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COEFFICIENT ESTIMATES FOR GENERALIZED LIBERA TYPE
BI-CLOSE-TO-CONVEX FUNCTIONS

SERAP BULUT

ABSTRACT. In a recent paper, Sakar and Giiney introduced a new class of bi-close-
to-convex functions and determined the estimates for the general Taylor-Maclaurin
coefficients of functions therein. The main purpose of this note is to give a general-
ization of this class. Also we point out the proof by Sakar and Giiney is incorrect
and present a correct proof.

1. Introduction

Assume that H is the class of analytic functions in the open unit disc
U={zeC:|z| <1}.

Let A denote the subclass of H consisting of functions f normalized by
f(0) = f(0) = 1=0.

Each function f € A can be expressed as
(1) f(2) :z+2anz" (z€U).
n=2

We also denote by S the subclass of A whose members are univalent in U.
A function f € A is said to be starlike of order 5 (0 < g < 1) if it satisfies the

inequality
2f'(2)
%(f(z))>6 (z€U).
We denote the class which consists of all functions f € A that are starlike of order 3
by §*(B). It is well-known that S*(f) C $*(0) =S* C S.
A function f € A is said to be close-to-convex of order o (0 < o < 1) if there exists
a function g € §* such that the inequality

R (Z;C(i;)) >a (z€U)
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holds. We denote the class which consists of all functions f € A that are close-to-
convex of order a by C(«). It is well-known that S*(a) C C(a) C S (see [10]).

Let 0 < a, 8 < 1. A function f € A is said to be close-to-convex of order o and
type B if there exists a function g € §* (/) such that the inequality

R (ié?) >a (2€U)

holds. We denote the class which consists of all functions f € A that are close-to-
convex of order o and type 8 by C(«, 5). This class is introduced by Libera [18].

In particular, when § = 0 we have C(«a,0) = C(«) of close-to-convex functions
of order «, and also we get C(0,0) = C of close-to-convex functions introduced by
Kaplan [17].

Let 0 <a<1,veC"=C\{0},0<A<1. A function f € A is said to be in the
class SC(, A, «) if it satisfies the condition

L (2[(1=N) f(2) + A2 f'(2))
(3 e Y) 2 Gew

This class is introduced by Altintag et al. [1]. Clearly, we have the following relation-

ships: SC(1,0,a) = S*(a) and SC(1,0,0) = S*.

Since univalent functions are one-to-one, they are invertible and the inverse func-
tions need not be defined on the entire unit disk U. Indeed, the Koebe one-quarter
theorem [10] ensures that the image of U under every univalent function f contains a
disk with radius 1/4. Thus, every function f € A has an inverse f~!, which is defined
by

[ fR)=2 (2€0)

and
Pty =u (lol <n(i =)
The inverse function F' = f~! is given by
F(w)= [ (w)

=w — aw? + (2(15 —a3) w3 — (5a§ — dasas +a4) wh -

=w+ i A, w".
n=2

A function f € A is said to be bi-univalent in U if both f and f~! are univalent
in U. Let ¥ denote the class of bi-univalent functions in U given by (1). For a brief
history and interesting examples of functions in the class , see [4,24].

The Faber polynomials introduced by Faber [11] play an important role in various
areas of mathematical sciences, especially in geometric function theory. The recent
publications like [5,6,14-16,27] applying the Faber polynomial expansions to analytic
bi-univalent functions motivated us to apply this technique to classes of analytic bi-
univalent functions.

Making use of the Faber polynomial expansion of function f € A with the form
(1), the coefficients of its inverse map F' = f~! may be expressed as follows (see [2,3]):

(2)

— 1
Fw)=f1'w) =w+ Z EKJEI (as,as, ..., a,)w".
n=2
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In general, for any p € Z := {0, +1,£2,...}, an expansion of K?_, is given by (see [2])

pr—1) P! 3
KP | =pa,+——"D; |+ ———=D, | +--
n—1 p 2 n—1 (p . 3)| 3| n—1
p' n—1
+ ~1
(p—n+1! (n—1)0 """
where DY | = DP | (ag,as,...,a,). In view of [25], we see that
m/! - -
D" (ag,...,an) =Y ————al .. .al"!
() =3 G
and the sum is taken over all non-negative integers 71, ..., j,_1 satisfying

Jitigt+ -+ Jpo1 =m,

It is clear that D"~ (ag, ..., a,) = a5~ ".
In particular, the first three terms of K", are

K% =—2ay, K;®=3(2a3—a3), K;i'=—4(5a)— 5asasz+ as).

