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CONVERGENCE OF AN ITERATIVE ALGORITHM

FOR SYSTEMS OF GENERALIZED VARIATIONAL

INEQUALITIES

Jae Ug Jeong

Abstract. In this paper, we introduce and consider a new system
of generalized variational inequalities involving five different opera-
tors. Using the sunny nonexpansive retraction technique we suggest
and analyze some new explicit iterative methods for this system of
variational inequalities. We also study the convergence analysis of
the new iterative method under certain mild conditions. Our results
can be viewed as a refinement and improvement of the previously
known results for variational inequalities.

1. Introduction

Let (E, ‖ · ‖) be a Banach space and C be a nonempty closed convex
subset of E. This paper deals with the problem of convergence of an
iterative algorithm for a system of generalized variational inequalities in
a Banach space: Find (x∗, y∗) ∈ C × C such that{

〈ρA1(y
∗) + x∗ − g1(y∗), J(g1(x)− x∗)〉 ≥ 0, ∀x ∈ C,

〈ηA2(x
∗) + y∗ − g2(x∗), J(g2(x)− y∗)〉 ≥ 0, ∀x ∈ C,

(1.1)

where Ai, gi : C → E are four nonlinear mappings for i = 1, 2, J is the
normalized duality mapping and ρ, η > 0 are positive constants.
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If E = H is a real Hilbert space, g1 = g2 = I(I denotes the identity
operator), then problem (1.1) reduces to the following general system of
variational inequalities in a Hilbert space: Find (x∗, y∗) ∈ C × C such
that {

〈ρA1(y
∗) + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

〈ηA2(x
∗) + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

(1.2)

which was considered by Ceng et al. [1]. In particular, if A1 = A2 =
A, then problem (1.2) reduces to the following system of variational
inequalities: Find (x∗, y∗) ∈ C × C such that{

〈ρA(y∗) + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,
〈ηA(x∗) + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

(1.3)

which was defined and studied by Verma [5]. Further, if x∗ = y∗, then
problem (1.3) reduces to the following classical variational inequality
(VI(A,C)): Find x∗ ∈ C such that

〈A(x∗), y − x∗〉 ≥ 0, ∀y ∈ C.(1.4)

We can see easily that the variational inequality (1.4) is equivalent to a
fixed point problem. An element x∗ ∈ C is a solution of the variational
inequality (1.4) if and only if x∗ ∈ C is a fixed point of the mapping
PC(I − λA), where I is the identity mapping, λ > 0 is a constant and
PC is the metric projection of H onto C. This alternative equivalent
formulation has played a significant role in the studies of the variational
inequalities and related optimization problem.

Furthermore, in order to solve the VI(A,C) (1.4) in the Euclidean
space Rn, Korpelevich [3] introduced the following so-called extra-gradie-
nt method: 

x0 = x ∈ C,
yn = PC(xn − λA(xn)),

xn+1 = PC(xn − λA(yn)), ∀n ≥ 0,

where λ > 0 is a constant.

We know that PC is a firmly nonexpansive mapping of H onto C, i.e.,

〈x− y, PC(x)− PC(y)〉 ≥ ‖PC(x)− PC(y)‖2, ∀x, y ∈ H.
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It is also known that PC is characterized by the following property:

〈x− PC(x), y − PC(y)〉 ≤ 0, ∀x ∈ H, y ∈ C.

The content of this paper is organized as follows. In section 2, we
present some basic definitions and results frequently used in the content
of the approximation solvability of nonlinear variational inequality prob-
lems based on iterative procedures. Section 3 is devoted to establishing
the main result of this paper. Firstly, using the sunny nonexpansive re-
traction technique we give some new explicit iterative methods for this
system of variational inequalities. Secondly, we show that the conver-
gence analysis of the new iterative method under certain mild conditions.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E with
dual space E∗, 〈·, ·〉 be the dual pair between E and E∗, 2E denote
the family of all the nonempty subsets of E. The generalized duality
mapping Jq : E → 2E∗

is defined by

Jq(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖q, ‖f ∗‖ = ‖x‖q−1}, ∀x ∈ E,

where q > 1 is a constant. In particular, J = J2 is the usual normalized
duality mapping. It is known that, in general, Jq(x) = ‖x‖q−2J(x) for
all x 6= 0 and Jq is single-valued if E∗ is strictly convex. If E is a Hilbert
space, then J = I, where I is the identity mapping. In this paper, we
use J to denote the single-valued normalized duality mapping.

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be uniformly
convex if for each ε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ U ,
‖x− y‖ ≥ ε implies ‖x+y

2
‖ ≤ 1− δ. It is known that a uniformly convex

Banach space is reflexive and strictly convex. A Banach space E is said
to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ U . The modulus of smoothness of E is the function
ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.
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A Banach space E is called uniformly smooth if

lim
t→0

ρE(t)

t
= 0.

