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CONDITIONAL INTEGRAL TRANSFORMS OF FUNCTIONALS

ON A FUNCTION SPACE OF TWO VARIABLES

Bong Jin Kim

Abstract. Let C(Q) denote Yeh-Wiener space, the space of all real-valued con-
tinuous functions x(s, t) on Q ≡ [0, S] × [0, T ] with x(s, 0) = x(0, t) = 0 for every
(s, t) ∈ Q. For each partition τ = τm,n = {(si, tj)|i = 1, . . . ,m, j = 1, . . . , n} of Q
with 0 = s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T , define a random
vector Xτ : C(Q)→ Rmn by

Xτ (x) = (x(s1, t1), . . . , x(sm, tn)).

In this paper we study the conditional integral transform and the conditional
convolution product for a class of cylinder type functionals defined on K(Q) with a
given conditioning function Xτ above, where K(Q)is the space of all complex valued
continuous functions of two variables on Q which satify x(s, 0) = x(0, t) = 0 for every
(s, t) ∈ Q. In particular we derive a useful equation which allows to calculate the
conditional integral transform of the conditional convolution product without ever
actually calculating convolution product or conditional convolution product.

1. Definitions and preliminaries

Let Q = [0, S]× [0, T ] and let C(Q) denote Yeh-Wiener space; that is, the space of
all real-valued continuous functions x(s, t) on Q with x(s, 0) = x(0, t) = 0 for every
(s, t) ∈ Q.

Yeh [12] defined a Gaussian measure my on C(Q) such that a stochastic process
{x(s, t) : (s, t) ∈ Q} has mean E[x(s, t)] =

∫
C(Q)

x(s, t)dmy(x) = 0 for eavery (s, t) ∈
Q and covariance E[x(s, t)x(u, v)] = min{s, u}min{t, v}.

This process is called the standard Yeh-Wiener (or two-time parameter Wiener)
process on Q.

Let M denote the class of all Yeh-Wiener measurable subsets of C(Q) and we
denote the Yeh-Wiener integral of a Yeh-Wiener integrable functional F by

(1) E[F ] = Ex[F (x)] =

∫
C(Q)

F (x) dmy(x).

Let K(Q) be the space of all complex valued continuous functions of two variables
x defined on Q which satisfy x(s, 0) = x(0, t) = 0 for all (s, t) ∈ Q and let α and β be
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nonzero complex numbers. In [5] Kim, Kim and Yoo studied the integral transforms
of functionals defined on K(Q). In [4] Kim, Kim and Skoug introduced the concept
of a conditional integral transform and conditional convolution product for a class of
functionals defined on K[0, T ], the space of complex-valued continuous functions on
[0, T ] which vanish at zero. In this paper, we define the conditional integral transform
Fα.β(F |X) and the conditional convolution product ((F ∗G)α|X) for the functionals
defined on K(Q) for a given conditioning function X defined on C(Q), and establish
the existence of the conditional integral transform and conditional convolution product
for a cylinder type functionals. Moreover we will show that the conditional integral
transform and conditional convolution product for the cylinder type functionals are
also a cylinder type functionals. Finally we drive some useful equations involving
the two concepts above. We finsh this section by setting the definitions of integral
transform Fα.β(F ) and the convolution product (F ∗ G)α for functionals defined on
K(Q) and for the nonzero complex numbers α and β.

Definition 1.1. Let F be a functional defined on K(Q). Then for each y ∈ K(Q),
we define the integral transform Fα.βF of F by

(2) Fα.β(F )(y) ≡ Fα.βF (y) = Ex[F (αx+ βy)]

if it exists [1, 4, 6, 8].

Definition 1.2. Let F and G be functionals defined on K(Q). Then for each
y ∈ K(Q), we define their convolution product (F ∗G)α by

(3) (F ∗G)α(y) = Ex

[
F
(y + αx√

2

)
G
(y − αx√

2

)]
if it exists [1, 4, 6, 8].