Hamidi and Jahangiri [13] introduced the class of bi-close-to-convex functions of
order a as follows: For a (0 < o < 1), a function f € A is said to be bi-close-
to-convex of order « if both f and its inverse map F = f~! are close-to-convex of
order v in U. We denote the class which consists of all functions f € X that are bi-
close-to-convex of order o by Cx(«). In particular, we set Cx(0) = Cx, for the class of
bi-close-to-convex functions. For recent works on bi-close-to-convex functions, please
see [7-9,12,13,21-23, 26].

In a very recent paper, the author introduced Libera type bi-close-to-convex func-
tions as follows.

DEFINITION 1.1. [8] Let 0 < o, 8 < 1. A function f € ¥ given by (1) is said to be
in the class Cx(«, 8) of bi-close-to-convex functions of order « and type 3 (or Libera
type bi-close-to-conver functions) if there exists the functions g, G € S* () such that

Zf/(z)) (wp (w))
R > and Rl ————| >« z,w e U),
(5 Gw Feet)
where the function F' = f~! is defined by (2).

In particular, we get the class Cx (o, 0) = Cx(«) of bi-close-to-convex functions of
order a.

REMARK 1.2. We note that when 5 = a, g = f and G = F, the class Cs(a, 3) re-
duces to the class S5 («) of bi-starlike functions of order o (0 < o < 1) which consists
of functions f € X satisfying

R (Z}’f;,(zj)) >a and R (2{1};?) >a  (z,wel),
where the function F' = f~1 is defined by (2).

Now, we introduce a new generalization of Libera type bi-close-to-convex functions
of complex order as follows.
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DEFINITION 1.3. Let 0 < o, < 1,0 < A\, 0 <1 and 7,7 € C*. A function f € X
given by (1) is said to be in the class SC&™ (A, a5 9, B) if there exists the functions
g,G € SC (1,6, 5) such that

L2l N) f() + A=) o« (2
o 2 e ) ey

and

1 (w1 =\ F(w)+ MwF'(w)]
W w1 (e ey 1) e e,

where the function F' = f~! is defined by (2).

REMARK 1.4. If we set  =0,0 = 0 and v = 7 = 1 in Definition 1.3, then the
class SC3™ (A, a; 6, B) reduces to the class Tx(A, &) which consists of functions f € ¥

satisfying
NETERTLEIY
(1 =) g(z) + Azg'(2)

g (@ (1= \) F(w) + AwF'(w)]
( (1-X)G(w) + AwG'(w)
where g, G € 8* and the function F' = f~! is defined by (2). This class is introduced
by Sakar and Giiney [21]. The authors investigated the coefficient bounds for a,, of
functions belong to the class T (A, ). They proved their main result by making use
of the assertion: if an analytic function f of the form (1) is in the class 7 (A, «), that
is, if it satisfies the condition

g (Fl=NFE@ PO
(1=X)g(2) + rzg'(2)

and if @y = 0 (2 <k <n—1), then the coefficients by = 0 (2<k<n-—1). But

we can provide a counterexample to illuminate the above assertion is wrong. For

example, by choosing the functions f and g as

>>a (z € U)

and

>>a (wel),

g(z)zz—i—anz”ES* (z € U),

n=2

Z2

fe) == and g(z)=2-2.

clearly, we see that ¢ € S* and f € T (1/2,1/2). It is worthy to note that for these
functions as = 0 but by = —1/2 # 0 (see Figure 1).

