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SCALAR CURVATURE FUNCTIONS OF

ALMOST-KÄHLER METRICS ON A CLOSED

SOLV-MANIFOLD

Yutae Kang and Jongsu Kim†

Abstract. We discuss on the classification problem of symplec-
tic manifolds into three families according to the scalar curvature
functions of almost Kähler metrics they admit. We also present a
4-dimensional solv-manifold as an example which belongs to one of
the three families.

1. Introduction

Kazdan and Warner classified closed smooth manifolds of dimension>
2 into three families according to what the scalar curvature functions can
be on a manifold [2, Theorem 4.35]. In [6, 7] we studied an analogous
classification question of closed symplectic manifolds of dimension> 2
according to the scalar curvature functions of almost Kähler metrics.

The purpose of this article is to elaborate this question, to discuss
main problems and to supply more examples.

Let us recall symplectic homotopies [8]. Two symplectic forms ω0

and ω1 are called deformation equivalent if they can be joined by a
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smooth homotopy of sympelctic forms and symplectomorphic if there
exists a diffeomorphism ψ such that ω0 = ψ∗ω1. And they are weakly
deformation equivalent if there is a diffeomorphism ψ such that ψ∗ω1 is
deformation equivalent to ω0.

Now the above question can be re-stated as follows; does any weakly
deformation equivalence class [[ω]] of a symplectic structure on a closed
smooth manifold of dimension> 2 fall into one of the following families?

(a) Any smooth function is the scalar curvature of an almost Kähler
metric in [[ω]].

(b) A smooth function is the scalar curvature of an almost Kähler
metric in [[ω]] iff it is either identically zero or somewhere negative.

(c) A smooth function is the scalar curvature of an almost Kähler
metric in [[ω]] iff it is negative somewhere.

There are a number of smooth manifolds which admit more than
one weakly deformation equivalence classes. It is interesting to know if
there exists a smooth manifold with more than one weakly deformation
equivalence classes which belong to distinct families among (a), (b) and
(c).

For the above classification, one should use scalar curvature defor-
mation theory in Lp spaces, p > 0. An essential part is to show the
surjectivity of the derivative DS of the scalar curvature functional S on
the space of almost Kähler metrics compatible with a symplectic struc-
ture. We ask:

Question
1. Is DS surjective at generic constant scalar-curved almost Kähler
metrics?
2. Is DS surjective at any non-constant scalar-curved almost Kähler
metrics?

This question seems harder than the general Riemannian case in [2,
4.37] and so, only a few examples are shown to belong to some family:
some symplectic tori [6, Section 5] and nil-manifolds [7]. We expect that
most Kähler manifolds can belong to some classes but it is not strictly
shown yet.

So, here we worked on a closed symplectic solv-manifold, described
by Fernández and Gray in [4]. Together with afore-mentioned examples,
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it leads one to suspect the validity of Question 1 more. We proved the
surjectivity of DS at some constant scalar-curved metric on it to get;

Theorem 1.1. For the weakly deformation equivalence class [[ω]] of
the closed symplectic solv-manifold (M,ω) of Fernández-Gray, a smooth
function is the scalar curvature of some almost-Kähler metrics in [[ω]] if
and only if it is somewhere negative.

2. Almost-Kähler metrics

For this subsection a good reference is [3]. An almost-Kähler metric
on a smooth manifold M2n of real dimension 2n is a Riemannian metric
g compatible with a symplectic structure ω, i.e. ω(X, Y ) = g(JX, Y )
for an almost complex structure J , where X, Y are tangent vectors at a
point of the manifold. Note that given ω, g determines J and vice versa.
We call a Riemannian metric g ω-almost Kähler if g is compatible with ω
and denote by Ωω := Ωω(M) the set of all C∞ ω-almost Kähler metrics
on M . An almost-Kähler metric (g, ω, J) is Kähler if and only if J is
integrable.

An almost complex structure J gives rise to a type decomposition of
symmetric (0,2)-tensors. For any symmetric (0,2)-tensor field h, we have
the splitting h = h+ + h−, where h+(X, Y ) = 1

2
{h(X, Y ) + h(JX, JY )}

and h−(X, Y ) = 1
2
{h(X, Y ) − h(JX, JY )}. A symmetric (0,2)-tensor

field h is called J-invariant [or J-anti-invariant] if h− = 0 [or h+ = 0,
respectively].