2. Conditional Yeh-Wiener integrals and conditional integral transforms

Let X : C(Q)→ Rk be a Yeh-Wiener measurable functional and let F : C(Q)→ C
be a Yeh-Wiener integrable functional. Then we have the conditional Yeh-Wiener

integral E[F |X](~ξ)of F given X from a well-known probability theory [7].
Let τ = τm,n = {(si, tj)|i = 1, . . . ,m, j = 1, . . . , n} be a partittion of Q with 0 =

s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T , and let Xτ : C(Q) → Rmn

be a random vector defined by

(1) Xτ (x) = (x(s1, t1), . . . , x(sm, tn)).

Define the quasi-polyhedric function [x] by

[x](s, t) =x(si−1, tj−1) + [(s− si−1)(t− tj−1)/((si − si−1)(tj − tj−1))]∆ijx(s, t)

+[(s− si−1)/(si − si−1)](x(si, tj−1)− x(si−1, tj−1))

+[(t− tj−1)/(tj − tj−1)](x(si−1, tj)− x(si−1, tj−1))

(2)

on each (s, t) ∈ Qij = (si−1, si] × (tj−1, tj], i = 1, 2, . . . ,m, j = 1, 2, . . . , n where
∆ijx(s, t) = x(si, tj)−x(si−1, tj)−x(si, tj−1) +x(si−1, tj−1) and [x](s, t) = 0 if st = 0.

Similarly, for ~ξ = (ξ1,1, . . . , ξm,n) ∈ Rmn, define the quasi-polyhedric function [~ξ] by

(2.2), x(si, tj) replaced by ξij and [~ξ](s, t) = 0 if st = 0.
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We note that both [x] and [~ξ] belong to C(Q) for each x ∈ C(Q) and each ~ξ in
Rmn.

Theorem 2.1. (Theorem 1 in [9]) If {x(s, t), (s, t) ∈ Q} is the standard Yeh-Wiener
process then the processes {x(s, t) − [x](s, t)|(s, t) ∈ Q} and Xτ (x) = (x(s1, t1), . . . ,
x(sm, tn)) are stochastically independent.

Remark 2.2. As a consequence of the Theorem 2.1 above, Park and Skoug [9]
showed that the two processes {x(s, t)− [x](s, t)|(s, t) ∈ Q} and {[x](s, t)|(s, t) ∈ Q}
are also independent.

In [9], Park and Skoug gave a simple formula for expressing conditional Yeh-Wiener
integrals in terms of ordinary Yeh-Wiener integrals; namely that for the conditioning
function Xτ given (2.1) above,

(3) E[F (x)|Xτ (x)](~ξ) = Ex[F (x− [x] + [~ξ])].

The equality (2.3) above means that both sides are Borel measurable function of
~ξ ∈ Rmn and they are equal except for Boerl null sets.

In this paper, we shall be concerned exclusively with Xτ (x) given by (2.1) for the
conditioning function.

Remark 2.3. Using simple formula (2.3), when m = n = 1, that is, Xτ (x) =
x(S, T ), we can get the following conditional Yeh-Wiener integral

E[F (x)|x(S, T )](ξ) =Ex[F (x(·, ∗)− ·∗
ST

x(S, T ) +
·∗
ST

ξ)]

=

∫
C(Q)

F
(
x(·, ∗)− ·∗

ST
x(S, T ) +

·∗
ST

ξ
)
dmy(x)

(4)

Definition 2.4. Let F and G be functionals defined on K(Q). Then we define

conditional integral transform Fα.β(F |Xτ )(y, ~ξ) of F and the conditional convolution

product ((F ∗G)α|Xτ )(y, ~ξ) of (F ∗G)α given Xτ , respectively, by formulas

(5) Fα.β(F |Xτ )(y, ~ξ) = Ex[F (αx+ βy)|Xτ (x)](~ξ)

and

(6) ((F ∗G)α|Xτ )(y, ~ξ) = Ex

[
F
(y + αx√

2

)
G
(y − αx√

2

)
|Xτ (x)

]
(~ξ)

if they exist [4, 11].