REMARK 1.5. If we set A = § = 0 and 7 = 7 = 1, then the class SCX™ (A, «; 6, 8)
reduces to the class Cx(«, 5) of Libera type bi-close-to-convex functions defined in
Definition 1.1.

2. Preliminary Lemmas

Let the class P be defined by
P={peHH:p0)=1 and R(p(z)) >0 (2 € U)}.
Assume that

(5) p(z)=1+4ciz+cz’ +c32°+ - (2 €U).



A note on the coefficient estimates 633

FIGURE 1.

LEMMA 2.1. (Carathéodory Lemma [19]) Let p € P given by (5). Then
len| <2 (n e N).
LEMMA 2.2. [10] If p € P given by (5) and p € C, then
|c2 — pei| < 2max {1, |2p — 1]}

LEMMA 2.3. [1] If g € SC(7,0,8) (0<p <1, 0<d<1, 7€ C*) with g(z) =
z4+> 7, b,2", then
n—2

[T +27 (=75

(TJL:— D [1+6(n—1)

LEMMA 2.4. Ifg c SC(T,(S,ﬂ) (0§ﬂ< 1, 0<6< 1, TGC*) with g(z) —
ZZOZQ b,z", then for p € C

|bs — pb3| < Ml(i—;(f)max{L ’1+2T(1—5) (1—%0‘}.

Proof. Let 0 < <1, 0<d<1land 7€ C* If g € SC(r,9,[), then we have
1 (2G5(2)
14— US|
(14 (g -1)se eew

Gs(2) = (1 —0) g(z) + 624 (2).
Then there exist a positive real part function h(z) =1+ > 2 h,2" € P in U such
that

(6) 1+1(ZG3(Z)—1) :B+(1—5)h(z):1+(1—6)§:hnz”.

|bn| <

(ne N*:=N\ {1} ={2,3,...}).

where

7\ Gs(2)

From (6), we have

T(1-5)
(7) b2 = 1—‘i‘5h17
(8) P Ul ) N S RISE
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Taking into account (7) and (8), we obtain

1-p)
by — bt = T =B e
(9) 3 — M0y 2<1+25)(2 Vl)a
where
2(1+20
v=—r-p) (1- 2022
(1+96)
Our result now follows by an application of Lemma 2.2. This completes the proof of
Lemma 2.4. [

3. Main Results

THEOREM 3.1. For0 < o, < 1,0 < \,0 < land~,7 € C* let f € SCL™ (N, 59, B).
Ifap =0 (2 <k <n-—1), then for n > 3,

nl:[z[j+2|7'|(1_ﬁ)] 21y (1 — «)
lan| < J_n! [140(n—1)] +n[11(”_1w

n—I[(—2

L+ (—=l=1AN II [+2[r[(1-75)

1 — §=0
it m=1N (I [1+0(n—1—1)

[\

Q.

=1

where

(10)

Q) =min {|K7 (L4 X) ba, ..., (L4 1N biga)| o |[K7 (L4 A) Ba, .., (1410) Biya) |}
Proof. For 0 < a,08 < 1,0 < A6 <1 and v, 7 € C*, let the function f given

by (1) satisfies the hypothesis of the theorem, that is, let f belongs to the class
SCLT (N, «;0, 8) . Then there exist the functions

(11) g(2) =z + ibnz" € SC(r,6,8) and G(w)=w —i—ian" € SC(1,9,5),

n=2 n=2
such that (3) and (4) hold. The Faber polynomial expansion for

Ll <z (1= N f(2) + Aef'(2)] 1)

T\ (=X g(2) + A2g'(2)

and

1 (w[(1—\)F(w)+  MwF' (w))
by ( 1-NGw) G (w) 1)
are obtained by

L/ z[(1 =X f(2) + Azf'(2)] B 1+ (n—1)A
L (e ) = D )

n=2

(12)

