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CHARACTERIZATIONS OF GRADED PRUFER
*MULTIPLICATION DOMAINS

PARVIZ SAHANDI

ABSTRACT. Let R = D, Ra be a graded integral domain graded
by an arbitrary grading torsionless monoid I', and * be a semistar
operation on R. In this paper we define and study the graded integral
domain analogue of x-Nagata and Kronecker function rings of R
with respect to x. We say that R is a graded Priifer x-multiplication
domain if each nonzero finitely generated homogeneous ideal of R is
* s-invertible. Using x-Nagata and Kronecker function rings, we give
several different equivalent conditions for R to be a graded Priifer
*-multiplication domain. In particular we give new characterizations
for a graded integral domain, to be a PuMD.

1. Introduction

Let R = @, Ra be a graded (commutative) integral domain graded
by an arbitrary grading torsionless monoid I', that is I' is a commutative
cancellative monoid (written additively). Let (I') = {a — bla,b € T'}, be
the quotient group of I', which is a torsionfree abelian group.

Let H be the saturated multiplicative set of nonzero homogeneous ele-
ments of R. Then Ry = €D ¢ ry (L), called the homogeneous quotient
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field of R, is a graded integral domain whose nonzero homogeneous ele-
ments are units. For a fractional ideal I of R let I;, denote the fractional
ideal generated by the set of homogeneous elements of R in I. It is known
that if [ is a prime ideal, then I, is also a prime ideal (cf. [29, Page 124]).
An integral ideal I of R is said to be homogeneous if I = @ .-(/ N Ry,);
equivalently, if I = I;. A fractional ideal I of R is homogeneous if sI
is an integral homogeneous ideal of R for some s € H (thus I C Ry).
For f € Ry, let Cg(f) (or simply C(f)) denote the fractional ideal of R
generated by the homogeneous components of f. For a fractional ideal I
of R with I C Ry, let C(I) = >_;; C(f). For more on graded integral

domains and their divisibility properties, see [3}29).

Let R = @, Ra and Ny(H) = {f € R|C(f)" = R}. (Defini-
tions related to the v-operation will be reviewed in the sequel.) Then
N,(H) is a saturated multiplicative subset of R by |4, Lemma 1.1(2)].
The graded integral domain analogue of the well known Nagata ring
is the ring Ry, (). In [4], Anderson and Chang, studied relationships
between the ideal-theoretic properties of Ry, x) and the homogeneous
ideal-theoretic properties of R. For example it is shown that if R has a
unit of nonzero degree, Pic(Ry,m)) = 0 and that R is a PuMD if and
only if each ideal of Ry, () is extended from a homogeneous ideal of R, if
and only if Ry, () is a Priifer (or Bézout) domain [4, Theorems 3.3 and
3.4]. Also, they generalized the notion of Kronecker function ring, (for
e.a.b. star operations on R) and then showed that this ring is a Bézout
domain [4, Theorem 3.5]. For the definition and properties of semistar-
Nagata and Kronecker function rings of an integral domain see the in-
teresting survey article [21]. Recall that the Picard group (or the ideal
class group) of an integral domain D, is Pic(D) = Inv(D)/Prin(D),
where Inv(D) is the multiplicative group of invertible fractional ideals
of D, and Prin(D) is the subgroup of principal fractional ideal of D.

Let R = @, Ro be an integral domain, and % be a semistar op-
eration on R. In Section 2 of this paper we study the homogeneous
elements of QSpec*(R) denoted by h-QSpec*(R). We show that if x is a
finite type semistar operation on R which sends homogeneous fractional
ideals to homogeneous ones, and such that R* C Ry, then each homo-
geneous quasi-x-ideal of R, is contained in a homogeneous quasi-*-prime
ideal of R. One of key results in this paper is Proposition [2.3] which
shows that if R* C Ry, the * sends homogeneous fractional ideals to
homogeneous ones. We also define and study the Nagata ring of R with
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respect to x. The x-Nagata ring is defined by the quotient ring Ry, (#),
where N,(H) = {f € R|C(f)* = R*}. Among other things, it is shown
that Pic(Ry,m)) = 0. In Section 3 we define and study the Kronecker
function ring of R with respect to x. The Kronecker function ring, in-
spired by [20, Theorem 5.1], is defined by Kr(R,*) := {0} U {f/g]0 #
f,9 € R, and there is 0 # h € R such that C(f)C(h) C (C(g9)C(h))*}.
It is shown that if x sends homogeneous fractional ideals to fractional
ones, then Kr(R, %) is a Bézout domain. In Section 3 we define the no-
tion of graded Priifer x-multiplication domains and give several different
equivalent conditions to be a graded PxMD. A graded integral domain
R, is called a graded Priifer x-multiplication domain (graded PxMD) if
every finitely generated homogeneous ideal of R is a xs-invertible, i.e.,
(IT7')* = R* for each finitely generated homogeneous ideal I of R.
Among other results we show that R is a graded PxMD if and only if
Ry, (my is a Priifer domain if and only if Ry, () is a Bézout domain if
and only if Ry, ) = Kr(R,*) if and only if Kr(R, *) is a flat R-module.

To facilitate the reading of the paper, we review some basic facts on
semistar operations. Let D be an integral domain with quotient field
K. Let F(D) denote the set of all nonzero D-submodules of K. Let
F(D) be the set of all nonzero fractional ideals of D; i.e., E € F(D) if
E € F(D) and there exists a nonzero element r € D with rE C D. Let
f(D) be the set of all nonzero finitely generated fractional ideals of D.
Obviously, f(D) C F(D) C F(D). As in [30], a semistar operation on
D is amap x : F(D) — F(D), E + E*, such that, for all z € K, z # 0,
and for all E, F € F(D), the following three properties hold:

x1 : (xE)* = xE*;

%9 1 I/ C F implies that E* C F™;

x3 : E C E* and B := (E*)* = E*.

Let * be a semistar operation on the domain D. For every E € F(D),
put E*/ := UF*, where the union is taken over all finitely generated
F e f(D) with ' C E. It is easy to see that *; is a semistar operation
on D, and %y is called the semistar operation of finite type associated to x.
Note that (x¢); = ;. A semistar operation * is said to be of finite type
if x = x¢; in particular x; is of finite type. We say that a nonzero ideal [
of D is a quasi-x-ideal of D, if I* N D = I; a quasi-+-prime (ideal of D),
if I is a prime quasi-x-ideal of D; and a quasi-x-mazximal (ideal of D), if
I is maximal in the set of all proper quasi-x-ideals of D. Each quasi-x-
maximal ideal is a prime ideal. It was shown in [16, Lemma 4.20] that
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if D* # K, then each proper quasi-x-ideal of D is contained in a quasi-
*p-maximal ideal of D. We denote by QMax*(D) (resp., QSpec*(D))
the set of all quasi-x-maximal ideals (resp., quasi-x-prime ideals) of D.

If x; and %5 are semistar operations on D, one says that x; < xo if
E*t C E* for each E € F(D) (cf. [30, page 6]). This is equivalent to
saying that (E*1)* = E*2 = (E*2)* for each E € F(D) (cf. [30, Lemma
16]). Obviously, for each semistar operation * defined on D, we have
*¢ < *. Let dp (or, simply, d) denote the identity (semi)star operation
on D. Clearly, dp < % for all semistar operations x on D.