The space Ωω is a smooth Fréchet manifold, and the tangent space
TgΩω at g ∈ Ω is exactly the set of J-anti-invariant symmetric (0,2)-
tensor fields, where J is the almost complex structure corresponding to
(g, ω).

3. Scalar curvature functions of almost Kähler metrics

In this section we recall the argument in [7].

3.1. Derivative of the scalar curvature functional. We consider
the scalar curvature map defined on the space Ωω;

Sω(g) := the scalar curvature of g.
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The differential at g, in the direction of a J-anti-invariant symmetric
(0,2)-tensor h, of Sω is given by

(1) DSω|g(h) = δg(δgh)− g(r, h),

where r is the Ricci curvature tensor of g, δgh is the divergence of h which
can be written in local coordinates as (δgh)λ = −∇νhνλ and finally δg(·)
for 1-forms is the formal adjoint of the exterior differential on functions.

So DSω|g is an under-determined elliptic operator for any g ∈ Ωω.
The formal adjoint operator (DSω|g)∗ : C∞(M) → TgΩ of DSω|g with
respect to the L2 inner product induced from g is then as follows:

(2) (DSω|g)∗(ψ) = ∇−dψ − r−ψ.
where ∇−dψ and r− are the J-anti-invariant part of ∇dψ and r, respec-
tively, and J is the corresponding almost complex structure to (g, ω).

3.2. Scalar Curvature Map in Lp Setting. The scalar curvature
map Sω : Ωω −→ C∞(M) can be extended to a smooth map from
the space of Lp2 ω-almost-Kähler metrics, Lp2(Ωω), to the space of Lp

functions, Lp(M), if p > dimR(M), which will be assumed in this section.

Now at g ∈ Ωω with J , consider the linearized map of Sω, DSω|g :
Lp2(TgΩω) −→ Lp(M). The space Lp2(TgΩω) consists of Lp2 J-anti in-
variant symmetric 2-tensor fields h. As DSω|g is an under-determined
elliptic operator at any g ∈ Ωω, by the elliptic regularity theory [2, page
464], we have a decomposition:

Lp(M) = DSω|g(Lp2(TgΩω))⊕ ker (DSω|g)∗.
and the kernel ker (DSω|g)∗ of the formal adjoint map (DSω|g)∗ is finite
dimensional and consists of C∞ functions on M . Therefore in order to
prove that DSω|g is surjective, we need to show that ker (DSω|g)∗ is zero.

Lemma 1, Lemma 2 and Proposition 1 below gives the framework of
the argument; refer to [7] for the proof.

Lemma 1. If DSω|g is surjective at an almost-Kähler metric g, then
the scalar curvature map Sω is locally surjective at g, i.e. there exists
ε > 0 such that, if f is in Lp(M) and ||f − Sω(g)||Lp < ε, there is an Lp2
almost-Kähler metric g̃ such that f = Sω(g̃). Furthermore if f is C∞,
so is g̃.

Let D be the diffeomorphism group of M .
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Lemma 2. [5] If dimR(M) ≥ 2 and if f ∈ C0(M), then an Lp

function f1 belongs to the Lp closure of the set {f ◦ φ, φ ∈ D} if and
only if inf f ≤ f1(x) ≤ sup f almost everywhere.

From above two lemmas, one gets;

Proposition 1. Suppose that there exists an almost-Kähler metric
(g, ω) with constant scalar curvature sg and that DSω|g is surjective at
g, then any smooth function f with inf f ≤ sg ≤ sup f is the scalar
curvature of an almost-Kähler metric g̃ for some symplectic form φ∗ω,
where φ is a diffeomorphism.

4. On a closed symplectic solv-manifold

In order to use Proposition 1, we need to have almost-Kähler metrics
(g, ω) with constant scalar curvature such that DSω|g is surjective. Here
we consider the closed 4-dimensional symplectic solv-manifold from [4].

We recall the solvable Lie group G of dimension 3 consisting of ma-
trices of the form

ekz 0 0 x
0 e−kz 0 y
0 0 1 z
0 0 0 1


where x, y, z ∈ R and k is a real number such that ek + e−k is an integer
different from 2.