+ ZZ_: 1+ (n —71 T e (1 A by (L4 D) ba) (0 — Dy — bnl]} o
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1 (w[1— N F@) + wF )]\ S [1+(n—1)A
”‘( (1= N Glw) + G w) ‘1)‘”2{#“%‘"‘3")

n—2
I+(n—1—1DX\ .
+) (”V )K,1((1+A)Bz,...,(1+zA)B,H>[(n—zmnZ—Bnl]}w L
=1

respectively. On the other hand by (3) and (4), we see that there exist two positive
real part functions

plz) =1+ 2" €P and qw)=1+Y du"€P

n=1 n=1

in U such that

1 (2[(1=X) f(z) + Azf'(2)] B
L (oY) = et i)
(14) = 1+(1-0q Z cn2",
and .
1 (w[(1—A)F(w)+ MwF'(w)]
H;( (1= ) Glw) + MG (w) _1) a+{d-a)q(w)

(15) — 1+(1-a) idnw".

We note that
(16) len| <2 and |d,,| <2 (n € N)

by Lemma 2.1. Comparing the corresponding coefficients of (12) and (14), for any
n > 2, yields

(17)
1 —1)A
1+(n-1)A (nay — by)
v
n—2
1+n—=1-1)X
+Z ( ~ ) K, 1((1+>\) by, - (L4 IA) bigr) [(n = 1) @y — byi]
=1
=(1—a)cp
Similarly, it follows from (13) and (15) that
(18)
1—|—(n—1))\<nAn_Bn)
Y

+ni 1+(”—75‘ DA Rt (14 3) By (14 10) Biay) [(n— 1) At — B
=1

=(1—a)d,_.
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By the hypothesis ay =0 (2 < k <n—1), we find from (17) and (18) that

1+(n—1))\(nan_bn)
7
n—2
1 —[—-1)A
-3 *(n I KT (1 A oy (14 D) i)
=1 v
(19) - (1 - Oé) Cn—1,
and
M (nA, — By)
Y
n—2
1 —{—=1)A
_Z +<n ~ ) Bn—l Kl_l ((1+>\) BQ,,(l‘f—l/\) Bl—i—l)
=1
20) = (-a)dus

respectively. Also the equality ay = 0 (2 < k <n — 1) implies that A,, = —a,. Thus
(19) and (20) gives

1 — 1) 1 — 1A
n[l+(n )]an: +(n—1) b+ (1—a)ers
Y Y
n—2
1+(n—=-I01—-1)X
(21) +> (n . ) by K7 (L4 A) bay oo (14 10) biyy)
=1
and
1 — 1A 1 — DA
nl+(n-1) ]an:LBn—i_(l_Q)dn—l
7 v
n—2
1+n—=I01—-1)X
(22) + (n 5 ) Bn—lel ((L+X)Bg,...,(1+1I)\) Biya),
=1
respectively.

On the other hand, by the hypothesis (11), since g,G € SC (7,6, 3) we obtain the
coefficient inequalities

Tl +21 (1 - ) Tl +21r (1 - )
Ib,| < 2= and  |B,| < 2

(;—n1u+5m—1ﬂ (n—D! [1+0(n—1)

from Lemma 2.3. Considering the above coefficient bounds and the inequalities in
(16), from (21) and (22) we get

nll (=D
v "
<Dy 1= a) ]

- 7]

I+ (n—1—1)A
+y U”ﬂ Il 1R (L A by (14 10 )|
=1
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[1+(n—1)A] jljz[j+2|7|(1—ﬁ)]
M= iesm=n 20"
(23)
oo 14+ (n—=101-=1)} nl;[g [+ 2|7 (1 = B)]
+l§_; W (m—l—DI [L+0(n—1-1) |K7 (1 + A) bay oy (14 1A) by
and
n[1+(n—1))\]|a|
il !
<M|B|+(1—C¥)|d_l|
a 7l ! "
Jilﬂnﬁ,l_lnwnl! [K (L4 2) Ba, o, (1410) Bipa))|
14 (n—1)A] nl;[z[j+2|7|<1_ﬁ)]
oD oy 209
(24)
n—Il—2
neo L+ (n—=101-1) A 1;[0 j+ 2|7 (1= B)]
+; T o sm oy VK () B (10 B

respectively. Consequently, by comparing (23) and (24), we get the coefficient bounds
for |a,| as asserted in Theorem 3.1. O

By setting 0 =0, 8 =0 and v =7 = 1 in Theorem 3.1, we get the following result.

