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COEFFICIENT ESTIMATES FOR GENERALIZED LIBERA TYPE

BI-CLOSE-TO-CONVEX FUNCTIONS

Serap Bulut

Abstract. In a recent paper, Sakar and Güney introduced a new class of bi-close-
to-convex functions and determined the estimates for the general Taylor-Maclaurin
coefficients of functions therein. The main purpose of this note is to give a general-
ization of this class. Also we point out the proof by Sakar and Güney is incorrect
and present a correct proof.

1. Introduction

Assume that H is the class of analytic functions in the open unit disc

U = {z ∈ C : |z| < 1} .

Let A denote the subclass of H consisting of functions f normalized by

f(0) = f ′(0)− 1 = 0.

Each function f ∈ A can be expressed as

(1) f(z) = z +
∞∑
n=2

anz
n (z ∈ U) .

We also denote by S the subclass of A whose members are univalent in U.
A function f ∈ A is said to be starlike of order β (0 ≤ β < 1) if it satisfies the

inequality

<
(
zf ′(z)

f(z)

)
> β (z ∈ U) .

We denote the class which consists of all functions f ∈ A that are starlike of order β
by S∗(β). It is well-known that S∗(β) ⊂ S∗(0) = S∗ ⊂ S.

A function f ∈ A is said to be close-to-convex of order α (0 ≤ α < 1) if there exists
a function g ∈ S∗ such that the inequality

<
(
zf ′(z)

g(z)

)
> α (z ∈ U)
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holds. We denote the class which consists of all functions f ∈ A that are close-to-
convex of order α by C(α). It is well-known that S∗(α) ⊂ C(α) ⊂ S (see [10]).

Let 0 ≤ α, β < 1. A function f ∈ A is said to be close-to-convex of order α and
type β if there exists a function g ∈ S∗ (β) such that the inequality

<
(
zf ′(z)

g(z)

)
> α (z ∈ U)

holds. We denote the class which consists of all functions f ∈ A that are close-to-
convex of order α and type β by C(α, β). This class is introduced by Libera [18].

In particular, when β = 0 we have C(α, 0) = C(α) of close-to-convex functions
of order α, and also we get C(0, 0) = C of close-to-convex functions introduced by
Kaplan [17].

Let 0 ≤ α < 1, γ ∈ C∗ = C\ {0}, 0 ≤ λ ≤ 1. A function f ∈ A is said to be in the
class SC(γ, λ, α) if it satisfies the condition

<
(

1 +
1

γ

(
z [(1− λ) f(z) + λzf ′(z)]′

(1− λ) f(z) + λzf ′(z)
− 1

))
> α (z ∈ U) .

This class is introduced by Altıntaş et al. [1]. Clearly, we have the following relation-
ships: SC(1, 0, α) = S∗(α) and SC(1, 0, 0) = S∗.

Since univalent functions are one-to-one, they are invertible and the inverse func-
tions need not be defined on the entire unit disk U. Indeed, the Koebe one-quarter
theorem [10] ensures that the image of U under every univalent function f contains a
disk with radius 1/4. Thus, every function f ∈ A has an inverse f−1, which is defined
by

f−1 (f (z)) = z (z ∈ U)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) ; r0 (f) ≥ 1

4

)
.

The inverse function F = f−1 is given by

F (w) = f−1 (w)

= w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · ·

= w +
∞∑
n=2

Anw
n.

(2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions in U given by (1). For a brief
history and interesting examples of functions in the class , see [4, 24].

The Faber polynomials introduced by Faber [11] play an important role in various
areas of mathematical sciences, especially in geometric function theory. The recent
publications like [5,6,14–16,27] applying the Faber polynomial expansions to analytic
bi-univalent functions motivated us to apply this technique to classes of analytic bi-
univalent functions.

