Korean J. Math. **22** (2014), No. 1, pp. 181–206 http://dx.doi.org/10.11568/kjm.2014.22.1.181

CHARACTERIZATIONS OF GRADED PRÜFER *-MULTIPLICATION DOMAINS

PARVIZ SAHANDI

ABSTRACT. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid Γ , and \star be a semistar operation on R. In this paper we define and study the graded integral domain analogue of \star -Nagata and Kronecker function rings of Rwith respect to \star . We say that R is a graded Prüfer \star -multiplication domain if each nonzero finitely generated homogeneous ideal of R is \star_f -invertible. Using \star -Nagata and Kronecker function rings, we give several different equivalent conditions for R to be a graded Prüfer \star -multiplication domain. In particular we give new characterizations for a graded integral domain, to be a PvMD.

1. Introduction

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded (commutative) integral domain graded by an arbitrary grading torsionless monoid Γ , that is Γ is a commutative cancellative monoid (written additively). Let $\langle \Gamma \rangle = \{a - b | a, b \in \Gamma\}$, be the quotient group of Γ , which is a torsionfree abelian group.

Let *H* be the saturated multiplicative set of nonzero homogeneous elements of *R*. Then $R_H = \bigoplus_{\alpha \in \langle \Gamma \rangle} (R_H)_{\alpha}$, called the homogeneous quotient

Received December 18, 2013. Revised February 2, 2014. Accepted February 2, 2014.

²⁰¹⁰ Mathematics Subject Classification: 13A15, 13G05, 13A02.

Key words and phrases: semistar operation, Nagata ring, Kronecker function ring, Prüfer domain, graded domain, PvMD.

This research was supported by a grant from Institute for Research in Fundamental Sciences (IPM) (No. 91130030).

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

field of R, is a graded integral domain whose nonzero homogeneous elements are units. For a fractional ideal I of R let I_h denote the fractional ideal generated by the set of homogeneous elements of R in I. It is known that if I is a prime ideal, then I_h is also a prime ideal (cf. [29, Page 124]). An integral ideal I of R is said to be homogeneous if $I = \bigoplus_{\alpha \in \Gamma} (I \cap R_\alpha)$; equivalently, if $I = I_h$. A fractional ideal I of R is homogeneous if sIis an integral homogeneous ideal of R for some $s \in H$ (thus $I \subseteq R_H$). For $f \in R_H$, let $C_R(f)$ (or simply C(f)) denote the fractional ideal of Rgenerated by the homogeneous components of f. For a fractional ideal Iof R with $I \subseteq R_H$, let $C(I) = \sum_{f \in I} C(f)$. For more on graded integral domains and their divisibility properties, see [3, 29].

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ and $N_v(H) = \{f \in R | C(f)^v = R\}$. (Definitions related to the v-operation will be reviewed in the sequel.) Then $N_{v}(H)$ is a saturated multiplicative subset of R by [4, Lemma 1.1(2)]. The graded integral domain analogue of the well known Nagata ring is the ring $R_{N_v(H)}$. In [4], Anderson and Chang, studied relationships between the ideal-theoretic properties of $R_{N_v(H)}$ and the homogeneous ideal-theoretic properties of R. For example it is shown that if R has a unit of nonzero degree, $Pic(R_{N_v(H)}) = 0$ and that R is a PvMD if and only if each ideal of $R_{N_v(H)}$ is extended from a homogeneous ideal of R, if and only if $R_{N_n(H)}$ is a Prüfer (or Bézout) domain [4, Theorems 3.3 and 3.4]. Also, they generalized the notion of Kronecker function ring, (for e.a.b. star operations on R) and then showed that this ring is a Bézout domain [4, Theorem 3.5]. For the definition and properties of semistar-Nagata and Kronecker function rings of an integral domain see the interesting survey article [21]. Recall that the *Picard group (or the ideal* class group) of an integral domain D, is Pic(D) = Inv(D)/Prin(D), where Inv(D) is the multiplicative group of invertible fractional ideals of D, and Prin(D) is the subgroup of principal fractional ideal of D.