E is called q-uniformly smooth if there exists a constant c > 0 such that

ρE(t) ≤ ctq, q > 1.

If E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth.

Definition 2.1. Let A : E → E be a single-valued mapping. A is
said to be

(i) accretive if

〈A(x)− A(y), J(x− y)〉 ≥ 0, ∀x, y ∈ E;

(ii) r-strongly accretive if there exists a constant r > 0 such that

〈A(x)− A(y), J(x− y)〉 ≥ r‖x− y‖2, ∀x, y ∈ E;

(iii) m-relaxed cocoersive if there exists a constant m > 0 such that

〈A(x)− A(y), J(x− y)〉 ≥ −m‖x− y‖2, ∀x, y ∈ E;

(iv) (α, ξ)-relaxed cocoercive if there exist constants α, ξ > 0 such
that

〈A(x)− A(y), J(x− y)〉 ≥ −α‖A(x)− A(y)‖2 + ξ‖x− y‖2, ∀x, y ∈ E.

Let D be a subset of C and Q be a mapping of C into D. Then Q
is said to be sunny if Q[Q(x) + t(x − Q(x))] = Q(x), whenever Q(x) +
t(x − Q(x)) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself
is called a retraction if Q2 = Q. If a mapping Q of C into itself is a
retraction, then Q(z) = z for all z ∈ R(Q), where R(Q) is the range of
Q. A subset D of C is called a sunny nonexpansive retract of C if there
exists a sunny nonexpansive retraction from C onto D.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1([7]). Let E be a real 2-uniformly smooth Banach space.
Then

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x)〉+ 2‖Ky‖2, ∀x, y ∈ E,

where J is the normalized duality mapping and K is the 2-uniformly
smooth constant of E.
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Lemma 2.2([4]). Let C be a nonempty closed convex subset of a
smooth Banach space E and let QC be a retraction from E onto C.
Then the following are equivalent:

(i) QC is both sunny and nonexpansive;
(ii) 〈x−QC(x), J(y −QC(x))〉 ≤ 0 for all x ∈ E and y ∈ C.

Lemma 2.3([6]). Suppose {δn}∞n=0 is a nonnegative sequence satis-
fying the following inequality:

δn+1 ≤ (1− λn)δn + σn, ∀n ≥ 0,

with λn ∈ [0, 1],
∑∞

n=0 λn =∞ and σn = 0(λn). Then limn→∞ δn = 0.

3. Main results

In this section, we consider the convergence criteria of explicit itera-
tive algorithm under some suitable mild conditions.

Theorem 3.1. Let C be a nonempty closed convex subset of a
smooth Banach space E. Let QC : E → C be a sunny nonexpansive
retraction, Ai, gi : C → E be four single-valued mappings for i = 1, 2.
Then (x∗, y∗) with x∗, y∗ ∈ C is a solution of problem (1.1) if and only if{

x∗ = QC [g1(y
∗)− ρA1(y

∗)],

y∗ = QC [g2(x
∗)− ηA2(x

∗)].
(3.1)

Proof. Applying Lemma 2.2, we have that{
〈ρA1(y

∗) + x∗ − g1(y∗), J(g1(x)− x∗)〉 ≥ 0, ∀x ∈ C,
〈ηA2(x

∗) + y∗ − g2(x∗), J(g2(x)− y∗)〉 ≥ 0. ∀x ∈ C.

m{
〈g1(y∗)− ρA1(y

∗)− x∗, J(g1(x)− x∗)〉 ≤ 0, ∀x ∈ C,
〈g2(x∗)− ηA2(x

∗)− y∗, J(g2(x)− y∗)〉 ≤ 0, ∀x ∈ C.

m{
x∗ = QC [g1(y

∗)− ρA1(y
∗)],

y∗ = QC [g2(x
∗)− ηA2(x

∗)].

Corollary 3.1. Let C be a nonempty closed convex subset of a
Hilbert space H. Let PC be the metric projection and A1, A2 : C → H
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be single-valued mappings. Then (x∗, y∗) with x∗, y∗ ∈ C is a solution
of problem (1.2) if and only if{

x∗ = PC [y∗ − ρA1(y
∗)],

y∗ = PC [x∗ − ηA2(x
∗)].