Making use of the Faber polynomial expansion of function f ∈ A with the form
(1) , the coefficients of its inverse map F = f−1 may be expressed as follows (see [2,3]):

F (w) = f−1 (w) = w +
∞∑
n=2

1

n
K−nn−1 (a2, a3, . . . , an)wn.
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In general, for any p ∈ Z := {0,±1,±2, . . .} , an expansion of Kp
n−1 is given by (see [2])

Kp
n−1 = pan +

p (p− 1)

2
D2
n−1 +

p!

(p− 3)! 3!
D3
n−1 + · · ·

+
p!

(p− n+ 1)! (n− 1)!
Dn−1
n−1,

where Dp
n−1 = Dp

n−1 (a2, a3, . . . , an) . In view of [25], we see that

Dm
n−1 (a2, . . . , an) =

∑ m!

j1! . . . jn−1!
aj12 . . . a

jn−1
n

and the sum is taken over all non-negative integers j1, . . . , jn−1 satisfying j1 + i2 + · · ·+ jn−1 = m,

j1 + 2j2 + · · ·+ (n− 1) jn−1 = n− 1.

It is clear that Dn−1
n−1 (a2, . . . , an) = an−1

2 .
In particular, the first three terms of K−nn−1 are

K−2
1 = −2a2, K−3

2 = 3
(
2a2

2 − a3

)
, K−4

3 = −4
(
5a3

2 − 5a2a3 + a4

)
.

Hamidi and Jahangiri [13] introduced the class of bi-close-to-convex functions of
order α as follows: For α (0 ≤ α < 1), a function f ∈ A is said to be bi-close-
to-convex of order α if both f and its inverse map F = f−1 are close-to-convex of
order α in U. We denote the class which consists of all functions f ∈ Σ that are bi-
close-to-convex of order α by CΣ(α). In particular, we set CΣ(0) = CΣ for the class of
bi-close-to-convex functions. For recent works on bi-close-to-convex functions, please
see [7–9,12,13,21–23,26].

In a very recent paper, the author introduced Libera type bi-close-to-convex func-
tions as follows.

Definition 1.1. [8] Let 0 ≤ α, β < 1. A function f ∈ Σ given by (1) is said to be
in the class CΣ(α, β) of bi-close-to-convex functions of order α and type β (or Libera
type bi-close-to-convex functions) if there exists the functions g,G ∈ S∗ (β) such that

<
(
zf ′(z)

g(z)

)
> α and <

(
wF ′ (w)

G (w)

)
> α (z, w ∈ U) ,

where the function F = f−1 is defined by (2) .

In particular, we get the class CΣ(α, 0) = CΣ(α) of bi-close-to-convex functions of
order α.

Remark 1.2. We note that when β = α, g = f and G = F , the class CΣ(α, β) re-
duces to the class S∗Σ(α) of bi-starlike functions of order α (0 ≤ α < 1) which consists
of functions f ∈ Σ satisfying

<
(
zf ′(z)

f(z)

)
> α and <

(
wF ′(w)

F (w)

)
> α (z, w ∈ U) ,

where the function F = f−1 is defined by (2) .

Now, we introduce a new generalization of Libera type bi-close-to-convex functions
of complex order as follows.



632 Serap Bulut

Definition 1.3. Let 0 ≤ α, β < 1, 0 ≤ λ, δ ≤ 1 and γ, τ ∈ C∗. A function f ∈ Σ
given by (1) is said to be in the class SCγ,τΣ (λ, α; δ, β) if there exists the functions
g,G ∈ SC (τ, δ, β) such that

(3) <
(

1 +
1

γ

(
z [(1− λ) f(z) + λzf ′(z)]′

(1− λ) g(z) + λzg′(z)
− 1

))
> α (z ∈ U)

and

(4) <
(

1 +
1

γ

(
w [(1− λ)F (w) + λwF ′(w)]′

(1− λ)G(w) + λwG′(w)
− 1

))
> α (w ∈ U) ,

where the function F = f−1 is defined by (2) .