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be an integral domain, and \star be a semistar operation on R. In Section 2 of this paper we study the homogeneous elements of $\operatorname{QSpec}^{\star}(R)$ denoted by h- $\operatorname{QSpec}^{\star}(R)$. We show that if \star is a finite type semistar operation on R which sends homogeneous fractional ideals to homogeneous ones, and such that $R^{\star} \subsetneq R_H$, then each homogeneous quasi- \star -ideal of R, is contained in a homogeneous quasi- \star -prime ideal of R. One of key results in this paper is Proposition 2.3, which shows that if $R^{\star} \subsetneq R_H$, the $\tilde{\star}$ sends homogeneous fractional ideals to homogeneous ones. We also define and study the Nagata ring of R with

respect to \star . The \star -Nagata ring is defined by the quotient ring $R_{N_{\star}(H)}$, where $N_{\star}(H) = \{f \in R | C(f)^{\star} = R^{\star}\}$. Among other things, it is shown that $Pic(R_{N_{\star}(H)}) = 0$. In Section 3 we define and study the Kronecker function ring of R with respect to \star . The Kronecker function ring, inspired by [20, Theorem 5.1], is defined by $\operatorname{Kr}(R,\star) := \{0\} \cup \{f/g|0 \neq$ $f, q \in R$, and there is $0 \neq h \in R$ such that $C(f)C(h) \subset (C(q)C(h))^*$. It is shown that if \star sends homogeneous fractional ideals to fractional ones, then $\operatorname{Kr}(R,\star)$ is a Bézout domain. In Section 3 we define the notion of graded Prüfer *-multiplication domains and give several different equivalent conditions to be a graded P*MD. A graded integral domain R, is called a graded Prüfer \star -multiplication domain (graded $P\star MD$) if every finitely generated homogeneous ideal of R is a \star_f -invertible, i.e., $(II^{-1})^{\star_f} = R^{\star}$ for each finitely generated homogeneous ideal I of R. Among other results we show that R is a graded P*MD if and only if $R_{N_{\star}(H)}$ is a Prüfer domain if and only if $R_{N_{\star}(H)}$ is a Bézout domain if and only if $R_{N_*(H)} = \operatorname{Kr}(R, \widetilde{\star})$ if and only if $\operatorname{Kr}(R, \widetilde{\star})$ is a flat *R*-module.

To facilitate the reading of the paper, we review some basic facts on semistar operations. Let D be an integral domain with quotient field K. Let $\mathcal{F}(D)$ denote the set of all nonzero D-submodules of K. Let $\mathcal{F}(D)$ be the set of all nonzero *fractional* ideals of D; i.e., $E \in \mathcal{F}(D)$ if $E \in \mathcal{F}(D)$ and there exists a nonzero element $r \in D$ with $rE \subseteq D$. Let f(D) be the set of all nonzero finitely generated fractional ideals of D. Obviously, $f(D) \subset \mathcal{F}(D) \subset \overline{\mathcal{F}}(D)$. As in [30], a semistar operation on D is a map $\star : \overline{\mathcal{F}}(D) \to \overline{\mathcal{F}}(D), E \mapsto E^{\star}$, such that, for all $x \in K, x \neq 0$, and for all $E, F \in \overline{\mathcal{F}}(D)$, the following three properties hold:

- $\star_1 : (xE)^{\star} = xE^{\star};$
- $\star_2 : E \subseteq F \text{ implies that } E^* \subseteq F^*; \\ \star_3 : E \subseteq E^* \text{ and } E^{**} := (E^*)^* = E^*.$