COROLLARY 3.2. For 0 < a < land 0 < XA < 1, let f € Ts(\a). If ap =
0 (2<k<n-—1), then forn > 3,

2(1 -«
< M T T
1 n—2

L+ (n—1-1)N (n—1)Q.

_I_
n(l+(n—1)A =
where )} is defined by (10).

By setting A = 0 = 0 and v = 7 = 1 in Theorem 3.1, we have the following
consequence.
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COROLLARY 3.3. [§] For0 < a,f < 1,let f € Cx(a,B). Ifap, =0 (2<k<n-—1),
then for n > 3,

n—2

+2(1—
] < By B)]+2<1_a)
1n2igb+2u—ﬁﬂ
+ﬁ - — 1! min{|Kl—1 (b27..-,bl+1)‘ ) |Kl_1 (B2a~-’Bl+1)‘}'

By setting 8 =0, A=4§d =0 and 7y =7 = 1 in Theorem 3.1, we get the following
result.

COROLLARY 3.4. [26] For 0 < av < 1, let f € Cx(a). Ifar, =0 (2<k<n-—-1),
then for n > 3,

2 1
la,| <14+ —— —I——
n

n—2
(n— D) min {|K; " (ba, ..., bis1)
=1
By setting by, = By = 0 (2<k <n—1) in Theorem 3.1, we get the following
result.

) |Kl_1 <B27 BRI Bl+1)|} .

COROLLARY 3.5. For 0 < o, < 1,0 < A\,0 < 1 and v,7 € C*, let f €
SCLT (N a;0,08). Ifap, =b, =B, =0 (2<k <n-—1), then for n > 3,
n—2
[T +27(1-p)
j=0 217[(1—qa)

la,| <

W +om—1] nl+m=DN

By setting by = B, = 0 2<k<n—-1), =0, =0andy =7 =11in
Theorem 3.1, we get the following result. It corrects the errors of [21, Theorem
2. 1] More precisely, Theorem 2.1 in [21] holds only with the additional condition

COROLLARY 3.6. (Correction of [21, Theorem 2.1]) For 0 < a <1 and 0 <\ <1,
let feTs(\a). Ifa,=b, =B, =0 (2<k<n-—1), then for n > 3,

2(1—a)
n[l+(n-1)A

COROLLARY 3.7. For 0 < a,8 < 1,0 < X\,0 < 1 and v,7 € C*, let f €
SCLT (N, 50, ). Also suppose that
(25)  G(w) =g " (w) =w — bow? + (203 — b3) w® — (565 — Bbobs + bs) w* +
Ifary =0, =0 (2<k<n-—1), then for n > 3,

n—2

Du+era-o

W +om—1] nll+mn=DN
As a special case to Theorem 3.1, we determine the initial coefficient bounds of

functions belonging to the class SCL™ (A, ; 0, 8) of bi-close-to-convex functions of
order o and type .

la,| <1+

la,| <
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THEOREM 3.8. For 0 < o, < 1,0 < \,0 <1 and v,7 € C*, let the function f
given by (1) be in the function class SCL™ (A, «; 0, ) and suppose that the function
G be defined by (25). Then one has the following

ol < un{ BL0=) 10 =5)

Alr|(1=08) (WA +MNA—a) [7[(A=F)Y 210 -)
(26) \/ 3(119) < T+2v 149 )+ 3(1 120 }
and