Remark 1.4. If we set β = 0, δ = 0 and γ = τ = 1 in Definition 1.3, then the
class SCγ,τΣ (λ, α; δ, β) reduces to the class TΣ(λ, α) which consists of functions f ∈ Σ
satisfying

<
(
z [(1− λ) f(z) + λzf ′(z)]′

(1− λ) g(z) + λzg′(z)

)
> α (z ∈ U)

and

<
(
w [(1− λ)F (w) + λwF ′(w)]′

(1− λ)G(w) + λwG′(w)

)
> α (w ∈ U) ,

where g,G ∈ S∗ and the function F = f−1 is defined by (2) . This class is introduced
by Sakar and Güney [21]. The authors investigated the coefficient bounds for an of
functions belong to the class TΣ(λ, α). They proved their main result by making use
of the assertion: if an analytic function f of the form (1) is in the class T (λ, α), that
is, if it satisfies the condition

<
(
z [(1− λ) f(z) + λzf ′(z)]′

(1− λ) g(z) + λzg′(z)

)
> α, g(z) = z +

∞∑
n=2

bnz
n ∈ S∗ (z ∈ U) ,

and if ak = 0 (2 ≤ k ≤ n− 1), then the coefficients bk = 0 (2 ≤ k ≤ n− 1) . But
we can provide a counterexample to illuminate the above assertion is wrong. For
example, by choosing the functions f and g as

f(z) = z and g(z) = z − z2

2
,

clearly, we see that g ∈ S∗ and f ∈ T (1/2, 1/2). It is worthy to note that for these
functions a2 = 0 but b2 = −1/2 6= 0 (see Figure 1).

Remark 1.5. If we set λ = δ = 0 and γ = τ = 1, then the class SCγ,τΣ (λ, α; δ, β)
reduces to the class CΣ(α, β) of Libera type bi-close-to-convex functions defined in
Definition 1.1.

2. Preliminary Lemmas

Let the class P be defined by

P = {p ∈ H : p(0) = 1 and < (p(z)) > 0 (z ∈ U)} .
Assume that

(5) p (z) = 1 + c1z + c2z
2 + c3z

3 + · · · (z ∈ U) .
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Figure 1.

Lemma 2.1. (Carathéodory Lemma [19]) Let p ∈ P given by (5) . Then

|cn| ≤ 2 (n ∈ N) .

Lemma 2.2. [10] If p ∈ P given by (5) and µ ∈ C, then∣∣c2 − µc2
1

∣∣ ≤ 2 max {1, |2µ− 1|} .

Lemma 2.3. [1] If g ∈ SC (τ, δ, β) (0 ≤ β < 1, 0 ≤ δ ≤ 1, τ ∈ C∗) with g(z) =
z +

∑∞
n=2 bnz

n, then

|bn| ≤

n−2∏
j=0

[j + 2 |τ | (1− β)]

(n− 1)! [1 + δ (n− 1)]
(n ∈ N∗ := N\ {1} = {2, 3, . . .}) .

Lemma 2.4. If g ∈ SC (τ, δ, β) (0 ≤ β < 1, 0 ≤ δ ≤ 1, τ ∈ C∗) with g(z) = z +∑∞
n=2 bnz

n, then for µ ∈ C∣∣b3 − µb2
2

∣∣ ≤ |τ | (1− β)

1 + 2δ
max

{
1,

∣∣∣∣1 + 2τ (1− β)

(
1− 2 (1 + 2δ)

(1 + δ)2 µ

)∣∣∣∣} .
Proof. Let 0 ≤ β < 1, 0 ≤ δ ≤ 1 and τ ∈ C∗. If g ∈ SC (τ, δ, β), then we have

<
(

1 +
1

τ

(
zG′δ(z)

Gδ(z)
− 1

))
> β (z ∈ U) ,

where
Gδ(z) = (1− δ) g(z) + δzg′(z).

Then there exist a positive real part function h(z) = 1 +
∑∞

n=1 hnz
n ∈ P in U such

that

(6) 1 +
1

τ

(
zG′δ(z)

Gδ(z)
− 1

)
= β + (1− β)h(z) = 1 + (1− β)

∞∑
n=1

hnz
n.