Remark 2.5. Let F and G be defined on K(Q). Then using the simple formrla
(2.3), we can get the expressions of the conditional integral transform Fα.β(F |Xτ ) of
F and the conditional convolution product ((F ∗ G)α|Xτ ) of (F ∗ G)α by (2.7) and
(2.8), respectively, namely for the conditioning function Xτ (x) given by (2.1).

(7) Fα.β(F |Xτ )(y, ~ξ) = Ex[F (α(x− [x] + [~ξ]) + βy)]

and

(8) ((F ∗G)α|Xτ )(y, ~ξ) = Ex

[
F
(y + α(x− [x] + [~ξ])√

2

)
G
(y − α(x− [x] + [~ξ])√

2

)]
.
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In particular, if m = n = 1, then we have the followings

Fα.β(F |Xτ )(y, ξ) =

∫
C(Q)

F
(
α(x(·, ∗)− ·∗

ST
x(S, T ) +

·∗
ST

ξ) + βy
)
dmy(x)

and

((F ∗G)α|Xτ )(y, ξ) =

∫
C(Q)

F
(y + α(x(·, ∗)− ·∗

ST
x(S, T ) + ·∗

ST
ξ)

√
2

)
G
(y − α(x(·, ∗)− ·∗

ST
x(S, T ) + ·∗

ST
ξ)

√
2

)
dmy(x).

Under the mild conditions on F and G, the following theorem shows that the
conditional integral transform of conditional convolution product is the product of
conditional integral transforms.

Theorem 2.6. Assume that for F and G on K(Q), Fα.β(((F ∗G)α|Xτ )(·, ~ξ1)|Xτ ),

Fα.β(F |Xτ ) and Fα.β(G|Xτ ) all exist for ~ξ1, ~ξ2 ∈ Rmn. Then

Fα.β(((F ∗G)α|Xτ )(·, ~ξ1)|Xτ )(y, ~ξ2)

=Fα.β(F |Xτ )
( y√

2
,
~ξ2 + ~ξ1√

2

)
Fα.β(G|Xτ )

( y√
2
,
~ξ2 − ~ξ1√

2

)(9)

for all y ∈ K(Q) and ~ξ1, ~ξ2 ∈ Rmn.

Proof. Equation (2.9) follows from the following calculations;

Fα.β(((F ∗G)α|Xτ )(·, ~ξ1)|Xτ )(y, ~ξ2)

=Ex[((F ∗G)α|Xτ )(α(x− [x] + [~ξ2]) + βy, ~ξ1)]

=Ex

[
Ew

(
F
( βy√

2
+ α(

x− [x] + [~ξ2]√
2

+
w − [w] + [~ξ1]√

2
)
)

G
( βy√

2
+ α(

x− [x] + [~ξ2]√
2

− w − [w] + [~ξ1]√
2

)
))]

=Ex

[
Ew

[
F
( βy√

2
+ α(

x+ w√
2
− [x] + [w]√

2
+

[~ξ2] + [~ξ1]√
2

)
)]]

Ex

[
Ew

[
G
( βy√

2
+ α(

x− w√
2
− [x]− [w]√

2
+

[~ξ2]− [~ξ1]√
2

)
)]]

=Ex

[
F
( βy√

2
+ α(x− [x] +

[~ξ2] + [~ξ1]√
2

)
)]
Ex

[
G
( βy√

2
+ α(x− [x] +

[~ξ2]− [~ξ1]√
2

)
)]

(10)

The first and second equalities in (2.10) follow from (2.7) and (2.8) respectively. The
third equality follows since x − [x] + w − [w] and x − [x] − w + [w] are independent
processes as can be seen by checking their covariance. Finally, the last equality follows
because the processes x+w√

2
and x−w√

2
are each equivalent to the process x. Then from

(2.7), we see that the last equation can be expressed as (2.9), which completes the
proof.
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3. Conditional integral transforms for the cylinder type functionals

Now we decribe the class of functionals that we work with in this paper. For some
positive integer n, let {θ1, θ2, . . . , θn} be an orthonormal set of real valued functions
in L2(Q) and assume that each θj is of bounded variation in the sence of Hardy and
Krause on Q [10]. Then for each y ∈ K(Q) and j = 1, 2, . . . , n, the Riemann-Stieltjes
integral 〈θj, y〉 ≡

∫
Q
θj(s, t)dy(s, t) exists. Furthermore

|〈θj, y〉| =
∣∣θj(S, T )y(S, T )−

∫ T

0

y(S, t)dθj(S, t)

−
∫ S

0

y(s, T )dθj(s, T ) +

∫
Q

y(s, t)dθj(s, t)
∣∣ ≤ Cj‖y‖∞

(1)

with

Cj = |θj(S, T )|+ var(θj(S, ·), [0,T]) + var(θj(·,T), [0, S]) + var(θj,Q).