It has become standard to say that a semistar operation « is stable
if ( ENF)* = E*NF*forall B, F € F(D). (“Stable” has replaced
the earlier usage, “quotient”, in [30, Definition 21].) Given a semistar
operation x on D, it is possible to construct a semistar operation *,
which is stable and of finite type defined as follows: for each E € F(D),

E* .= {z € K|zJ C E, for some J C R,J € f(R),J* = D*}.
It is well known that |16, Corollary 2.7]
E* := n{EDp|P € QMax*/ (D)}, for each E € F(D).

The most widely studied (semi)star operations on D have been the
identity d, v, t := vy, and w := ¥ operations, where A" := (A~1)~! with
A :=(R:A):={x e K|zAC D}.

Let % be a semistar operation on an integral domain D. We say that
x is an e.a.b. (endlich arithmetisch brauchbar) semistar operation of
D if, for all E,F,G € f(D), (EF)* C (EG)* implies that F* C G*
(|20, Definition 2.3 and Lemma 2.7]). We can associate to any semistar
operation x on D, an e.a.b. semistar operation of finite type x, on D,
called the e.a.b. semistar operation associated to x, defined as follows
for each F' € f(D) and for each E € F(D):

P =\ JU(FHY - HY)H € f(R)},

E* = {F*|F CE,F € f(R)}

[20, Definition 4.4 and Proposition 4.5] (note that ((FH)* : H*) =
(FH)* : H)). It is known that *; < x, [20, Proposition 4.5(3)]. Obvi-
ously (*f)q = *4. Moreover, when * = %, then x is e.a.b. if and only
if x = x, |20, Proposition 4.5(5)].

Let x be a semistar operation on a domain D. Recall from [17] that,
D is called a Priifer x-multiplication domain (for short, a PxMD) if each
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finitely generated ideal of D is *;-invertible; i.e., if (I171)* = D* for
all I € f(D). When x = v, we recover the classical notion of PvMD;
when x = dp, the identity (semi)star operation, we recover the notion
of Priifer domain.

2. Nagata ring

Let R = @, Ro be a graded integral domain, x be a semistar
operation on R, H be the set of nonzero homogeneous elements of R.
An overring T of R, with R C T C Ry will be called a homogeneous
overring it T' = @ ¢ (T'N(Rp)a). Thus T is a graded integral domain
with T, = T N (Ry)a-

In this section we study the homogeneous elements of QSpec*(R),
denoted by h-QSpec*(R), and the graded integral domain analogue of
*x-Nagata ring. Let h-QMax*(R) denote the set of ideals of R which are
maximal in the set of all proper homogeneous quasi-x-ideals of R. The
following lemma shows that, if R* C Ry and x = x; sends homogeneous
fractional ideals to homogeneous ones, then h-QMax™/ (R) is nonempty
and each proper homogeneous quasi-xs-ideal is contained in a maximal
homogeneous quasi-x s-ideal.

LEMMA 2.1. Let R = @, . R be a graded integral domain, x a finite
type semistar operation on R which sends homogeneous fractional ideals
to homogeneous ones, and such that R* C Ry. If I is a proper homoge-
neous quasi-x-ideal of R, then I is contained in a proper homogeneous
quasi-x-prime ideal.

Proof. Let X := {I|I is a homogeneous quasi-x-ideal of R}. Then it is
easy to see that X is nonempty. Indeed, in this case R* is a homogeneous
overring of R, and if v € H is a nonunit in R*, then uR* N R is a
proper homogeneous quasi-x-ideal of R. Also X is inductive (see proof
of [16, Lemma 4.20]). From Zorn’s Lemma, we see that every proper
homogeneous quasi-x-ideal of R is contained in some maximal element
Q of X.

Now we show that () is actually prime. Take f, g € H\Q and suppose
that fg € Q. By the maximality of ) we have (Q, f)* = R* (note that
(@, f)* N R is a homogeneous quasi-x-ideal of R and properly contains
(). Since * is of finite type, we can find a finitely generated ideal J C @
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such that (J, f)* = R*. Theng € gR*"NR=g(J, [ NRCQ*NR=Q
a contradiction. Thus @) is a prime ideal. ]

The following example shows that we can not drop the condition that,
* sends homogeneous fractional ideals to homogeneous ones, in the above
lemma.

ExAaMPLE 2.2. Let k be a field and X,Y be indeterminates over k.
Let R = k[X,Y], which is a (Ng-)graded Noetherian integral domain
with deg X = degY = 1. Set M := (X,Y + 1) which is a maximal
non-homogeneous ideal of R. Let T' be a DVR |11], with maximal ideal
N, dominating the local ring Ry;. If Ry C T, then there exists a
prime ideal P of R such that, PN H = 0 and NN Ry = PRy. Thus
M=NNR=NNRyNR=PRyNR = P. Hence MNH = (), which is
a contradiction, since X € MNH. So that, Ry ¢ T. Let x be a semistar
operation on R defined by E* = ET N ERy for each E € F(R). Then
clearly x = xy and R* C Ry. If P is a nonzero prime ideal of R, such
that PN H = (), then P "R = PTNPRyNR =PTNP = P.
Thus P is a quasi-xg-prime ideal. On the other hand if P is any nonzero
prime ideal of R such that PN H # 0, then PT = N, for some integer
k > 1. Therefore, if we assume that P is a quasi-xs-ideal of R, then we
would have P = PTN PRy NR = PTNR = N*NR D MF, which
implies that P = M. Thus QSpec™ (R) = {M} U{P € Spec(R)|P # 0
and PN H = (}. Therefore by |16, Lemma 4.1, Remark 4.5], we have
QSpec*(R) = {Q € Spec(R)|0 # Q € M} U {P € Spec(R)|P # 0 and
PN H =0}. Hence in the present example we have h-QSpec™ (R) = h-
QMax*/ (R) = 0, and h-QSpec*(R) = h-QMax*(R) = {(X)}. Note that
in this example h-QMax*(R) ¢ QMax*(R) = QMax*/ (R).

From now on in this paper, we are interested and consider, the semis-
tar operations x on R, such that R* C Ry and sends homogeneous
fractional ideals to homogeneous ones. For any such semistar operation,
if I is a homogeneous ideal of R, we have I*f = R* if and only if I € Q
for each @ € h-QMax*/(R). Also if P is a quasi-x-prime ideal of R, then
either P, = 0 or P, is a quasi-x-prime ideal of R. Indeed, if P, # 0, then
P, C(P)*NR C P*N R = P, which implies that P, = (P,)* N R, since
(Py)* N R is a homogeneous ideal.

The following proposition is the key result in this paper.

PROPOSITION 2.3. Let R = @, Ro be a graded integral domain,
and x be a semistar operation on R such that R* C Ry. Then, * sends
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homogeneous fractional ideals to homogeneous ones. In particular h-
QMax*(R) # 0, and R* is a homogeneous overring of R.