From (6) , we have

(7) b2 =
τ (1− β)

1 + δ
h1,

(8) b3 =
τ (1− β)

2 (1 + 2δ)

[
h2 + τ (1− β)h2

1

]
.
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Taking into account (7) and (8) , we obtain

(9) b3 − µb2
2 =

τ (1− β)

2 (1 + 2δ)

(
h2 − νh2

1

)
,

where

ν = −τ (1− β)

(
1− 2 (1 + 2δ)

(1 + δ)2 µ

)
.

Our result now follows by an application of Lemma 2.2. This completes the proof of
Lemma 2.4.

3. Main Results

Theorem 3.1. For 0 ≤ α, β < 1, 0 ≤ λ, δ ≤ 1 and γ, τ ∈ C∗, let f ∈ SCγ,τΣ (λ, α; δ, β).
If ak = 0 (2 ≤ k ≤ n− 1), then for n ≥ 3,

|an| ≤

n−2∏
j=0

[j + 2 |τ | (1− β)]

n! [1 + δ (n− 1)]
+

2 |γ| (1− α)

n [1 + (n− 1)λ]

+
1

n [1 + (n− 1)λ]

n−2∑
l=1

[1 + (n− l − 1)λ]
n−l−2∏
j=0

[j + 2 |τ | (1− β)]

(n− l − 1)! [1 + δ (n− l − 1)]
Ωλ
l .

where
(10)
Ωλ
l = min

{∣∣K−1
l ((1 + λ) b2, . . . , (1 + lλ) bl+1)

∣∣ , ∣∣K−1
l ((1 + λ)B2, . . . , (1 + lλ)Bl+1)

∣∣} .
Proof. For 0 ≤ α, β < 1, 0 ≤ λ, δ ≤ 1 and γ, τ ∈ C∗, let the function f given

by (1) satisfies the hypothesis of the theorem, that is, let f belongs to the class
SCγ,τΣ (λ, α; δ, β) . Then there exist the functions

(11) g(z) = z+
∞∑
n=2

bnz
n ∈ SC (τ, δ, β) and G (w) = w+

∞∑
n=2

Bnw
n ∈ SC (τ, δ, β) ,

such that (3) and (4) hold. The Faber polynomial expansion for

1 +
1

γ

(
z [(1− λ) f(z) + λzf ′(z)]′

(1− λ) g(z) + λzg′(z)
− 1

)
and

1 +
1

γ

(
w [(1− λ)F (w) + λwF ′(w)]′

(1− λ)G(w) + λwG′(w)
− 1

)
are obtained by

1 +
1

γ

(
z [(1− λ) f(z) + λzf ′(z)]′

(1− λ) g(z) + λzg′(z)
− 1

)
= 1 +

∞∑
n=2

{
1 + (n− 1)λ

γ
(nan − bn)

(12)

+
n−2∑
l=1

1 + (n− l − 1)λ

γ
K−1
l ((1 + λ) b2, . . . , (1 + lλ) bl+1) [(n− l) an−l − bn−l]

}
zn−1
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and

1 +
1

γ

(
w [(1− λ)F (w) + λwF ′(w)]′

(1− λ)G(w) + λwG′(w)
− 1

)
= 1 +

∞∑
n=2

{
1 + (n− 1)λ

γ
(nAn −Bn)

(13)

+
n−2∑
l=1

1 + (n− l − 1)λ

γ
K−1
l ((1 + λ)B2, . . . , (1 + lλ)Bl+1) [(n− l)An−l −Bn−l]

}
wn−1,

respectively. On the other hand by (3) and (4), we see that there exist two positive
real part functions

p(z) = 1 +
∞∑
n=1

cnz
n ∈ P and q(w) = 1 +

∞∑
n=1

dnw
n ∈ P

in U such that

1 +
1

γ

(
z [(1− λ) f(z) + λzf ′(z)]′

(1− λ) g(z) + λzg′(z)
− 1

)
= α + (1− α) p (z)

= 1 + (1− α)
∞∑
n=1

cnz
n,(14)

and

1 +
1

γ

(
w [(1− λ)F (w) + λwF ′(w)]′

(1− λ)G(w) + λwG′(w)
− 1

)
= α + (1− α) q (w)