For 0 ≤ σ < 1, let Eσ(Q) be the space of all cylinder type functionals F : K(Q)→ C
of the form

(2) F (y) = f(〈θ1, y〉, . . . , 〈θn, y〉) = f(〈~θ, y〉)

where f(λ1, . . . , λn) = f(~λ) is an entire function of n complex variables λ1, . . . , λn of
expoential type; that is to say

|f(~λ)| ≤ Afexp{Bf

n∑
j=1

|λj|1+σ}

for some positive constants Af and Bf .
Now we introduce a well known Yeh-Wiener integration formula for the functionals

f(〈~θ, x〉);

(3)

∫
C(Q)

f(〈~θ, x〉)dmy(x) = (2π)−
n
2

∫
Rn
f(~u)exp{−1

2
‖~u‖2}d~u

where ‖~u‖2 =
n∑
j=1

u2j and d~u = du1 · · · dun.

We encounter the Rimann-Stieltjes integrals 〈θj, x − [x] + [~ξ]〉, when we evaluate
the conditional integral transform of F given Xτ , as we will see below in Theoerms
3.4 through 3.8.

It turns out that θ̃, the sectional average of θ, simplifies both the statement and
the proof of the conditional integral transforms.

Definition 3.1. Let τ = τm,n = {(si, tj)|i = 1, . . . ,m, j = 1, . . . , n} be a partition
of Q. Then for each function θ ∈ L2(Q), define the sectional average of θ by

(4) θ̃(s, t) =
1

(sk − sk−1)(tl − tl−1)

∫
Qkl

θ(u, v)dudv

on each Qkl = (sk−1, sk]× (tl−1, tl] and θ̃(s, t) = 0 if st = 0.

For each θj in (3.2), using (2.2) and (3.4), we can see that

(5) 〈θj, x− [x] + [~ξ]〉 = 〈θj − θ̃j, x〉+ 〈θj, [~ξ]〉
for each x ∈ C(Q) .
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Example 3.2. If we define θ(s, t) = 1√
ST
∈ L2(Q) then we can get the followings;

(1) For the partition τ = τ1,1 = {(S, T )}, θ − θ̃ = 0 and 〈θ, [ξ]〉 = ξ√
ST

. where

ξ1,1 = ξ. Thus we have

〈θ, x− [x] + [ξ]〉 =
ξ√
ST

.

(2) For the partition τ = τ2,2 = {(si, tj)|i, j = 1, 2}, θ − θ̃ = 0 and 〈θ, [~ξ]〉 = ξ2,2√
ST

.

Thus we have

〈θ, x− [x] + [~ξ]〉 =
ξ2,2√
ST

.

Now even though the set of functions {θ1, . . . , θn} are orthonormal, the set of

functions {θ1 − θ̃1, . . . , θn − θ̃n} need not even be orthogonal. However, using the
Gram-Schmidt orthonormalization process, we can find a set of orthomormal functions
{φ1, . . . , φm}, each of bounded variation on Q, with span{θ1 − θ̃1, . . . , θn − θ̃n} =
span{φ1, . . . , φm}. Then we can find m× n matrix Amn = (aij) with

(6) ~θ − ~̃θ = (
m∑
j=1

aj,1φj, . . . ,
m∑
j=1

aj,nφj) = ~φAmn

where ~θ − ~̃θ = (θ1 − θ̃1, . . . , θn − θ̃n). Of course the functions {φ1, . . . , φm} are not
unique, but our results are independent of which orthonormal sets are chosen. For
related and a detailed work, see [4].

