!} \min \left\{\left|K_{l}^{-1}\left(b_{2}, \ldots, b_{l+1}\right)\right|,\left|K_{l}^{-1}\left(B_{2}, \ldots, B_{l+1}\right)\right|\right\} .
\end{aligned}
$$

By setting $\beta=0, \lambda=\delta=0$ and $\gamma=\tau=1$ in Theorem 3.1, we get the following result.

Corollary 3.4. [26] For $0 \leq \alpha<1$, let $f \in \mathcal{C}_{\Sigma}(\alpha)$. If $a_{k}=0(2 \leq k \leq n-1)$, then for $n \geq 3$,
$\left|a_{n}\right| \leq 1+\frac{2(1-\alpha)}{n}+\frac{1}{n} \sum_{l=1}^{n-2}(n-l) \min \left\{\left|K_{l}^{-1}\left(b_{2}, \ldots, b_{l+1}\right)\right|,\left|K_{l}^{-1}\left(B_{2}, \ldots, B_{l+1}\right)\right|\right\}$.
By setting $b_{k}=B_{k}=0(2 \leq k \leq n-1)$ in Theorem 3.1, we get the following result.

Corollary 3.5. For $0 \leq \alpha, \beta<1,0 \leq \lambda, \delta \leq 1$ and $\gamma, \tau \in \mathbb{C}^{*}$, let $f \in$ $\mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$. If $a_{k}=b_{k}=B_{k}=0(2 \leq k \leq n-1)$, then for $n \geq 3$,

$$
\left|a_{n}\right| \leq \frac{\prod_{j=0}^{n-2}[j+2|\tau|(1-\beta)]}{n![1+\delta(n-1)]}+\frac{2|\gamma|(1-\alpha)}{n[1+(n-1) \lambda]}
$$

By setting $b_{k}=B_{k}=0(2 \leq k \leq n-1), \beta=0, \delta=0$ and $\gamma=\tau=1$ in Theorem 3.1, we get the following result. It corrects the errors of [21, Theorem 2.1]. More precisely, Theorem 2.1 in [21] holds only with the additional condition $b_{k}=B_{k}=0(2 \leq k \leq n-1)$.

Corollary 3.6. (Correction of [21, Theorem 2.1]) For $0 \leq \alpha<1$ and $0 \leq \lambda \leq 1$, let $f \in \mathcal{T}_{\Sigma}(\lambda, \alpha)$. If $a_{k}=b_{k}=B_{k}=0(2 \leq k \leq n-1)$, then for $n \geq 3$,

$$
\left|a_{n}\right| \leq 1+\frac{2(1-\alpha)}{n[1+(n-1) \lambda]} .
$$

Corollary 3.7. For $0 \leq \alpha, \beta<1,0 \leq \lambda, \delta \leq 1$ and $\gamma, \tau \in \mathbb{C}^{*}$, let $f \in$ $\mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$. Also suppose that

$$
\begin{equation*}
G(w)=g^{-1}(w)=w-b_{2} w^{2}+\left(2 b_{2}^{2}-b_{3}\right) w^{3}-\left(5 b_{2}^{3}-5 b_{2} b_{3}+b_{4}\right) w^{4}+\cdots . \tag{25}
\end{equation*}
$$

If $a_{k}=b_{k}=0(2 \leq k \leq n-1)$, then for $n \geq 3$,

$$
\left|a_{n}\right| \leq \frac{\prod_{j=0}^{n-2}[j+2|\tau|(1-\beta)]}{n![1+\delta(n-1)]}+\frac{2|\gamma|(1-\alpha)}{n[1+(n-1) \lambda]}
$$

As a special case to Theorem 3.1, we determine the initial coefficient bounds of functions belonging to the class $\mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$ of bi-close-to-convex functions of order α and type β.