= 1 + (1− α)
∞∑
n=1

dnw
n.(15)

We note that

(16) |cn| ≤ 2 and |dn| ≤ 2 (n ∈ N)

by Lemma 2.1. Comparing the corresponding coefficients of (12) and (14), for any
n ≥ 2, yields

1 + (n− 1)λ

γ
(nan − bn)

+
n−2∑
l=1

1 + (n− l − 1)λ

γ
K−1
l ((1 + λ) b2, . . . , (1 + lλ) bl+1) [(n− l) an−l − bn−l]

= (1− α) cn−1.

(17)

Similarly, it follows from (13) and (15) that

1 + (n− 1)λ

γ
(nAn −Bn)

+
n−2∑
l=1

1 + (n− l − 1)λ

γ
K−1
l ((1 + λ)B2, . . . , (1 + lλ)Bl+1) [(n− l)An−l −Bn−l]

= (1− α) dn−1.

(18)
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By the hypothesis ak = 0 (2 ≤ k ≤ n− 1) , we find from (17) and (18) that

1 + (n− 1)λ

γ
(nan − bn)

−
n−2∑
l=1

1 + (n− l − 1)λ

γ
bn−lK

−1
l ((1 + λ) b2, . . . , (1 + lλ) bl+1)

= (1− α) cn−1,(19)

and

1 + (n− 1)λ

γ
(nAn −Bn)

−
n−2∑
l=1

1 + (n− l − 1)λ

γ
Bn−lK

−1
l ((1 + λ)B2, . . . , (1 + lλ)Bl+1)

= (1− α) dn−1,(20)

respectively. Also the equality ak = 0 (2 ≤ k ≤ n− 1) implies that An = −an. Thus
(19) and (20) gives

n [1 + (n− 1)λ]

γ
an =

1 + (n− 1)λ

γ
bn + (1− α) cn−1

+
n−2∑
l=1

1 + (n− l − 1)λ

γ
bn−lK

−1
l ((1 + λ) b2, . . . , (1 + lλ) bl+1)(21)

and

−n [1 + (n− 1)λ]

γ
an =

1 + (n− 1)λ

γ
Bn + (1− α) dn−1

+
n−2∑
l=1

1 + (n− l − 1)λ

γ
Bn−lK

−1
l ((1 + λ)B2, . . . , (1 + lλ)Bl+1) ,(22)

respectively.
On the other hand, by the hypothesis (11), since g,G ∈ SC (τ, δ, β) we obtain the

coefficient inequalities

|bn| ≤

n−2∏
j=0

[j + 2 |τ | (1− β)]

(n− 1)! [1 + δ (n− 1)]
and |Bn| ≤

n−2∏
j=0

[j + 2 |τ | (1− β)]

(n− 1)! [1 + δ (n− 1)]

from Lemma 2.3. Considering the above coefficient bounds and the inequalities in
(16) , from (21) and (22) we get

n [1 + (n− 1)λ]

|γ|
|an|

≤ 1 + (n− 1)λ

|γ|
|bn|+ (1− α) |cn−1|

+
n−2∑
l=1

1 + (n− l − 1)λ

|γ|
|bn−l|

∣∣K−1
l ((1 + λ) b2, . . . , (1 + lλ) bl+1)

∣∣
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≤
[1 + (n− 1)λ]

n−2∏
j=0

[j + 2 |τ | (1− β)]

|γ| (n− 1)! [1 + δ (n− 1)]
+ 2 (1− α)

(23)

+
n−2∑
l=1

[1 + (n− l − 1)λ]
n−l−2∏
j=0

[j + 2 |τ | (1− β)]

|γ| (n− l − 1)! [1 + δ (n− l − 1)]

∣∣K−1
l ((1 + λ) b2, . . . , (1 + lλ) bl+1)