Example 3.3. If we let {θ1, θ2} be an orthonormal set of L2(Q), where θ1(s, t) =
χ(0,s1]×(0,T ](s,t)√

s1T
and θ2(s, t) =

χ(s1,S]×(0,T ](s,t)√
(S−s1)T

, with θj(s, t) = 0, j = 1, 2 if st = 0, where

χ(0,s1]×(0,T ] is the characteristic function of (0, s1]× (0, T ].

Then for the partition τ = τ1,1 = {(S, T )}, we have the orthogonal set {θ1− θ̃1, θ2−

θ̃2} where θ1(s, t) − θ̃1(s, t) = S−s1
S
θ1(s, t) −

√
s1(S−s1)
S

θ2(s, t) and θ2(s, t) − θ̃2(s, t) =

−
√
s1(S−s1)
S

θ1(s, t) + s1
S
θ2(s, t). In this case, span{θ1 − θ̃1, θ2 − θ̃2} = span{φ1} where

φ1 = θ1 − θ̃1/‖θ1 − θ̃1‖.

Theorem 3.4. Let F ∈ Eσ(Q) be given by (3.2). Then the conditional inte-

gral transform Fα.β(F |Xτ )(y, ~ξ) exists, belongs to Eσ(Q) and is given by the formula

Fα.β(F |Xτ )(y, ~ξ) = hf (~ξ : 〈~θ, y〉) for all y ∈ K(Q) and ~ξ ∈ Rmn, where

(7) hf (~ξ : ~λ) = (2π)−
m
2

∫
Rm

f(α~uAmn + α〈~θ, [~ξ]〉+ β~λ)exp{−1

2
‖~u‖2}d~u

with ‖~u‖2 =
m∑
j=1

u2j and d~u = du1 . . . dum.

Proof. Using the definition of the conditional integral transform together with equa-
tions (3.4) through (3.6) we have,

Fα.β(F |Xτ )(y, ~ξ) =Ex[f(α(〈~θ, x− [x] + [~ξ]〉) + β〈~θ, y〉)]

=Ex[f(α(〈~θ − ~̃θ, x〉) + α〈~θ, [~ξ]〉+ β〈~θ, y〉)]

=Ex[f(α(〈~φAmn , x〉) + α〈~θ, [~ξ]〉+ β〈~θ, y〉)]

(8)
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for each y ∈ K(Q) and a.e. ~ξ ∈ Rmn .
Finally by the formula (3.3), that is to say, a Yeh-Wiener integration formula for

the functional of form f(〈~θ, x〉), we see the last expression of (3.8) equals hf (~ξ : 〈~θ, y〉),
where hf (~ξ : ·) is given by (3.7). Then by Theorem 3.15 in [2], hf (~ξ : ~λ) is an entire

function. Furthermore using the integration
∫
R e
−av2+bvdv < ∞ for a > 0 and b ∈ R,

we can see, hf (~ξ : ~λ) is an element of Eσ(Q) as a function of ~λ [see [3, 4]]. Hence

Fα.β(F |Xτ )(y, ~ξ) ∈ Eσ(Q) as a function of y.

Example 3.5. Let F (y) = f(〈θ, y〉) , where f(λ) = eλ for λ ∈ C for θ(s, t) =
1√
ST
∈ L2(Q).

Then F ∈ Eσ(Q) and 〈 1√
ST
, x− [x] + [ξ]〉 = ξ√

ST
. Using (2.7) and (3.3) we have the

following conditional integral transform given conditioning function Xτ (x) = x(S, T ),

Fα.β(F |Xτ )(y, ξ) =

∫
C(Q)

e
α〈 1√

ST
,x−[x]+[ξ]〉+βy

dmY (x)

=

∫
C(Q)

e
αξ√
ST

+βy
dmY (x) = e

αξ√
ST eβy.

(9)

In our next theorem we show that the conditional convolution product of functionals
from Eσ(Q) for the conditioning function Xτ given by (2.1) is an element of Eσ(Q).