[ hl(=a) 71 (1-5)
jag| < mm{ ERESI) [1+max {1, [p[}] + mmax{la |pl}
L2 A =a)fr[( = f)
(1+X)(1+9) ’
(27)
2h[(1—a) 4R[00+ NA-a)|r|(1=p)  [7[A=F)[1+2]7|(1-p)] }
3(1+2\) 3(L+2\) (1+0) 3(1+ 20) ’
where
L 3@+2y o L25428%
pEIE Y(l—a), p—1+—(1+5)2 T(1-0).
Proof. If we set n =2 and n = 3 in (17) and (18), respectively, we get
(28) 2&2 = %Cl + b2
(30) — 2a5 = %dl — by
1-— 14+ M) (1 -
(31) 6a§—3a3:71(+2§)d2—7< JL);A ) by + 22 — by,
From (28) and (30), we find
(32) Cc1 = —dl
and
=) 1

(33) a9 = mcl + §b2
On the other hand, from (29) and (31), we obtain

2_7(1_04) TA+AN (1 -a) 12
(34) =Gy (TR Ty kgt

Therefore by applying triangle inequality to (33) and (34), using (16) and the fact
that
2|7 (1 = 5)

by| <
(3) o] < =
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obtained from Lemma 2.3 for n = 2, we get the desired estimate on the coefficient
bound for |as| as asserted in (26).

Next, in order to find the bound for |as|, we subtract (31) from (29). We thus get

() s 3N ()

6@3—6(132 1+2)\ —d2>+ 1+2>\ b2(01+d1)—2b§+2b3
By (32), we obtain
»  1(1—a) bz — b%
= — L (cy—d )
(36) as =+ g gy (2T R+ T

If we set the value of a3 from (33) in (36), then we have

72(1_04>2 s Lo v(1—a)

SR e Ayt B A S Y
“ IS R ST I Ve
7(1-a) 7(1—-a) 1 Lo
- dy + =bs — =b
e e T3 T3
v(1—a) (1420 (1—a) 4 1 1,
A/ A = by — b
6 (1+2)) <02+ 21+07 T3\
0-0)  4(-a)
2(L+XN) "2 6(142)) &
So using Lemma 2.2, Lemma 2.4, (16) and (35), we get
[ (1 =) 71 (1—-5)
< — =11 1 — 1
2 =) |r|(1 = B)
37 + ,
(37) (1+X)(1+9)
where
3(1+2)) 1+ 20 + 262
T (1 —a), 1+ —=" r1-8).
If we set the value of a3 from (34) in (36), then we have
_y-a) 71 +NA=-0) 1
AR YCIID Ve Sty bkt gh
So using (16), (35) and the fact that
T/ (1— 1+2|7(1—
|b3|§||( pY[1+2[r[(1 = P)]
1426
obtained from Lemma 2.3 for n = 3, we obtain
(38)
2y —a) AWA+NA-)[r[(1=F)  |7|(A=F)[1+2]r[(1—p)]
|az| <
3(1+2\) 3(1+2\) (1+0) 3(1+20)
Hence (37) and (38) give the desired estimate on the coefficient |as| as asserted in
(27). O

By setting 0 =0, =0 and v = 7 = 1 in Theorem 3.8, we get the following result.
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COROLLARY 3.9. For 0 < a < 1 and 0 < X\ < 1, let the function f given by (1)
be in the function class Tx. (), «) and suppose that the function G' be defined by (25).
Then one has the following

laz| < min

2 —a+ A \/2(1—@)(3+2/\) 4

1+ A 3(1+2X) 3
and
C(202-a+2) (1-a)B-a+2)) 2(1—a)(3+2))
|a3|§mm{ 3012y (1) C T 31+ 20 1}'

By setting A =60 = 0 and v = 7 = 1 in Theorem 3.8, we get the following result.

COROLLARY 3.10. [8] For 0 < «, 8 < 1, let the function f given by (1) be in the
function class Cs(«, 8) and suppose that the function G be defined by (25). Then one
has the following

41-0)2—-a—-0)+2(1 —«a)
3

lag] < minq (2 —a — ) ,\/

and
L[ B=28)3—2a—8) , e
|a3| < g

o
IA
Q
IN

—_

(1-a)(5-3a)+(1—-B)2-B)+6(1-a)(1-8) , 2 <a<
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