∣∣
and

n [1 + (n− 1)λ]

|γ|
|an|

≤ 1 + (n− 1)λ

|γ|
|Bn|+ (1− α) |dn−1|

+
n−2∑
l=1

1 + (n− l − 1)λ

|γ|
|Bn−l|

∣∣K−1
l ((1 + λ)B2, . . . , (1 + lλ)Bl+1)

∣∣

≤
[1 + (n− 1)λ]

n−2∏
j=0

[j + 2 |τ | (1− β)]

|γ| (n− 1)! [1 + δ (n− 1)]
+ 2 (1− α)

(24)

+
n−2∑
l=1

[1 + (n− l − 1)λ]
n−l−2∏
j=0

[j + 2 |τ | (1− β)]

|γ| (n− l − 1)! [1 + δ (n− l − 1)]

∣∣K−1
l ((1 + λ)B2, . . . , (1 + lλ)Bl+1)

∣∣ ,
respectively. Consequently, by comparing (23) and (24), we get the coefficient bounds
for |an| as asserted in Theorem 3.1.

By setting δ = 0, β = 0 and γ = τ = 1 in Theorem 3.1, we get the following result.

Corollary 3.2. For 0 ≤ α < 1 and 0 ≤ λ ≤ 1, let f ∈ TΣ(λ, α). If ak =
0 (2 ≤ k ≤ n− 1), then for n ≥ 3,

|an| ≤ 1 +
2 (1− α)

n [1 + (n− 1)λ]

+
1

n [1 + (n− 1)λ]

n−2∑
l=1

[1 + (n− l − 1)λ] (n− l) Ωλ
l .

where Ωλ
l is defined by (10) .

By setting λ = δ = 0 and γ = τ = 1 in Theorem 3.1, we have the following
consequence.
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Corollary 3.3. [8] For 0 ≤ α, β < 1, let f ∈ CΣ(α, β). If ak = 0 (2 ≤ k ≤ n− 1),
then for n ≥ 3,

|an| ≤

n−2∏
j=0

[j + 2 (1− β)]

n!
+

2 (1− α)

n

+
1

n

n−2∑
l=1

n−l−2∏
j=0

[j + 2 (1− β)]

(n− l − 1)!
min

{∣∣K−1
l (b2, . . . , bl+1)

∣∣ , ∣∣K−1
l (B2, . . . , Bl+1)

∣∣} .
By setting β = 0, λ = δ = 0 and γ = τ = 1 in Theorem 3.1, we get the following

result.

Corollary 3.4. [26] For 0 ≤ α < 1, let f ∈ CΣ(α). If ak = 0 (2 ≤ k ≤ n− 1),
then for n ≥ 3,

|an| ≤ 1+
2 (1− α)

n
+

1

n

n−2∑
l=1

(n− l) min
{∣∣K−1

l (b2, . . . , bl+1)
∣∣ , ∣∣K−1

l (B2, . . . , Bl+1)
∣∣} .

By setting bk = Bk = 0 (2 ≤ k ≤ n− 1) in Theorem 3.1, we get the following
result.

Corollary 3.5. For 0 ≤ α, β < 1, 0 ≤ λ, δ ≤ 1 and γ, τ ∈ C∗, let f ∈
SCγ,τΣ (λ, α; δ, β). If ak = bk = Bk = 0 (2 ≤ k ≤ n− 1), then for n ≥ 3,

|an| ≤

n−2∏
j=0

[j + 2 |τ | (1− β)]

n! [1 + δ (n− 1)]
+

2 |γ| (1− α)

n [1 + (n− 1)λ]
.

By setting bk = Bk = 0 (2 ≤ k ≤ n− 1) , β = 0, δ = 0 and γ = τ = 1 in
Theorem 3.1, we get the following result. It corrects the errors of [21, Theorem
2.1]. More precisely, Theorem 2.1 in [21] holds only with the additional condition
bk = Bk = 0 (2 ≤ k ≤ n− 1) .