Then x, y, z are global coordinates forG and {dx−kxdz, dy+kydz, dz}
is a basis of right invariant 1-forms on G. There exists a co-compact
(i.e. uniform) discrete subgroup Γ of G so that N = G/Γ is a manifold
and the forms dx − kxdz, dy + kydz, dz descend to 1-forms on N . We
consider the product 4-manifold M = N × S1. The group Γ × Z acts
naturally on its universal cover is G×R, naturally identified with R4 =
{(x, y, z, t)| x, y, z, t ∈ R}.

The symplectic form is ω = (dx − kxdz) ∧ (dy + kydz) + dz ∧ dt =
dx∧dy+dz∧dt+kydx∧dz+kxdy∧dz. We consider the almost Kähler
metric g = (dx− kxdz)2 + (dy + kydz)2 + dz2 + dt2.

Consider the g-orthonormal frame fields e1 = ∂
∂x

, e2 = ∂
∂y

, e3 = kx ∂
∂x
−

ky ∂
∂y

+ ∂
∂z

, e4 = ∂
∂t

, which are the dual to {dx− kxdz, dy+ kydz, dz, dt}.
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The corresonding almost complex structure J is then given by J(e1) =
e2, J(e2) = −e1, J(e3) = e4, J(e4) = −e3.

These ω, g, J are all right invariant on G × R and descends to an
almost Kähler structure on M .

The discrete subgroup Γ×Z is generated [1, Theorem 4 (4)] by {γi, i =
1, 2, 3, 4} where
γ1(x, y, z, t) = (x+ u1e

kz, y + u2e
−kz, z, t),

γ2(x, y, z, t) = (x+ v1e
kz, y + v2e

−kz, z, t) for some det

[
u1 u2
v1 v2

]
6= 0 ,

γ3(x, y, z, t) = (x, y, z + n, t) for some n ∈ Z,
γ4(x, y, z, t) = (x, y, z, t+ 1).

So, any function ψ on M satisfies

(3) ψ(p) = ψ(γi · p), i = 1, 2, 3, 4 at any point p ∈M.

By routine computation one can find the components rij of Ricci
curvature as follows; r11 = 0, r22 = 0, r33 = −2k2, r44 = 0, and rij = 0 for
i 6= j. Then the components r−ij = r−(ei, ej) = 1

2
{r(ei, ej)− r(Jei, Jej)}

of the J-anti-invariant part of the Ricci tensor are as follows: r−11 = 0,
r−22 = 0, r−33 = −k2, r−44 = k2, and r−ij = 0 for (i 6= j).

Suppose that a smooth function ψ belongs to Ker(DgS)∗. Equiv-
alently, it satisfies ∇g

−dψ − ψr−g = 0. Now one compute the J-anti-
invariant part ∇−dψ of the Hessian of ψ. For convenience we denote
∂ψ
∂x

by ψx and ∂2ψ
∂x∂y

by ψyx, etc.. The Riemannian connection ∇ can be

computed by the formula 2〈∇XY, Z〉 = X〈Y, Z〉+Y 〈X,Z〉−Z〈X, Y 〉−
〈X, [Y, Z]〉 − 〈Y, [X,Z]〉+ 〈Z, [X, Y ]〉;

∇e1e1 = −ke3, ∇e1e3 = ke1, ∇e2e2 = ke3, ∇e2e3 = −ke2

and others are all zero. We compute ∇dψ(X, Y ) = X(Y ψ) − (∇XY )ψ
and set αij = ∇dψ(ei, ej) ;

α11 = ψxx + k2xψx − k2yψy + kψz, α22 = ψyy − k2xψx + k2yψy − kψz,
α33 = k2(x2ψxx + y2ψyy + xψx + yψy − 2xyψxy)

+ψzz + 2kxψxz − 2kyψyz,

α44 = ψtt, α12 = ψxy, α13 = kxψxx − kyψxy + ψxz,

α14 = ψxt, α23 = kxψxy − kyψyy + ψyz,

α24 = ψyt, α34 = kxψxt − kyψyt + ψzt.
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We compute ∇−dψ(X, Y ) = 1
2
{∇dψ(X, Y ) − ∇dψ(JX, JY )} and set

βij = 2∇−dψ(ei, ej);

β11 = ψxx − ψyy + 2k2xψx − 2k2yψy + 2kψz,

β33 = k2(x2ψxx + y2ψyy + xψx + yψy − 2xyψxy)

+ψzz − ψtt + 2k(xψxz − yψyz),
β12 = 2ψxy, β13 = kxψxx − kyψxy + ψxz − ψyt,
β14 = kxψxy − kyψyy + ψxt + ψyz, β34 = 2kxψxt − 2kyψyt + 2ψzt.