Theorem 3.2. Let E be a uniformly convex and 2-uniformly smooth
Banach space with the 2-uniformly smooth constantK, C be a nonempty
closed convex subset of E and QC be a sunny nonexpansive retraction
from E onto C. Let Ai, gi : C → E be mappings such that Ai is
(ωi, ξi)-relaxed cocoercive, µi-Lipschitz continuous and gi is ri-strongly
accretive, λi-Lipschitz continuous for i = 1, 2. Let (x∗, y∗) be the solution
of problem (1.1). For fixed x0, y0 ∈ C arbitrarily, let {xn}, {yn} ⊂ C be
sequences generated by{

xn+1 = (1− αn)xn + αnQC [g1(yn)− ρA1(yn)],

yn+1 = QC [g2(xn+1)− ηA2(xn+1)],
(3.2)

where {αn} is a real number sequence in [0, 1] satisfying the following
restriction

∑∞
n=0 αn =∞. If∣∣∣∣ρ− ξ1 − ω1µ

2
1

2K2µ2
1

∣∣∣∣ <
√

(ξ1 − ω1µ2
1)

2 − 2K2µ2
1m1(2−m1)

2K2µ2
1

,(3.3)

∣∣∣∣η − ξ2 − ω2µ
2
2

2K2µ2
2

∣∣∣∣ <
√

(ξ2 − ω2µ2
2)

2 − 2K2µ2
2m2(2−m2)

2K2µ2
2

,(3.4)

ξ1 > ω1µ
2
1 + µ1K

√
2m1(2−m1), m1 < 1,(3.5)

ξ2 > ω2µ
2
2 + µ2K

√
2m2(2−m2), m2 < 1,(3.6)

where

m1 =
√

1− 2r1 + 2K2λ21,

m2 =
√

1− 2r2 + 2K2λ22,

then {xn}, {yn} defined by (3.2) converge strongly to x∗, y∗, respectively.

Proof. To prove the result we need first to evaluate ‖xn+1 − x∗‖ for
all n ≥ 0.
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From (3.1), (3.2) and the nonexpansive property of the sunny nonex-
pansive retraction QC , we have

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖
+ αn‖QC [g1(yn)− ρA1(yn)]−QC [g1(y

∗)− ρA1(y
∗)]‖

≤ (1− αn)‖xn − x∗‖
+ αn‖g1(yn)− g1(y∗)− ρ[A1(yn)− A1(y

∗)]‖
≤ (1− αn)‖xn − x∗‖+ αn‖yn − y∗ − ρ[A1(yn)− A1(y

∗)]‖
+ αn‖yn − y∗ − (g1(yn)− g1(y∗))‖.(3.7)

Since A1 : C → E is (ω1, ξ1)-relaxed cocoercive and µ1-Lipschitz contin-
uous, we have

‖yn − y∗ − ρ[A1(yn)− A1(y
∗)]‖2

≤ ‖yn − y∗‖2 − 2ρ〈A1(yn)− A1(y
∗), J(yn − y∗)〉

+ 2ρ2K2‖A1(yn)− A1(y
∗)‖2

≤ ‖yn − y∗‖2 − 2ρ[−ω1‖A1(yn)− A1(y
∗)‖2 + ξ1‖yn − y∗‖2]

+ 2ρ2K2‖A1(yn)− A1(y
∗)‖2

≤ [1 + 2ρω1µ
2
1 − 2ρξ1 + 2ρ2K2µ2

1]‖yn − y∗‖2.(3.8)

Since g1 : C → E is r1-strongly accretive and λ1-Lipschitz continuous,
we have

‖yn − y∗ − (g1(yn)− g2(y∗))‖2

≤ ‖yn − y∗‖ − 2〈g1(yn)− g1(y∗), J(yn − y∗)〉+ 2K2‖g1(yn)− g1(y∗)‖2

≤ ‖yn − y∗‖2 − 2r1‖yn − y∗‖2 + 2K2λ21‖yn − y∗‖2

≤ [1− 2r1 + 2K2λ21]‖yn − y∗‖2,
which implies that

‖yn − y∗ − (g1(yn)− g1(y∗))‖ ≤ m1‖yn − y∗‖,(3.9)

where m1 =
√

1− 2r1 + 2K2λ21. It follows from (3.7)-(3.9) that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖

+ αn

(√
1 + 2ρω1µ2

1 − 2ρξ1 + 2ρ2K2µ2
1 +m1

)
‖yn − y∗‖

= (1− αn)‖xn − x∗‖+ αnθ1‖yn − y∗‖,(3.10)
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where θ1 =
√

1 + 2ρω1µ2
1 − 2ρξ1 + 2ρ2K2µ2

1 +m1.