Corollary 3.6. (Correction of [21, Theorem 2.1] ) For 0 ≤ α < 1 and 0 ≤ λ ≤ 1,
let f ∈ TΣ(λ, α). If ak = bk = Bk = 0 (2 ≤ k ≤ n− 1), then for n ≥ 3,

|an| ≤ 1 +
2 (1− α)

n [1 + (n− 1)λ]
.

Corollary 3.7. For 0 ≤ α, β < 1, 0 ≤ λ, δ ≤ 1 and γ, τ ∈ C∗, let f ∈
SCγ,τΣ (λ, α; δ, β). Also suppose that

(25) G(w) = g−1(w) = w − b2w
2 +

(
2b2

2 − b3

)
w3 −

(
5b3

2 − 5b2b3 + b4

)
w4 + · · · .

If ak = bk = 0 (2 ≤ k ≤ n− 1), then for n ≥ 3,

|an| ≤

n−2∏
j=0

[j + 2 |τ | (1− β)]

n! [1 + δ (n− 1)]
+

2 |γ| (1− α)

n [1 + (n− 1)λ]
.

As a special case to Theorem 3.1, we determine the initial coefficient bounds of
functions belonging to the class SCγ,τΣ (λ, α; δ, β) of bi-close-to-convex functions of
order α and type β.
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Theorem 3.8. For 0 ≤ α, β < 1, 0 ≤ λ, δ ≤ 1 and γ, τ ∈ C∗, let the function f
given by (1) be in the function class SCγ,τΣ (λ, α; δ, β) and suppose that the function
G be defined by (25). Then one has the following

|a2| ≤ min

{
|γ| (1− α)

1 + λ
+
|τ | (1− β)

1 + δ
,√

4 |τ | (1− β)

3 (1 + δ)

(
|γ| (1 + λ) (1− α)

1 + 2λ
+
|τ | (1− β)

1 + δ

)
+

2 |γ| (1− α)

3 (1 + 2λ)

}
(26)

and

|a3| ≤ min

{
|γ| (1− α)

3 (1 + 2λ)
[1 + max {1, |µ|}] +

|τ | (1− β)

3 (1 + 2δ)
max {1, |ρ|}

+
2 |γ| (1− α) |τ | (1− β)

(1 + λ) (1 + δ)
,

(27)
2 |γ| (1− α)

3 (1 + 2λ)
+

4 |γ| (1 + λ) (1− α) |τ | (1− β)

3 (1 + 2λ) (1 + δ)
+
|τ | (1− β) [1 + 2 |τ | (1− β)]

3 (1 + 2δ)

}
,

where

µ = 1 +
3 (1 + 2λ)

(1 + λ)2 γ (1− α) , ρ = 1 +
1 + 2δ + 2δ2

(1 + δ)2 τ (1− β) .

Proof. If we set n = 2 and n = 3 in (17) and (18), respectively, we get

(28) 2a2 =
γ (1− α)

1 + λ
c1 + b2

(29) 3a3 =
γ (1− α)

1 + 2λ
c2 +

γ (1 + λ) (1− α)

1 + 2λ
c1b2 + b3

(30) − 2a2 =
γ (1− α)

1 + λ
d1 − b2

(31) 6a2
2 − 3a3 =

γ (1− α)

1 + 2λ
d2 −

γ (1 + λ) (1− α)

1 + 2λ
d1b2 + 2b2

2 − b3.

From (28) and (30), we find

(32) c1 = −d1

and

(33) a2 =
γ (1− α)

2 (1 + λ)
c1 +

1

2
b2.

On the other hand, from (29) and (31), we obtain

(34) a2
2 =

γ (1− α)

6 (1 + 2λ)
(c2 + d2) +

γ (1 + λ) (1− α)

3 (1 + 2λ)
c1b2 +

1

3
b2

2.

Therefore by applying triangle inequality to (33) and (34) , using (16) and the fact
that

(35) |b2| ≤
2 |τ | (1− β)

1 + δ
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obtained from Lemma 2.3 for n = 2, we get the desired estimate on the coefficient
bound for |a2| as asserted in (26).