Proof. Let E be a homogenous fractional ideal of R. To show that E*
is homogeneous let f € E*. Then fJ C E for some finitely generated
ideal J of R such that J* = R*. Suppose that J = (g1, -+, g»). Using [4,
Lemma 1.1(1)], there is an integer m > 1 such that C(g;)" " C(f) =
C(g:)™C(fg;) for all i = 1,--- ,n. Since F is a homogeneous fractional
ideal and fg; € E, we have C(fg;) C E. Thus we have C(g;)" ™' C(f) C
E. Let Jy :=C(g1)™™ +-- -+ C(gn,)™". Thus Jy is a finitely generated
homogeneous ideal of R such that J§ = R*. Since C(f)Jo C E, C(f) C
E*. Therefore E* is a homogeneous ideal. O

LEMMA 24. Let R = @, Ra be a graded integral domain, * a
semistar operation on R which sends homogeneous fractional ideals to
homogeneous ones. Then xy sends homogeneous fractional ideals to
homogeneous ones.

Proof. Let E be a homogenous fractional ideal of R. Let 0 # x € E*f.
Then, there exists an F' € f(R) such that /' C F and x € F*. Suppose
that F'is generated by y1, -+ ,y, € Ry. Let G be a homogeneous frac-

tional ideal of R, generated by homogeneous components of yq,--- , y,.
Note that FF C G C E and x € G*. Thus homogeneous components of
x belong to G* C E*f. This shows that £*/ is homogeneous. O

Note that the v-operation sends homogeneous fractional ideals to ho-
mogeneous ones by [3, Proposition 2.5]. Using the above two results, the
t and w-operations also, send homogeneous fractional ideals to homoge-
neous ones.

It it well-known that QMax*/ (R) = QMax*(R), see |5, Theorem 2.16],
for star operation case, and [18, Corollary 3.5(2)], in general semistar
operations. Although Example [2.2] shows that it may happen that h-
QMax* (R) # h-QMax*(R), we have the following proposition whose
proof is almost the same as [4, Theorem 2.16].

PROPOSITION 2.5. Let R = @, R be a graded integral domain,
* a semistar operation on R such that R* C Ry, which sends homoge-
neous fractional ideals to homogeneous ones. Then h-QMax™ (R) = h-
QMax*(R).
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Proof. Assume that ) € h-QMax™/ (R). Then since x < 7 by |18,
Lemma 2.7(1)], we have Q C Q*NR C Q*’ NR = @, that is Q is a quasi-
*-ideal. Suppose that Q ¢ h-QMax*(R). Then Q is properly contained
in some P € h-QMax*(R). So since Q € h-QMax* (R), using Lemma
2.1} we must have P*f = R*. Thus there is some finitely generated ideal
F C P such that F* = R*. So for any r € R, rFF C FF C P. But
then, r € P*, so R C P*, which implies that P* = R*, a contradiction.
Therefore, we must have () € h—QMaX;(R).

If Q e h—QMaX;(R), then Q = Q* N R C Q** N R C R. Suppose
that @** N R = R, which implies that Q*f = R*. Then there is a
finitely generated ideal F' C @ such that F* = R*. Now for any r € R,
rF C F C Q. Therefore R C Q*, and so R = Q* N R = Q, which is a
contradiction. So Q*f N R C R. Now, since */ N R is a homogeneous
quasi-* s-ideal, there is a P € h-QMax™ (R) such that () C Q** "R C P.
From the first half of the proof, we know that P € h-QMax*(R). So we
must have P = ). Therefore ) € h-QMax™/ (R). O]

Park in [31, Lemma 3.4], proved that I = ﬂpeh_QMww(R) IR p for
each homogeneous ideal I of R.

PROPOSITION 2.6. Let R = @, R. be a graded integral domain, *
a semistar operation on R such that R* C Ry. Then
I = ﬂpeh_QMaX:(R) IRy \p for each homogeneous ideal I of R. Moreover

];RH\p = IRp\p for all homogeneous ideal I of R and all P € h-
QMax*(R).

Proof. By Proposition I* is a homogeneous ideal. Also note that
ﬂPeh-QMax'*“(R) IRp\p is a homogeneous ideal of R. Let f € I* be homo-
geneous. Then fJ C I for some homogeneous finitely generated ideal
J of R such that J* = R*. It is easy to see that J* = R*. Hence
we have J ¢ P for all P € h-QMax*(R). Thus f € IRmp for all
P € h-QMax*(R). Conversely, let f € (\pes. QMiax* (r) L B\ p be homo-
geneous. Then (I : f) is a homogeneous ideal which is not contained in
any P € h-QMax*(R). Therefore (I : f)* = R*. So that there exist a
finitely generated ideal J C (I : f) such that J* = R*. Thus fJ C I,
i.e., f € I*. The second assertion follows from the first one. O]

Let D be a domain with quotient field K, and let X be an indeter-
minate over K. For each f € K[X], we let ¢p(f) denote the content of
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the polynomial f, i.e., the (fractional) ideal of D generated by the coeffi-
cients of f. Let x be a semistar operation on D. If N, := {g € D[X]|g #
0 and ¢p(g)* = D*}, then N, = DX\ |H{P[X]|P € QMax™ (D)} is a
saturated multiplicative subset of D[X]. The ring of fractions

Na(D,x) := D[X]|n

*

is called the *-Nagata domain (of D with respect to the semistar oper-
ation x). When x = d, the identity (semi)star operation on D, then
Na(D,d) coincides with the classical Nagata domain D(X) (as in, for
instance |28, page 18], [23], Section 33| and [18]).

Let N,(H) = {f € R|C(f)* = R*}. Tt is easy to see that N,(H) is
a saturated multiplicative subset of R. Indeed assume f,g € N,(H).
Then C(f)"*1C(g) = C(f)"C(fg) for some integer n > 1 by [4, Lemma
1.1(2)], and C(fg) € C(F)C(g). Thus fg € N.(H) & C(fg) = R*
C(f) =C(g)r = R < f,g € NJ(H). Also it is easy to show that
N.(H) = N,,(H) = N;z(H). We define the graded integral domain
analogue of x-Nagata ring, by the quotient ring Ry, ). When x = v,
Ry, () was studied in [4], denoted by Ry ().

LEMMA 2.7. Let R = @@ Ra be a graded integral domain, and  be
a semistar operation on R such that R* C Ry, which sends homogeneous
fractional ideals to homogeneous ones.
(1) N*(H) = R\ Uth-QMax*f(R) Q.
(2) Max(Rn, ) = {QRn,m)|@ € h-QMax™ (R)} if and only if R has
the property that if I is a nonzero ideal of R with C(I)* = R*,
then I N N,(H) # (.

Proof. (1) Let x € R. Then z € N,(H) & C(z)* = R* < C(z) € Q
for all @ € h-QMax™(R) < = ¢ @ for all Q € h-QMax™(R) <
z € R\Ugen quaxts (r) @

(2) (=) Let I is anonzero ideal of R with C(I)* = R*. Then I ¢ Q for
all @ € h-QMax™ (R), and hence IRy, z) = Ry, (). Thus INN,(H) #
0

(<) Let I be a nonzero ideal of R such that I C Jgep quiaxts(r) @ If
C(I)** = R*, then, by assumption, there exists an f € [ with C(f)* =
R*. But, since I C Uth_QMaX*f(R)Q, we have f € @ for some @) €
h- QMax™/(R), a contradiction. Thus C(/)* € R*, and hence I C @ for
some @) € h- QMax™ (R). Thus {QRy, (m)|@Q € h- QMax™ (R)} is the set
of maximal ideals of Ry, (z) by [23, Proposition 4.8]. O



190 Parviz Sahandi

We will say that R satisfies property (#) if, for any nonzero ideal I of
R, C(I)* = R* implies that there exists an f € I such that C(f)* = R*.