Theorem 3.6. Let F,G ∈ Eσ(Q) be given by (3.2) with corresponding entire
functions f and g, respectively. Then the conditional convolution product ((F ∗
G)α|Xτ )(y, ~ξ) exists for all y ∈ K(Q) and a.e. ~ξ ∈ Rmn, belongs to Eσ(Q) and is
given by

(10) ((F ∗G)α|Xτ )(y, ~ξ) = kf∗g(~ξ : 〈~θ, y〉)
where

kf∗g(~ξ : ~λ)

=(2π)−
m
2

∫
Rm

f
(~λ+ α~uAmn + α〈θj, [~ξ]〉√

2

)
g
(~λ− α~uAmn − α〈θj, [~ξ]〉√

2

)
exp{−1

2
‖~u‖2}d~u

(11)

with ‖~u‖2 =
m∑
j=1

u2j and d~u = du1 . . . dum.

Proof. Using the definition of the conditional convolution product we have the
following

((F ∗G)α|Xτ )(y, ~ξ)

=Ex
[
f
(〈~θ, y〉+ α〈~φAmn , x〉+ α〈~θ, [~ξ]〉√

2

)
g
(〈~θ, y〉 − α〈~φAmn , x〉 − α〈~θ, [~ξ]〉√

2

)]
.

(12)

Then by the equations (3.4), (3.6), (2.8) and a well-known Yeh-Wiener integration

formula (3.3), we see that the last expression above equals kf∗g(~ξ : 〈~θ, y〉). Then by

Theorem 3.15 in [2], kf∗g(~ξ : ~λ) is an entire function and an element of Eσ(Q) as a

function of ~λ [see [3, 4]].

Hence ((F ∗G)α|Xτ )(y, ~ξ) ∈ Eσ(Q) as a function of y.



600 Bong Jin Kim

In view of Theorems 3.4 and 3.6 above, conditional integral transforms and convo-
lution products of functionals from Eσ(Q) for the given conditioning function Xτ (x)
are also belong to Eσ(Q). Then by Theorem 2.6 we have the following result.

Our next result (3.13) below is useful because it allows us to calculate Fα.β(((F ∗
G)α|Xτ )(·, ~ξ1)|Xτ )(y, ~ξ2) without ever actually calculating (F ∗G)α or ((F ∗G)α|Xτ ).

Theorem 3.7. Let F and G be as in Theorem 3.3. Then we have

Fα.β(((F ∗G)α|Xτ )(·, ~ξ1)|Xτ )(y, ~ξ2)

=Fα.β(F |Xτ )(
y√
2
,
~ξ2 + ~ξ1√

2
)Fα.β(G|Xτ )(

y√
2
,
~ξ2 − ~ξ1√

2
)

(13)

for each y ∈ K(Q) and a.e. ~ξ1, ~ξ2 ∈ Rmn .

Proof. The left hand side of (3.13) exists by Theorems 3.4 and 3.6 while the right
hand side of (3.13) exists by Theorem 3.4. The equality in equation (3.13) then follows
from (2.9).

Our next formula (3.14), giving the conditional convolution product of conditional
integral transforms follows from Theorems 3.4, 3.6 and a well-known Yeh-Wiener
integration formula.

Theorem 3.8. Let F and G be as in Theorem 3.4. Then for all y ∈ K(Q) and

a.e. ~ξi ∈ Rmn, i = 1, 2, 3

((Fα.β(F |Xτ )(·, ~ξ1) ∗ Fα.β(G|Xτ )(·, ~ξ2))α|Xτ )(y, ~ξ3)

=(2π)−
3m
2

∫
R3m

f(α~u2Amn + α〈~θ, [~ξ1]〉+
β√
2

(〈~θ, y〉+ α~u1Amn + α〈~θ, [~ξ3]〉))

g(α~u3Amn + α〈~θ, [~ξ2]〉+
β√
2

(〈~θ, y〉 − α~u1Amn − α〈~θ, [~ξ3]〉))

exp{−1

2

3∑
j=1

‖~uj‖2}d~u1d~u2d~u3

(14)

where ‖~ui‖2 =
m∑
j=1

u2ijand d~ui = dui1 . . . duim, i = 1, 2, 3.
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