Next, we estimate ‖yn+1 − y∗‖. From (3.1) and (3.2), we have

‖yn+1 − y∗‖ = ‖QC [g2(xn+1)− ηA2(xn+1)]−QC [g2(x
∗)− ηA2(x

∗)]‖
≤ ‖xn+1 − x∗ − η[A2(xn+1)− A2(x

∗)]‖
+ ‖xn+1 − x∗ − (g2(xn+1)− g2(x∗))‖.(3.11)

Since A2 : C → E is (ω2, ξ2)-relaxed cocoercive and µ2-Lipschitz contin-
uous, we have

‖xn+1 − x∗ − η[A2(xn+1)− A2(x
∗)]‖2

≤ ‖xn+1 − x∗‖2 − 2η〈A2(xn+1)− A2(x
∗), J(xn+1 − x∗)〉

+ 2η2K2‖A2(xn+1)− A2(x
∗)‖2

≤ ‖xn+1 − x∗‖2 − 2η[−ω2‖A2(xn+1)− A2(x
∗)‖2 + ξ2‖xn+1 − x∗‖2]

+ 2η2K2‖A2(xn+1)− A2(x
∗)‖2

≤ (1 + 2ηω2µ
2
2 − 2ηξ2 + 2η2K2µ2

2)‖xn+1 − x∗‖2.
(3.12)

Since g2 : C → E is r2-strongly accretive and λ2-Lipschitz continuous,
we have

‖xn+1 − x∗ − (g2(xn+1)− g2(x∗))‖2

≤ ‖xn+1 − x∗‖2 − 2〈g2(xn+1)− g2(x∗), J(xn+1 − x∗)〉
+ 2K2‖g2(xn+1)− g2(x∗)‖2

≤ ‖xn+1 − x∗‖2 − 2r2‖xn+1 − x∗‖2 + 2K2λ2‖xn+1 − x∗‖2

≤ [1− 2r2 + 2K2λ22]‖xn+1 − x∗‖2,

which implies that

‖xn+1 − x∗ − (g2(xn+1)− g2(x∗))‖ ≤ m2‖xn+1 − x∗‖,(3.13)

where m2 =
√

1− 2r2 + 2K2λ22. So, from (3.11)-(3.13), it follows that

‖yn+1 − y∗‖ ≤
[√

1 + 2ηω2µ2
2 − 2ηξ2 + 2η2K2µ2

2 +m2

]
‖xn+1 − x∗‖

= θ2‖xn+1 − x∗‖,(3.14)
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where θ2 =
√

1 + 2ηω2µ2
2 − 2ηξ2 + 2ηK2µ2

2 + m2. By (3.3)-(3.6), we
know that 0 ≤ θ1, θ2 < 1. It follows from (3.10) and (3.14) that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnθ1‖yn − y∗‖
≤ [1− αn(1− θ1θ2)]‖xn − x∗‖.

It is clear that 1 − θ1θ2 ∈ (0, 1] and
∑∞

n=0 αn(1 − θ1θ2) = ∞. Hence,
applying Lemma 2.3 to the last inequality, we immediately obtain that
xn → x∗ as n→∞. And by (3.14), we obtain yn → y∗ as n→∞. This
completes the proof.

Remark 3.1. (i) We note that Hilbert spaces and Lp(p ≥ 2) spaces
are uniformly convex and 2-uniformly smooth.

(ii) It is well known that if E is a Hilbert space, then a sunny nonex-
pansive retraction QC is coincident with the metric projection PC .

If E is a Hilbert space, then the 2-uniformly smooth constant K =
√
2
2

.
The following result can be deduced from Theorem 3.2 immediately.

Corollary 3.2. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let Ai, gi : C → H be mappings such that Ai is
(ωi, ξi)-relaxed cocoercive, µi-Lipschitz continuous and gi is ri-strongly
monotone, λi-Lipschitz continuous for i = 1, 2. Let (x∗, y∗) be the solu-
tion of problem (1.2). For fixed x0, y0 ∈ C arbitrarily, let {xn}, {yn} ⊂ C
be sequences generated by{

xn+1 = (1− αn)xn + αnPC [yn − ρA1(yn)],

yn+1 = PC [xn+1 − ηA2(xn+1)],
(3.15)

where {αn} is a real number sequence in [0, 1] satisfying the following
restriction

∑∞
n=0 αn =∞. If∣∣∣∣ρ− ξ1 − ω1µ

2
1

µ2
1

∣∣∣∣ < ξ1 − ω1µ
2
1

µ2
1

,

∣∣∣∣η − ξ2 − ω2µ
2
2

µ2
2

∣∣∣∣ < ξ2 − ω2µ
2
2

µ2
2

,

ξ1 > ω1µ
2
1, ξ2 > ω2µ

2
2,

then {xn}, {yn} defined by (3.15) converge strongly to x∗, y∗, respec-
tively.
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