EXAMPLE 2.8. Let R = @, R be a graded integral domain, and
let x be a semistar operation on R. If R contains a unit of nonzero
degree, then R satisfies property (#,) (see |4, Example 1.6] for the case
*=1).

The next result is a generalization of the fact that I* = I Na(R, %)NK,
where K is the quotient field of R [18, Proposition 3.4(3)].

LEMMA 2.9. Let R = @, Ra be a graded integral domain, and *
be a semistar operation on R such that R* C Ry, with property (#,).
Then I* = IRy, (N Ry and I;RN*(H) = IRy, (#) for each homogeneous
ideal I of R. In particular R* is integrally closed if and only if Ry, (m 1s
integrally closed.

Proof If I* = IRy, ) N Ry, then it is easy to see that I~RN*(H) =
IRy, iy Hence it suffices to show that I = = IRy, N Ry.

(9) Let f € I*(C Rp), and let J be a finitely generated ideal of
R such that J* = R* and fJ C I. Then C(J)* = R*, and since R
satisfies property (#,), there exists an h € J with C'(h)* = R*. Hence
h € N,(H) and fh e I. Thus f € IRy, )N Ry

(2) Let f =% € IRy, (g) N Ry, where g € I and h € N,(H). Then
fh =g € I, and since C'(h)™"C(f) = C(h)™C(fh) for some integer
m > 1 by [4 Lemma 1.1(1)], we have fC(h)™" C C(f)C(h)™" =
C(h)™C(fh) = C(h)™C(g) € I. Also note that (C(h)"*')* = R*, since
C(h)* = R*. Thus f € I*.

For the in particular case, assume that Ry, (g is integrally closed.
Using [3, Proposition 2.1], Ry is a GCD-domain, hence is integrally
closed. Therefore R* = Ry, gy N Ry is integrally closed. Conversely,
assume that R* is integrally closed. Then R is integrally closed by |14,
Proposition 3.8] for all Q) € QSpeC;(R) Let QRn, gy be a maximal ideal
of Ry, ) for some @ € h-QMax*(R). Then (RN* ))QRy, iy = R is
integrally closed. Thus Ry, ) is integrally closed. [

LEMMA 2.10. Let R = @, Ro be a graded integral domain, and *
be a semistar operation on R such that R* C Ry, with property (#).
Then for each nonzero finitely generated homogeneous ideal I of R, I is
*¢-invertible if and only if, I Ry, gy is invertible.
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Proof. Let I be nonzero finitely generated homogeneous ideal of R,
such that I is x-invertible. Let QRy, ) € Max(Ry, (m)), where Q € h-
QMax*(R) by Lemma (2) Thus by [22 Theorem 2.23],

(IRN, (1)) QRy, (i1 = IRQ is invertible (is principal) in Rg. Hence I Ry, (u

is invertible by [23, Theorem 7.3]. Conversely, assume that [ is ﬁmtely
generated, and IRy, () is invertible. By flatness we have I *1RN*( o =
(R . ])RN*( (RN* (H) * IRN*(H)) (IRN*(H))_l. Therefore,

(IT7Y) Ry, ) (IRN* )) I Ry, ) = (IRN,(m) (I Ry, )~ =

RN, (1) Hence Irt ﬂN( ) # @ Let f € II"' N N,(H). So that
R*=C(f)* C (II"')** C R*. Thus [ is *s-invertible. O

COROLLARY 2.11. Let R = @, R be a graded integral domain,
and = be a semistar operation on R such that R* C Ry, with property
(#.) and 0 # f € R. Then the following conditions are equivalent:

(2) C(f)Rnw,m) is invertible.
(3) C(f) R,y = fRy, ()

Proof. Exactly is the same as [4, Corollary 1.9]. O]

«)

(1) C(f) is x¢-invertible.
)
)

Let Z be the additive group of integers. Clearly, the direct sum I' & 7Z
of I with Z is a torsionless grading monoid. So if y is an indeterminate
over R = @, Ra, then Rly,y '] is a graded integral domain graded
by I' @ Z. In the following proposition we use a technique for defining
semistar operations on integral domains, due to Chang and Fontana [9,
Theorem 2.3].

PROPOSITION 2.12. Let R = @, Ro be a graded integral domain
with quotient field K, let y, X be two indeterminates over R and let
be a semistar operation on R such that R* C Rg. Set T := R[y,y™'],
K, := K(y) and take the following subset of Spec(T):

A* = {Q € Spec(T)| QN R = (0) or @ = (QNR)Ry,y~]
and (Q N R)** C R*}.
Set S* = TIXN\(UH{Q[X]|Q € A*}) and:
E* := E[X]s N K, forall E € F(T).

(a) The mapping «/ : F(T) — F(T), E — E* is a stable semistar
operation of finite type on T, i.e., %I = */.

(b) (F)1 = (kp)! = */.

(c) (ER[y,y ') N K = E* for all E € F(R).
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(d) (ER[y,y™ ') = E*Rly,y™!] for all E € F(R).

(e) T C Ty, where H' is the set of nonzero homogeneous elements
of T', and ! sends homogeneous fractional ideals to homogeneous
ones.

(f) QMax™(T) = {Q|Q € Spec(T) such that QN R = (0) and cg(Q)**
= R} U{PRly,y~']|P € QMax™ (R)}.

(&) h-QMax"(T) = {PR[y,y"]|P € h-QMax’(R)}.

(h) (U]R>/ = (tR)/ = (UR)/ = WT.

Proof. Set V* := {Q € Spec(T)| QN R = (0) and ¢p(Q)* = R* or
Q = PRly,y '] and P € QMax*/(D)}. Then it is easy to see that the
elements of V* are the maximal elements of A* (see proof of |9, Theorem
2.3]). Thus

st = TIXN\(J{QIX]IQ € &) = TIXN(J(QIX]IQ € V7).

(a) It follows from [9, Theorem 2.1 (a) and (b)], that / is a stable
semistar operation of finite type on T

(b) Since QMax* (D) = QMax* (D), the conclusion follows easily from
the fact that S* = S*7 = 5*.

(c) and (d) Exactly are the same as proof of |9, Theorem 2.3(c) and
(@),

(e) From part (d) we have T = R*R[y,y"'] € RyRly,y~'] = Ty
The second assertion follows from Proposition , since «/ = %/ by (a).

(f) Follows from [9, Theorem 2.1(e)] and the remark in the first para-
graph in the proof.

(g) Let M € h-QMax™(T). Since y,y~! € T, clearly we have MNR #
(0). Then by (f), there is P € QMax™ (R) such that M C PR[y,y"].
If P € h-QMax*(R), then M = PRly,y™'] and we are done. So
suppose that P ¢ h-QMax*(R). Then note that P, € h-QSpec*(R)
and M C P,Rly,y '] = (PR|y,y '])n; hence M = P,R[y,y~ '], be-
cause M is a homogeneous maximal quasi-x/-ideal. Note that in this
case P, € h-QMax*(R) by [16, Lemma 4.1, Remark 4.5]. So that
M € {PR[y,y ']|P € h-QMax*(R)}. The other inclusion is trivial.