Next, in order to find the bound for |a3|, we subtract (31) from (29). We thus get

6a3 − 6a2
2 =

γ (1− α)

1 + 2λ
(c2 − d2) +

γ (1 + λ) (1− α)

1 + 2λ
b2 (c1 + d1)− 2b2

2 + 2b3.

By (32) , we obtain

(36) a3 = a2
2 +

γ (1− α)

6 (1 + 2λ)
(c2 − d2) +

b3 − b2
2

3
.

If we set the value of a2
2 from (33) in (36) , then we have

a3 =
γ2 (1− α)2

4 (1 + λ)2 c
2
1 +

1

4
b2

2 +
γ (1− α)

2 (1 + λ)
c1b2

+
γ (1− α)

6 (1 + 2λ)
c2 −

γ (1− α)

6 (1 + 2λ)
d2 +

1

3
b3 −

1

3
b2

2

=
γ (1− α)

6 (1 + 2λ)

(
c2 +

3γ (1 + 2λ) (1− α)

2 (1 + λ)2 c2
1

)
+

1

3

(
b3 −

1

4
b2

2

)
+
γ (1− α)

2 (1 + λ)
c1b2 −

γ (1− α)

6 (1 + 2λ)
d2.

So using Lemma 2.2, Lemma 2.4, (16) and (35) , we get

|a3| ≤
|γ| (1− α)

3 (1 + 2λ)
[1 + max {1, |µ|}] +

|τ | (1− β)

3 (1 + 2δ)
max {1, |ρ|}

+
2 |γ| (1− α) |τ | (1− β)

(1 + λ) (1 + δ)
,(37)

where

µ = 1 +
3 (1 + 2λ)

(1 + λ)2 γ (1− α) , ρ = 1 +
1 + 2δ + 2δ2

(1 + δ)2 τ (1− β) .

If we set the value of a2
2 from (34) in (36) , then we have

a3 =
γ (1− α)

3 (1 + 2λ)
c2 +

γ (1 + λ) (1− α)

3 (1 + 2λ)
c1b2 +

1

3
b3.

So using (16) , (35) and the fact that

|b3| ≤
|τ | (1− β) [1 + 2 |τ | (1− β)]

1 + 2δ

obtained from Lemma 2.3 for n = 3, we obtain
(38)

|a3| ≤
2 |γ| (1− α)

3 (1 + 2λ)
+

4 |γ| (1 + λ) (1− α) |τ | (1− β)

3 (1 + 2λ) (1 + δ)
+
|τ | (1− β) [1 + 2 |τ | (1− β)]

3 (1 + 2δ)
.

Hence (37) and (38) give the desired estimate on the coefficient |a3| as asserted in
(27).

By setting δ = 0, β = 0 and γ = τ = 1 in Theorem 3.8, we get the following result.
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Corollary 3.9. For 0 ≤ α < 1 and 0 ≤ λ ≤ 1, let the function f given by (1)
be in the function class TΣ (λ, α) and suppose that the function G be defined by (25).
Then one has the following

|a2| ≤ min

{
2− α + λ

1 + λ
,

√
2 (1− α) (3 + 2λ)

3 (1 + 2λ)
+

4

3

}
and

|a3| ≤ min

{
2 (2− α + 2λ)

3 (1 + 2λ)
+

(1− α) (3− α + 2λ)

(1 + λ)2 ,
2 (1− α) (3 + 2λ)

3 (1 + 2λ)
+ 1

}
.

By setting λ = δ = 0 and γ = τ = 1 in Theorem 3.8, we get the following result.

Corollary 3.10. [8] For 0 ≤ α, β < 1, let the function f given by (1) be in the
function class CΣ(α, β) and suppose that the function G be defined by (25). Then one
has the following

|a2| ≤ min

{
(2− α− β) ,

√
4 (1− β) (2− α− β) + 2 (1− α)

3

}
and

|a3| ≤
1

3

 (3− 2β) (3− 2α− β) , 0 ≤ α ≤ 2+β
3

(1− α) (5− 3α) + (1− β) (2− β) + 6 (1− α) (1− β) , 2+β
3
≤ α < 1

.
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