Theorem 3.8. For $0 \leq \alpha, \beta<1,0 \leq \lambda, \delta \leq 1$ and $\gamma, \tau \in \mathbb{C}^{*}$, let the function f given by (1) be in the function class $\mathcal{S C}_{\Sigma}^{\gamma, \tau}(\lambda, \alpha ; \delta, \beta)$ and suppose that the function G be defined by (25). Then one has the following

$$
\left|a_{2}\right| \leq \min \left\{\frac{|\gamma|(1-\alpha)}{1+\lambda}+\frac{|\tau|(1-\beta)}{1+\delta},\right.
$$

$$
\begin{equation*}
\left.\sqrt{\frac{4|\tau|(1-\beta)}{3(1+\delta)}\left(\frac{|\gamma|(1+\lambda)(1-\alpha)}{1+2 \lambda}+\frac{|\tau|(1-\beta)}{1+\delta}\right)+\frac{2|\gamma|(1-\alpha)}{3(1+2 \lambda)}}\right\} \tag{26}
\end{equation*}
$$

and

$$
\begin{aligned}
\left|a_{3}\right| \leq & \min \left\{\frac{|\gamma|(1-\alpha)}{3(1+2 \lambda)}[1+\max \{1,|\mu|\}]+\frac{|\tau|(1-\beta)}{3(1+2 \delta)} \max \{1,|\rho|\}\right. \\
& +\frac{2|\gamma|(1-\alpha)|\tau|(1-\beta)}{(1+\lambda)(1+\delta)}
\end{aligned}
$$

$$
\begin{equation*}
\left.\frac{2|\gamma|(1-\alpha)}{3(1+2 \lambda)}+\frac{4|\gamma|(1+\lambda)(1-\alpha)|\tau|(1-\beta)}{3(1+2 \lambda)(1+\delta)}+\frac{|\tau|(1-\beta)[1+2|\tau|(1-\beta)]}{3(1+2 \delta)}\right\} \tag{27}
\end{equation*}
$$

where

$$
\mu=1+\frac{3(1+2 \lambda)}{(1+\lambda)^{2}} \gamma(1-\alpha), \quad \rho=1+\frac{1+2 \delta+2 \delta^{2}}{(1+\delta)^{2}} \tau(1-\beta) .
$$

Proof. If we set $n=2$ and $n=3$ in (17) and (18), respectively, we get

$$
\begin{equation*}
2 a_{2}=\frac{\gamma(1-\alpha)}{1+\lambda} c_{1}+b_{2} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
6 a_{2}^{2}-3 a_{3}=\frac{\gamma(1-\alpha)}{1+2 \lambda} d_{2}-\frac{\gamma(1+\lambda)(1-\alpha)}{1+2 \lambda} d_{1} b_{2}+2 b_{2}^{2}-b_{3} . \tag{30}
\end{equation*}
$$

From (28) and (30), we find

$$
\begin{equation*}
c_{1}=-d_{1} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}=\frac{\gamma(1-\alpha)}{2(1+\lambda)} c_{1}+\frac{1}{2} b_{2} . \tag{33}
\end{equation*}
$$

On the other hand, from (29) and (31), we obtain

$$
\begin{equation*}
a_{2}^{2}=\frac{\gamma(1-\alpha)}{6(1+2 \lambda)}\left(c_{2}+d_{2}\right)+\frac{\gamma(1+\lambda)(1-\alpha)}{3(1+2 \lambda)} c_{1} b_{2}+\frac{1}{3} b_{2}^{2} . \tag{34}
\end{equation*}
$$

Therefore by applying triangle inequality to (33) and (34), using (16) and the fact that

$$
\begin{equation*}
\left|b_{2}\right| \leq \frac{2|\tau|(1-\beta)}{1+\delta} \tag{35}
\end{equation*}
$$

obtained from Lemma 2.3 for $n=2$, we get the desired estimate on the coefficient bound for $\left|a_{2}\right|$ as asserted in (26).