(h) Suppose that x; = ¢. Note that if M € QMax™(T), and M N
R # (0), then, M = (M N R)[y,y '] and M N R € QMax"(R) (cf. |24,
Proposition 1.1]). Moreover, if @) € Spec(T) is such that @ N R = (0),
then @ is a quasi-t-maximal ideal of T" if and only if cg(Q)" = R. Indeed,
if @ is a quasi-t-maximal ideal of T, and cg(Q)" C R, then there exists
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a quasi-t-maximal ideal P of R such that cp(Q)" € P. Hence Q C
Ply,y~ '], and therefore Q = Ply,y~']. Consequently (0) = Q N R =
Ply,y~'] N R = P which is a contradiction. Conversely assume that
cr(Q)! = R. Suppose @ is not a quasi-t-maximal ideal of T, and let M
be a quasi-t-maximal ideal of T" which contains (). Since the containment
is proper, we have MNR # (0). Thus M = (MNR)[y,y'] and MNR €
QMax'(R) (cf. [24, Proposition 1.1]). Since Q@ C M, cgr(Q) is contained
in the quasi-t-ideal M N R, so that cg(Q)" # R which is a contradiction.
Thus we showed that QMax'(T) = {Q|Q € Spec(T) such that Q N R =
(0) and cr(Q)* = R*} U{PRJy,y ']|P € QMax*/ (R)} = QMax*(T),
where the second equality is by (f). Thus using (a) and (b), we obtain
(wR)/ = (tR)/ = (UR)/ = wr. ]

It is known that Pic(D(X)) = 0 [1, Theorem 2]. More generally, if * is
a star operation on D, then Pic(Na(D,*)) = 0, |26, Theorem 2.14]. Also
in the graded case it is shown in |4, Theorem 3.3, that Pic(Ry,x)) = 0,
where R = @, R. is a graded integral domain containing a unit of
nonzero degree. We next show in general that Pic(Ry,#)) = 0.

THEOREM 2.13. Let R = @, R be a graded integral domain with
a unit of nonzero degree, and x be a semistar operation on R such that
R* C Ry. Then Pic(Ry,m)) = 0.

Proof. Let y be an indeterminate over R, and T' = R[y,y~']. Using
Proposition [2.12)(e) and (g) and Lemma2.7, we deduce that Max(T, (7))
= {QTn,,(m)|Q € h-QMax™" (R)}. Next since Max((Rn, 1)) (y)) =
{P(y)|P is a maximal ideal of Ry, ()}, [23, Proposition 33.1], we have
Max((Ru. m)(1) = {(QRx.cn) (1)@ € h-QMax"(R)}. Thus by a
computation similar to the proof of [4, Lemma 3.2], we obtain the equal-
ity Tn,,(zy = (Rn,(m))(y). The rest of the proof is exactly the same as
proof of [4, Theorem 3.3], using Proposition [2.12] ]

Let D be a domain and 7" an overring of D. Let x and " be semistar
operations on D and T', respectively. One says that T'is (x, «")-linked to
D (or that T is a (x, *')-linked overring of D) if

F*=D"= (FT)" =T~

for each nonzero finitely generated ideal F' of D. (The preceding defini-
tion generalizes the notion of “t-linked overring” which was introduced
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in [13].) It is shown in |15, Theorem 3.8], that T is a (,*)-linked over-
ring of D if and only if Na(D, x) C Na(7,x"). We need a graded analogue
of linkedness.

Let R = @, Ra be a graded integral domain, and 7' be a homoge-
neous overring of R. Let x and * be semistar operations on R and T,
respectively. We say that T is homogeneously (x,*")-linked overring of
R if

F*=D*"= (FT)" =T*
for each nonzero homogeneous finitely generated ideal F' of R. We say
that T' is homogeneously t-linked overring of R if T' is homogeneously
(t,t)-linked overring of R. Also it can be seen that T" is homogeneously
(%, «')-linked overring of R if and only if T is homogeneously (¥, *)-linked
overring of R (cf. [15, Theorem 3.8]).

EXAMPLE 2.14. Let R = @ . Ro be a graded integral domain, and
let % be a semistar operation on R such that R* C Ry. Let P € h-
QSpec*(R). Then, Ry\p is a homogeneously (x,«')-linked overring of
R, for all semistar operation ' on R\ p. Indeed assume that I is a
nongzero finitely generated homogeneous ideal of R such that F* = R*.
Then we have F* = R*. Thus using Proposition we have FRy\p =
F*Rp\p = R*"Rp\p = R\ p.

LEMMA 2.15. Let R = @, Ro be a graded integral domain with
a unit of nonzero degree, and let T' be a homogeneous overring of R.
Let x (resp. «') be a semistar operation on R (resp. on T). Then, T
is a homogeneously (x,*')-linked overring of R if and only if Ry, ) C
I, -

Proof. Let f € R such that Cr(f)* = R*. Then by assumption
CT(f)*/ = (CR(f)T)*/ = R*. Hence R,y € Tn ). Conversely
let F' be a nonzero homogeneous finitely generated ideal of R such that
F* = R*. Since R has a unit of nonzero degree we can choose an element
f € R such that Cr(f) = F. From the fact that Cr(f)* = R*, we have
that f is a unit in Ry, z) and so by assumption, f is a unit in T, #).
This implies that Cp(f)* = (Cr(f)T)* =T*, ie., (FT)" =T%. O

3. Kronecker function ring

Let R = @, Ro be a graded integral domain, * an e.a.b. star
operation on R. The graded analogue of the well known Kronecker
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function ring (see [23, Theorem 32.7]) of R with respect to * is defined
by

Kr(R, %) := {g' fig€R, g#0, and C(f) C C(g)* }

in [4]. The following lemma is proved in [4, Theorems 2.9 and 3.5], for
an e.a.b. star operation *x. We need to state it for e.a.b. semistar
operations. Since the proof is exactly the same as star operation case,
we omit the proof.

LEMMA 3.1. Let R = @, Ro be a graded integral domain, * an
e.a.b. semistar operation on R, and

Kr(R, %) := {g‘ f,g€R, g#0, and C(f) C C(g)* }

Then
(1) Kr(R,*) is an integral domain.
In addition, if R has a unit of nonzero degree, then,

(2) Kr(R,*) is a Bézout domain.
(3) I Kr(R,*) N Ry = I* for every nonzero finitely generated homoge-
neous ideal I of R.

Inspired by the work of Fontana and Loper in [20], we can generalize
this definition of Kr(R,*) to all semistar operations on R which send
homogeneous fractional ideals, to homogeneous ones, provided that R
has a unit of nonzero degree. Before doing that we need a lemma.

LEMMA 3.2. Let R = @, . Ra be a graded integral domain, * a
semistar operation on R which sends homogeneous fractional ideals to
homogeneous ones. Suppose that a € R is homogeneous and B, F &
f(R), with B homogeneous and F C Ry, such that aF' C (BF)*. Then
there exists a homogeneous T' € f(R) such that T C (BT)*.