We deduce that the equation ∇g
−dψ − ψr−g = 0 is equivalent to the

following system of six differential equations.

〈1〉 ψxx − ψyy + 2k2xψx − 2k2yψy + 2kψz = 0,

〈2〉 k2(x2ψxx + y2ψyy + xψx + yψy − 2xyψxy) + ψzz − ψtt
+2kxψxz − 2kyψyz = −2k2ψ,

〈3〉 kxψxx − kyψxy + ψxz − ψyt = 0,

〈4〉 kxψxy − kyψyy + ψxt + ψyz = 0,

〈5〉 kxψxt − kyψyt + ψzt = 0, 〈6〉 ψxy = 0.

Now the surjectivity of DgS follows by showing that ψ should be
necessarily zero. The computation is elementary and it goes as follows.

From the equation 〈6〉, ψ(x, y, z, t) can be written as ψ = a(x, z, t) +
b(y, z, t). Put it into 〈4〉 to get

〈4′〉 − kybyy + byz = −axt.

LHS depends on y, z, t and RHS on x, z, t. So both sides depends
only on z, t. We get axtx = 0. From ∂

∂x
〈5〉, we have kψxt + kxψxtx +

ψztx = kaxt + (axt)z = 0. We solve for axt to get axt = c(x, t)e−kz.
By (3) ψ satisfies ψ(x, y, z, t) = ψ(x, y, z + n, t). Then axt also satisfies
axt(x, y, z, t) = axt(x, y, z + n, t). This implies axt = 0.

If we repeat the same argument with 〈3〉 and ∂
∂y
〈5〉, we can get byt = 0.

Then 〈4′〉 gives kybyy = byz. And 〈3〉 gives kxaxx = −axz.
∂
∂x
〈1〉 gives ψxxx + 2k2ψx + 2k2xψxx + 2kψxz = ψxxx + 2k2ψx = 0.

Solving this for ψx, we get ψx = c1(z)cos(
√

2kx)+c2(z)sin(
√

2kx), where
we used ψx = ax and ψxt = axt = 0.

By (3), ψ(x, y, z, t) = ψ(x + aekz, y + be−kz, z, t) for some a 6= 0. So,
ψx(x, y, z, t) = ψx(x+ aekz, y+ be−kz, z, t). Setting e(z) =

√
2kaekz, this
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becomes

ψx(x, y, z, t) = c1(z)cos(
√

2kx) + c2(z)sin(
√

2kx)

= ψx(x+ aekz, y + be−kz, z, t)

= c1(z)cos(
√

2kx+ e(z)) + c2(z)sin(
√

2kx+ e(z))

= cos(
√

2kx){c1(z)cos(e(z)) + c2(z)sin(e(z))}
+sin(

√
2kx){−c1(z)sin(e(z)) + c2(z)cos(e(z))}.

Comparing coefficients we have c1(z) = c1(z)cos(e(z))+c2(z)sin(e(z))
and c2(z) = −c1(z)sin(e(z)) + c2(z)cos(e(z)). Then we get c1(z) =
c2(z) = 0. So we get ψx = 0. Similarly we get ψy = 0, using ∂

∂y
〈1〉.

From 〈1〉, we get ψz = 0. From 〈2〉, we get −ψtt = −2k2ψ. Then

ψ = ψ(t) = c1e
√
2kt + c2e

−
√
2kt.

As ψ(x, y, z, t) = ψ(x, y, z, t+ 1), ψ = 0. So Ker(DgS )∗ = 0. and the
linearized map DSω|g is surjective.

The scalar curvature of c2g, c > 0 can be any negative constant and
c2g is an almost Kähler metric compatible with the symplectic structure
c2ω, which is deformation equivalent to ω. Clearly DSc2ω|c2g is also
surjective. So from Proposition 1 we get the ‘if’ part of Theorem 1.1.
Next, M cannot admit a Riemannian metric with nonnegative scalar
curvature for a similar reason as the Kodaira-Thurston manifold, see [7].
This proves Theorem 1.1.

Remark 1 Remarkably, the proof shows that there exists a non-
zero local (though not global on M) solution of (DgS )∗ψ = 0: ψ =

c1e
√
2kt+c2e

−
√
2kt. This is in contrast to the metrics on Kodaira-Thurston

manifold.
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