Next, in order to find the bound for $\left|a_{3}\right|$, we subtract (31) from (29). We thus get

$$
6 a_{3}-6 a_{2}^{2}=\frac{\gamma(1-\alpha)}{1+2 \lambda}\left(c_{2}-d_{2}\right)+\frac{\gamma(1+\lambda)(1-\alpha)}{1+2 \lambda} b_{2}\left(c_{1}+d_{1}\right)-2 b_{2}^{2}+2 b_{3} .
$$

By (32), we obtain

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{\gamma(1-\alpha)}{6(1+2 \lambda)}\left(c_{2}-d_{2}\right)+\frac{b_{3}-b_{2}^{2}}{3} . \tag{36}
\end{equation*}
$$

If we set the value of a_{2}^{2} from (33) in (36), then we have

$$
\begin{aligned}
a_{3}= & \frac{\gamma^{2}(1-\alpha)^{2}}{4(1+\lambda)^{2}} c_{1}^{2}+\frac{1}{4} b_{2}^{2}+\frac{\gamma(1-\alpha)}{2(1+\lambda)} c_{1} b_{2} \\
& +\frac{\gamma(1-\alpha)}{6(1+2 \lambda)} c_{2}-\frac{\gamma(1-\alpha)}{6(1+2 \lambda)} d_{2}+\frac{1}{3} b_{3}-\frac{1}{3} b_{2}^{2} \\
= & \frac{\gamma(1-\alpha)}{6(1+2 \lambda)}\left(c_{2}+\frac{3 \gamma(1+2 \lambda)(1-\alpha)}{2(1+\lambda)^{2}} c_{1}^{2}\right)+\frac{1}{3}\left(b_{3}-\frac{1}{4} b_{2}^{2}\right) \\
& +\frac{\gamma(1-\alpha)}{2(1+\lambda)} c_{1} b_{2}-\frac{\gamma(1-\alpha)}{6(1+2 \lambda)} d_{2} .
\end{aligned}
$$

So using Lemma 2.2, Lemma 2.4, (16) and (35), we get

$$
\begin{align*}
\left|a_{3}\right| \leq & \frac{|\gamma|(1-\alpha)}{3(1+2 \lambda)}[1+\max \{1,|\mu|\}]+\frac{|\tau|(1-\beta)}{3(1+2 \delta)} \max \{1,|\rho|\} \\
& +\frac{2|\gamma|(1-\alpha)|\tau|(1-\beta)}{(1+\lambda)(1+\delta)}, \tag{37}
\end{align*}
$$

where

$$
\mu=1+\frac{3(1+2 \lambda)}{(1+\lambda)^{2}} \gamma(1-\alpha), \quad \rho=1+\frac{1+2 \delta+2 \delta^{2}}{(1+\delta)^{2}} \tau(1-\beta) .
$$

If we set the value of a_{2}^{2} from (34) in (36), then we have

$$
a_{3}=\frac{\gamma(1-\alpha)}{3(1+2 \lambda)} c_{2}+\frac{\gamma(1+\lambda)(1-\alpha)}{3(1+2 \lambda)} c_{1} b_{2}+\frac{1}{3} b_{3} .
$$

So using (16), (35) and the fact that

$$
\left|b_{3}\right| \leq \frac{|\tau|(1-\beta)[1+2|\tau|(1-\beta)]}{1+2 \delta}
$$

obtained from Lemma 2.3 for $n=3$, we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2|\gamma|(1-\alpha)}{3(1+2 \lambda)}+\frac{4|\gamma|(1+\lambda)(1-\alpha)|\tau|(1-\beta)}{3(1+2 \lambda)(1+\delta)}+\frac{|\tau|(1-\beta)[1+2|\tau|(1-\beta)]}{3(1+2 \delta)} . \tag{38}
\end{equation*}
$$

Hence (37) and (38) give the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (27).

By setting $\delta=0, \beta=0$ and $\gamma=\tau=1$ in Theorem 3.8, we get the following result.

Corollary 3.9. For $0 \leq \alpha<1$ and $0 \leq \lambda \leq 1$, let the function f given by (1) be in the function class $\mathcal{T}_{\Sigma}(\lambda, \alpha)$ and suppose that the function G be defined by (25). Then one has the following

$$
\left|a_{2}\right| \leq \min \left\{\frac{2-\alpha+\lambda}{1+\lambda}, \sqrt{\frac{2(1-\alpha)(3+2 \lambda)}{3(1+2 \lambda)}+\frac{4}{3}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{2(2-\alpha+2 \lambda)}{3(1+2 \lambda)}+\frac{(1-\alpha)(3-\alpha+2 \lambda)}{(1+\lambda)^{2}}, \frac{2(1-\alpha)(3+2 \lambda)}{3(1+2 \lambda)}+1\right\} .
$$