Proof. Suppose that F' is generated by vy, - ,y, € Ryg. Let y; =
> tij be the decomposition of y; to homogeneous elements for i =
1,---,n. Then ay; € (BF)* = (> y;B)* C (>_t;;B)*. Since (>_t;;B)*
is homogeneous we have at;; € (> t;;B)*. Let T be the fractional ideal
of R, generated by all homogeneous elements t;;. So that 1" C (BT)*
and T € f(R) is homogeneous. O
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THEOREM 3.3. Let R = @, Ra be a graded integral domain with
a unit of nonzero degree, » a semistar operation on R which sends ho-
mogeneous fractional ideals to homogeneous ones, and

[ f| f,g€ R,g#0, and thereis0#h € R
el = {4 e e ety )
Then

(1) Kr(R,*) = Kr(R, %)

(2) Kr(R,*) is a Bézout domain.

(3) IKr(R,*) N Ry = I** for every nonzero finitely generated homo-
geneous ideal I of R.

(4) If f,g € R are nonzero such that C(f + g)* = (C(f) + C(g))*,
then (f,g) Kr(R,x) = (f + g) Kr(R, *). In particular, f Kr(R,*) =
C(f)Kr(R,x) for all f € R.

Proof. 1t it clear from the definition that Kr(R, ) = Kr(R, ;). Thus
using Lemma [2.4] we can assume, without loss of generality, that x is a
semistar operation of finite type.

Parts (2) and (3) are direct consequences of (1) using Lemmal[3.1] For
the proof of (1) we have two cases:

Case 1: Assume that x is an e.a.b. semistar operation of finite
type. In this case, for f,g,h € R\{0} we have

C()C(h) € (Clg)C(h)" & C(f) € Cg)",

Therefore Kr(R, ) -as defined in this theorem- coincides with Kr(R, %)
of an e.a.b. semistar operation x, as defined in Lemma Also in
this case x = *, by [20, Proposition 4.5(5)]. Hence in this case (1) is
true.

Case 2: General case. Let x be a semistar operation of finite type
on R. By definition it is easy to see that, given two semistar operations
on R with x; < %o, then Kr(R,*;) C Kr(R,*3). Using [20, Proposition
4.5(3)] we have x < x,. Therefore Kr(R, ) C Kr(R,*,). Conversely let
f/g € Kr(R,*,). Then, by Case 1, C(f) C C(g)*. Set A := C(f) and
B := C(g). Then A C B* = |J{((BH)* : H)|H € f(R)}. Suppose
that A is generated by homogeneous elements zq,---,x, € R. Then
there is H; € f(R), such that z;H; C (BH;)* for i = 1,--- ,n. Choose
0 # r; € R such that F; = r;H; C R. Thus z;F; C (BF;)*. Therefore
Lemma gives a homogeneous T; € f(R) such that z;7; C (BT;)*.
Now set T := TiT;---T, which is a finitely generated homogeneous
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fractional ideal of R such that AT C (BT)*. Now since R has a unit
of nonzero degree, we can find an element h € R such that C(h) = T.
Then C(f)C(h) C (C(g)C(h))*. This means that f/g € Kr(R,*) to
complete the proof of (1).

The proof of (4) is exactly the same as |4, Theorem 2.9(3)]. O

4. Graded PxMDs

Let R = @, .- Ro be a graded integral domain, x be a semistar
operation on R, H be the set of nonzero homogeneous elements of R,
and N,(H) = {f € R|C(f)* = R*}. In this section we define the notion
of graded Priifer x»-multiplication domain (graded P+MD for short) and
give several characterization of it.

We say that a graded integral domain R = @ R, with a semistar
operation x, is a graded Prifer x-multiplication domain (graded PxMD)
if every nonzero finitely generated homogeneous ideal of R is a xy-
invertible, i.e., (II"1)*’ = R* for every nonzero finitely generated ho-
mogeneous ideal I of R. It is easy to see that a graded PxMD is the
same as a graded Px;MD by definition, and is the same as a graded
P*MD by [22, Proposition 2.18]. When * = v we recover the classical
notion of a graded Priifer v-multiplication domain (graded PvMD) [2]. Tt
is known that R is a graded PvMD if and only if R is a PvMD |2, The-
orem 6.4].

Also when * = d, a graded PdMD is called a graded Priifer domain [4].
It is clear that every graded Priifer domain is a graded PuMD and hence a
PuMD. In particular every graded Priifer domain is an integrally closed
domain. Although R is a graded PvMD if and only if R is a PuMD,
Anderson and Chang in [4, Example 3.6] provided an example of a graded
Priifer domain which is not Priifer. It is known that if A, B, C are ideals
of an integral domain D, then (A+B)(A+C)(B+C) = (A+B+C)(AB+
AC + BC). Thus R = @, Ra is a graded Priifer domain if and only
if every nonzero ideal of R generated by two homogeneous elements is
invertible. We use this result in this section without comments.

The following proposition is inspired by |23, Theorem 24.3].

PROPOSITION 4.1. Let R = @, Ro be a graded integral domain.
Then the following conditions are equivalent:

(1) R is a graded Priifer domain.
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(2) Each finitely generated nonzero homogeneous ideal of R is a can-
celation ideal.

(3) If A, B, C are finitely generated homogeneous ideals of R such that
AB = AC and A is nonzero, then B = C.

(4) R is integrally closed and there is a positive integer n > 1 such
that (a,b)" = (a™,b") for each a,b € H.

(5) R is integrally closed and there exists an integer n > 1 such that
a" b € (a",b") for each a,b € H.

Proof. The implications (1) = (2) = (3) and (4) = (5) are clear.

(3) = (4) By the same argument as in the proof of part (2) = (3),
in [23, Proposition 24.1], we have that R is integrally closed in Ry.
Therefore by [3, Proposition 5.4], R is integrally closed. Now if a,b € H
we have (a,b)® = (a,b)(a? b?). Thus by (3) we obtain that (a,b)* =
(a?,b?).

(5) = (1) If (5) holds then [23, Proposition 24.2], implies that each
nonzero homogeneous ideal generated by two homogeneous elements is
invertible. Therefore R is a graded Priifer domain. O]

The ungraded version of the following theorem is due to Gilmer (see
[23, Corollary 28.5]).

THEOREM 4.2. Let R = @, Ro be a graded integral domain with
a unit of nonzero degree. Then R is a graded Priifer domain if and only

it C(f)C(g) = C(fg) for all f,g € Ry.

Proof. (=) Let f,g € Ry. Then by [4, Lemma 1.1(1)], there exists
some positive integer n such that C(f)""1C(g) = C(f)"C(fg). Now
since R is a graded Priifer domain, the homogeneous fractional ideal
C(f)™ is invertible. Thus C(f)C(g) = C(fg) for all f,g € Ry.

(<) Let o € H be a unit of nonzero degree. Assume that C'(f)C(g) =
C(fg) for all f,g € Ry. Hence R is integrally closed by [2, Theorem
3.7]. Now let a,b € H be arbitrary. We can choose a positive integer
n such that deg(a) # deg(a™). So that C(a + a™b) = (a,b). Hence,
since (a+ a”b)(a —a"b) = a* — (a"b)?, we have (a,b)(a, —b) = (a?, —b?).
Consequently (a,b)? = (a?,b?). Thus by Proposition [£.1] we see that R
is a graded Priifer domain. O

LEMMA 4.3. Let R = @, . Ro be a graded integral domain and
P be a homogeneous prime ideal. Then, the following statements are
equivalent:
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(1) Ry\p Is a graded Priifer domain
(2) Rp is a valuation domain.

(3) For each nonzero homogeneous u € Ry, u or u™?

is in RH\p

Proof. (1) = (2) Suppose that R\ p is a graded Priifer domain. In
particular Rpy\p is a (graded) PvMD and each nonzero homogeneous
ideal of R\ p is a t-ideal. So that h—QMaXt(RH\p) = {PRm\p}. Thus by
[10, Lemma 2.7], we see that (RH\p)pRH\P = Rp is a valuation domain.

(2) = (3) Let 0 # u € Ry. Thus by the hypothesis u or u™! is in Rp.
Thus w or u™! is in Ry p.

(3) = (1) Let I, J be two nonzero homogeneous ideals of Ry p and
assume that I ¢ J. So there is a homogeneous element a € I\J. For
each b € J, we have § ¢ R\ p, since otherwise we have a = ()b € J.
Thus by the hypothesis g € Ry\p. Hence b = (g)a € I. Thus we showed
that J C I, and so every two homogeneous ideal are comparable.

Now let (a,b) be an ideal generated by two homogeneous elements of
R p. Now by the first paragraph (a,b) = (a) or (a,b) = (b). Thus
(a,b) is invertible. Hence Ry p is a graded Priifer domain. O

THEOREM 4.4. Let R = @, . Ra be a graded integral domain, and
* be a semistar operation on R such that R* C Ry. Then, the following
statements are equivalent:
(1) R is a graded PxMD.
(2) Rup is a graded Priifer domain for each P € h-QSpec*(R).
(3) Rinp is a graded Priifer domain for each P € h-QMax*(R).
(4) Rp is a valuation domain for each P € h-QSpec*(R).
(5) Rp is a valuation domain for each P € h-QMax*(R).

Proof. (2) = (3) is trivial, and, (2) < (4) and (3) < (5), follow from
Lemma [£.3

(1) = (2) Let I be a nonzero finitely generated homogeneous ideal
of R. Then I is -invertible. Therefore, for each P € h-QSpec*(R),
since 117! SZ P, we have RH\p = ([I_I)RH\p = [RH\P[_IRH\}D =
(IRmp)(IRm\p)~". So that IR\ p is invertible. Thus Ry p is a graded
Priifer domain for each P € h—QSpec;(R).

(3) = (1) Let I be a nonzero finitely generated homogeneous ideal
of R. Suppose that I is not *-invertible. Hence there exists P € h-
QMax*(R) such that I7=' C P. Thus Rmp = (IRmp)IRmp)™' =
II"'Ry\p € PRy p, which is a contradiction. So that I1-" ¢ P for
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each P € h-QMax*(R). Therefore (I1~')* = R*, that is I is *-invertible,
and hence R is a graded PxMD. O]

The ungraded version of the following theorem is due to Chang in the
star operation case [8, Theorem 3.7], and is due to Anderson, Fontana,
and Zafrullah in the case of semistar operations |6, Theorem 1.1].

THEOREM 4.5. Let R = @, Ro be a graded integral domain with
a unit of nonzero degree, and = be a semistar operation on R such that
R* C Ry. Then R is a graded PxMD if and only if (C(f)C(g))* =
C(fg)* for all f,g € Ry.

Proof. (=) Let f,g € Ry. Choose a positive integer n such that
C(fy™1C(g) = C(F)"C(fg) by [ Lemma 11(1)]. Thus (C(f)"*'C(g))7
= (C(f)"C(fg))*. Since R is a graded PxMD, the homogeneous frac-
tional ideal C(f)" is *-invertible. Thus (C'(f)C(g))* = C(fg)* for all
f7 g€ RH ~ ~

(«) Assume that (C(f)C(g))* = C(fg)* forall f,g € Ry. Let P € h-
QMax*(R). Then using Proposition , we have C(f)Ry\pC(9)Ru\p =
C(NHC(9Rmp = (C(f)C(9)*Rup = C(f9)*Rmp = C(fg9)Ru\p-
Since R\ p has a unit of nonzero degree, Theorem shows that R\ p
is a graded Priifer domain. Now Theorem [4.4] implies that R is a graded
PxMD. ]

We now recall the notion of x-valuation overring (a notion due es-
sentially to P. Jaffard |25, page 46]). For a domain D and a semistar
operation x on D, we say that a valuation overring V' of D is a x-valuation
overring of D provided F* C F'V, for each F' € f(D).

REMARK 4.6. (1) Let » be a semistar operation on a graded integral
domain R = @, Ra. Recall that for each ' € f(R) we have

Fre = ﬂ{FV|V is a * -valuation overring of R},

by |19, Propositions 3.3 and 3.4 and Theorem 3.5].

(2) We have N,(H) = N3, (H). Indeed, since * < %, by |20, Propo-
sition 4.5/, we have N,(H) = Nz(H) C N;,(H). Now if f € R\N,(H)
then, C(f)* € R*. Thus there is a homogeneous quasi-—x-prime ideal P
of R such that C(f) C P. Let V be a valuation domain dominating Rp
with maximal ideal M |23, Corollary 19.7]. Therefore V' is a x-valuation
overring of R by |18, Theorem 3.9], and C(f)V C M; so C(f)®s ¢ R®)e
and f ¢ Nz (H). Thus we obtain that N,(H) = N5, (H).
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In the following theorem we generalize a characterization of PoMDs
proved by Arnold and Brewer [7, Theorem 3|. It also generalizes [8,
Theorem 3.7], [4, Theorems 3.4 and 3.5], and |17, Theorem 3.1].

THEOREM 4.7. Let R = @, Ro be a graded integral domain with
a unit of nonzero degree, and * be a semistar operation on R such that
R* C Ry. Then, the following statements are equivalent:

(1) R is a graded PxMD.

(2) Every ideal of Ry, (my is extended from a homogeneous ideal of R.

(3) Every principal ideal of Ry, Is extended from a homogeneous
ideal of R.

Ry, () Is a Priifer domain.

Ry, gy is a Bézout domain.

N (i) = Kr(R, %).

r(R,*) is a quotient ring of R.

r(R,*) is a flat R-module.

I* = I** for each nonzero homogeneous finitely generated ideal of

NN N N S
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In particular if R is a graded PxMD, then R* is integrally closed.
Proof. By Proposition 2.3 and Theorem 3.3 we have Kr(R,%) is well-

defined and is a Bézout domain.

(1) = (2) Let 0 # f € R. Then C(f) is x-invertible, because R is
a graded P«MD, and thus fRy,m)y = C(f)Rn,m) by Corollary .
Hence if A is an ideal of Ry, gy, then A = IRy, ) for some ideal I of
R, and thus A= (3., C(f)) R, ()

(2) = (3) Clear.

(3) = (1) Is the same as part (3) = (1) in [4, Theorem 3.4].