By setting $\lambda=\delta=0$ and $\gamma=\tau=1$ in Theorem 3.8, we get the following result.
Corollary 3.10. [8] For $0 \leq \alpha, \beta<1$, let the function f given by (1) be in the function class $\mathcal{C}_{\Sigma}(\alpha, \beta)$ and suppose that the function G be defined by (25). Then one has the following

$$
\left|a_{2}\right| \leq \min \left\{(2-\alpha-\beta), \sqrt{\frac{4(1-\beta)(2-\alpha-\beta)+2(1-\alpha)}{3}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{1}{3}\left\{\begin{array}{ll}
(3-2 \beta)(3-2 \alpha-\beta) & , \quad 0 \leq \alpha \leq \frac{2+\beta}{3} \\
(1-\alpha)(5-3 \alpha)+(1-\beta)(2-\beta)+6(1-\alpha)(1-\beta) & , \quad \frac{2+\beta}{3} \leq \alpha<1
\end{array} .\right.
$$

References

[1] O. Altıntas, H. Irmak, S. Owa and H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Letters 20 (2007), 1218-1222.
[2] H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), 179-222.
[3] H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), 343-367.
[4] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. BabeşBolyai Math. 31 (2) (1986), 70-77.
[5] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic biunivalent functions, C. R., Math., Acad. Sci. Paris 352 (6) (2014), 479-484.
[6] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30 (6) (2016), 1567-1575.
[7] S. Bulut, A new comprehensive subclass of analytic bi-close-to-convex functions, Turk. J. Math. 43 (3) (2019), 1414-1424.
[8] S. Bulut, Coefficient estimates for Libera type bi-close-to-convex functions, Mathematica Slovaca 71 (6) (2021), 1401-1410.
[9] S. Bulut, Coefficient estimates for functions associated with vertical strip domain, Commun. Korean Math. Soc. 37 (2) (2022), 537-549.
[10] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
[11] G. Faber, Über polynomische Entwickelungen, Math. Ann. 57 (3) (1903) 389-408.
[12] H.Ö. Güney, G. Murugusundaramoorthy and H.M. Srivastava, The second Hankel determinant for a certain class of bi-close-to-convex functions, Result. Math. 74 (3) (2019), Paper No. 93.
[13] S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-toconvex functions, C. R. Acad. Sci. Paris, Ser. I 352 (2014), 17-20.
[14] S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc. 41 (5) (2015), 1103-1119.
[15] J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. 2013, Art. ID 190560, 4 pp.
[16] J.M. Jahangiri, S.G. Hamidi and S.A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc. (2) 37 (3) (2014), 633-640.
[17] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185 (1953).
[18] R.J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143-158.
[19] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
[20] M.S. Robertson, On the theory of univalent functions, Ann. of Math. (Ser. 1) 37 (1936), 374-408.
[21] F.M. Sakar and H.Ö. Güney, Coefficient bounds for a new subclass of analytic bi-close-to-convex functions by making use of Faber polynomial expansion, Turkish J. Math. 41 (2017), 888-895.
[22] F.M. Sakar and H.Ö. Güney, Faber polynomial coefficient bounds for analytic bi-close-to-convex functions defined by fractional calculus, J. Fract. Calc. Appl. 9 (1) (2018), 64-71.
[23] H.M. Srivastava and S.M. El-Deeb, The Faber polynomial expansion method and the TaylorMaclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math. 5 (6) (2020), 7087-7106.
[24] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
[25] P.G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1991), 268-276.
[26] Z.-G. Wang and S. Bulut, A note on the coefficient estimates of bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 355 (2017), 876-880.
[27] A. Zireh, E.A. Adegani and S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc.-Simon Stevin 23 (4) (2016), 487-504.

Serap Bulut

Kocaeli University
Faculty of Aviation and Space Sciences
Kocaeli 41285, Turkey
E-mail: serap.bulut@kocaeli.edu.tr