(1) = (4) Let A be a nonzero finitely generated ideal of Ry, (). Then
by Corollary .11}, A = IRy, for some nonzero finitely generated
homogeneous ideal I of R. Since R is a graded PxMD, I is %-invertible,
and thus A = IRy, (m) is invertible by Lemma .

(4) = (5) Follows from Theorem [2.13]

(5) = (6) Clearly Ry,my € Kr(R,x). Since Ry,(m) is a Bézout
domain, then Kr(R,*) is a quotient ring of Ry, (m), by [23, Proposition
27.3]. If Q € h-QMax*(R), then QKr(R,*) C Kr(R,%). Otherwise
QKr(R,*) = Kr(R,*), and hence there is an element f € @, such
that f Kr(R,*) = Kr(R,*). Thus % € Kr(R,*). Therefore R = C(1) C
C(f)®e C R®a 50 that C(f)*= = R¥=. Hence f € N, (H) = N,(H)
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by Remark (2) This means that Q* = R*, a contradiction. Thus
QKr(R,*) € Kr(R,*), and so there is a maximal ideal M of Kr(R,x*)
such that Q Kr(R,x) € M. Hence M N Ry, #) = QRn,m), by Lemma
. Consequently Rg C Kr(R, %)y, and since Ry is a valuation domain,
we have Ry = Kr(R,%)y. Therefore Ry, ) = ﬂth_QMaX;(R) Ry O
ﬂMeMaX(Kr(R;)) Kr(R,*)n. Hence Ry, )y = Kr(R, *).

(6) = (7) and (7) = (8) are clear.

(8) = (6) Recall that an overring T of an integral domain S is a flat
S-module if and only if Ty = Spns for all M € Max(T') by [32, Theorem
2].
Let A be an ideal of R such that AKr(R,*) = Kr(R,*). Then there
exists an element f € A such that f Kr(R,*) = Kr(R,*) using Theorem
3.3 so § € Kr(R,%) = Kr(R,%,). Thus R = C(1) € C(f)* C R*™,
and so C(f)* = R*s. Hence C(f)* = R*. Therefore f € AN N,(H) #
(. Hence, if Py is a homogeneous maximal quasi-x-ideal of R, then
PyKr(R,%) C Kr(R,*), and since Py Ry, () is a maximal ideal of Ry, (#),
there is a maximal ideal M, of Kr(R,*) such that My N R = (My N
RN*(H)) NR= PORN*(H) NR= Po. Thus by (8), KI"(R, w)MO = RPO =

RN(H))PORN(H)'

Let M; be a maximal ideal of Kr(R,*), and let P; be a homogeneous
maximal quasi-x-ideal of R such that M; N Ry, uy € PiRn, ). By
the above paragraph, there is a maximal ideal M, of Kr(R,*) such that
KF(R,;>M2 = (RN*(H))PIRN*(H)' Note that KI‘(R,:;)MZ Q I(I'(.ll:i,;;)]w1 ,
M; and M, are maximal ideals, and Kr(R, %) is a Priifer domain; hence
My = M (cf. [23, Theorem 17.6(c)]) and Kr(R, %), = (B, (1)) P Ry -
Thus

KI‘(R,;) = ﬂ KI"(R,:;)M = m (RN*(H)>PRN*(H)
MeMax(Kr(R,%)) Peh- QMax* (R)
= Ry, )

(6) = (9) Assume that Ry,(zy = Kr(R,x). Let I be a nonzero
homogeneous finitely generated ideal of R. Then by Lemma [2.9] and
Theorem (3), we have I* = IRy, ) N Ry = T Kr(R,%) N Ry = I*.

(9) = (1) Let a and b be two nonzero homogeneous elements of
R. Then ((a,b)®)* = ((a,b)(a?,b?))* which implies that ((a,b)?)* =
(a%,b*)*. Hence ((a,b)?)* = (a2,b%)* and so (a,b)*Rp\p = (a?,b?) R p
for each homogeneous maximal quasi-x-ideal P of R. On the other hand
R* = R* by (9). Hence R* is integrally closed. Thus R;RH\p = Rp\p is
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integrally closed. Therefore by Proposition Rm\p is a graded Priifer
domain for each homogeneous maximal quasi-xs-ideal of R. Thus R is
a graded PxMD by Theorem [4.4] O

The following theorem is a graded version of a characterization of
Priifer domains proved by Davis [12, Theorem 1]. It also generalizes |13,
Theorem 2.10], in the t-operation, and [15, Theorem 5.3], in the case of
semistar operations.

THEOREM 4.8. Let R = @, Ro be a graded integral domain with
a unit of nonzero degree, and = be a semistar operation on R such that
R* C Ry. Then, the following statements are equivalent:

(1) R is a graded PxMD.

(2) Each homogeneously (x,t)-linked overring of R is a PvMD.

(3) Each homogeneously (x, d)-linked overring of R is a graded Priifer
domain.

(4) Each homogeneously (%, t)-linked overring of R, is integrally closed.

(5) Each homogeneously (, d)-linked overring of R, is integrally closed.

Proof. (1) = (2) Let T be a homogeneously (x,t)-linked overring
of R. Thus by Lemma [2.15] we have Ry, ) € T, m)- Since R is a
graded PxMD, by Theorem , we have Ry, gy is a Priifer domain.
Thus by [23, Theorem 26.1], we have Ty, (x) is a Priifer domain. Hence,
again by Theorem , we have T is a graded PuMD. Therefore using |2,
Theorem 6.4], T is a PuMD.

(2) = (4) = (5) and (3) = (b) are clear.

(5) = (1) Let P € h-QMax*(R). For a nonzero homogeneous u € Ry,
let T = Ru*,v*|gp. Then Ry p and T are homogeneous (%, d)-linked
overring of R by Example2.14] So that R\ p and T' are integrally closed.
Hence v € T, and since T = Ry p[u?®,u?], there exists a polynomial
v € Rm\p[X] such that y(u) = 0 and one of the coefficients of v is a
unit in Ry p. So w or w™t is in Ry p by |27, Theorem 67]. Therefore
by Lemma , R\ p is a graded Priifer domain. Thus R is a graded
PxMD by Theorem

(1) = (3) Is the same argument as in part (1) = (2). O

The next result gives new characterizations of PuMDs for graded in-
tegral domains, which is the special cases of Theorems [4.4] [4.5] [£.7] and
4.8 for x = wv.
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COROLLARY 4.9. Let R = @ . Ra be a graded integral domain with
a unit of nonzero degree. Then, the following statements are equivalent:

(1) R is a (graded) PvMD.

(2) Re\p is a graded Priifer domain for each P € h-QMax"'(R).

Rp is a valuation domain for each P € h-QMax'(R).

Every ideal of Ry, m) is extended from a homogeneous ideal of R.
Ry, (my is a Priifer domain.

Ry, ) is a Bézout domain.

RNU(H) == KI‘(R, w)

Kr(R,w) is a quotient ring of R.

Kr(R,w) is a flat R-module.

FEach homogeneously t-linked overring of R is a PvMD.

FEach homogeneously t-linked overring of R, is integrally closed.
(C(f)C(g))* = C(fg)" for all f,g € Rp.

IV = [" for each nonzero homogeneous finitely generated ideal of

R.

O W

N = O O

e e el e
R N N N D N N N

NN N N
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