Let \star be a semistar operation on the domain D. For every $E \in \overline{\mathcal{F}}(D)$, put $E^{\star_f} := \bigcup F^{\star}$, where the union is taken over all finitely generated $F \in f(D)$ with $F \subseteq E$. It is easy to see that \star_f is a semistar operation on D, and \star_f is called the semistar operation of finite type associated to \star . Note that $(\star_f)_f = \star_f$. A semistar operation \star is said to be of *finite type* if $\star = \star_f$; in particular \star_f is of finite type. We say that a nonzero ideal I of D is a quasi- \star -ideal of D, if $I^{\star} \cap D = I$; a quasi- \star -prime (ideal of D), if I is a prime quasi- \star -ideal of D; and a quasi- \star -maximal (ideal of D), if I is maximal in the set of all proper quasi- \star -ideals of D. Each quasi- \star maximal ideal is a prime ideal. It was shown in [16, Lemma 4.20] that

if $D^* \neq K$, then each proper quasi- \star_f -ideal of D is contained in a quasi- \star_f -maximal ideal of D. We denote by $QMax^*(D)$ (resp., $QSpec^*(D)$) the set of all quasi- \star -maximal ideals (resp., quasi- \star -prime ideals) of D.

If \star_1 and \star_2 are semistar operations on D, one says that $\star_1 \leq \star_2$ if $E^{\star_1} \subseteq E^{\star_2}$ for each $E \in \overline{\mathcal{F}}(D)$ (cf. [30, page 6]). This is equivalent to saying that $(E^{\star_1})^{\star_2} = E^{\star_2} = (E^{\star_2})^{\star_1}$ for each $E \in \overline{\mathcal{F}}(D)$ (cf. [30, Lemma 16]). Obviously, for each semistar operation \star defined on D, we have $\star_f \leq \star$. Let d_D (or, simply, d) denote the identity (semi)star operation on D. Clearly, $d_D \leq \star$ for all semistar operations \star on D.

It has become standard to say that a semistar operation \star is *stable* if $(E \cap F)^{\star} = E^{\star} \cap F^{\star}$ for all $E, F \in \overline{\mathcal{F}}(D)$. ("Stable" has replaced the earlier usage, "quotient", in [30, Definition 21].) Given a semistar operation \star on D, it is possible to construct a semistar operation $\widetilde{\star}$, which is stable and of finite type defined as follows: for each $E \in \overline{\mathcal{F}}(D)$,

 $E^{\tilde{\star}} := \{ x \in K | xJ \subseteq E, \text{ for some } J \subseteq R, J \in f(R), J^{\star} = D^{\star} \}.$

It is well known that [16, Corollary 2.7]

 $E^{\widetilde{\star}} := \cap \{ ED_P | P \in QMax^{\star_f}(D) \}, \text{ for each } E \in \overline{\mathcal{F}}(D).$

The most widely studied (semi)star operations on D have been the identity $d, v, t := v_f$, and $w := \tilde{v}$ operations, where $A^v := (A^{-1})^{-1}$, with $A^{-1} := (R : A) := \{x \in K | xA \subseteq D\}.$

Let \star be a semistar operation on an integral domain D. We say that \star is an **e.a.b.** (endlich arithmetisch brauchbar) semistar operation of D if, for all $E, F, G \in f(D), (EF)^{\star} \subseteq (EG)^{\star}$ implies that $F^{\star} \subseteq G^{\star}$ ([20, Definition 2.3 and Lemma 2.7]). We can associate to any semistar operation \star on D, an **e.a.b.** semistar operation of finite type \star_a on D, called the **e.a.b.** semistar operation associated to \star , defined as follows for each $F \in f(D)$ and for each $E \in \overline{F}(D)$:

$$F^{\star_a} := \bigcup \{ ((FH)^{\star} : H^{\star}) | H \in f(R) \},$$
$$E^{\star_a} := \bigcup \{ F^{\star_a} | F \subseteq E, F \in f(R) \}$$

[20, Definition 4.4 and Proposition 4.5] (note that $((FH)^* : H^*) = ((FH)^* : H)$). It is known that $\star_f \leq \star_a$ [20, Proposition 4.5(3)]. Obviously $(\star_f)_a = \star_a$. Moreover, when $\star = \star_f$, then \star is e.a.b. if and only if $\star = \star_a$ [20, Proposition 4.5(5)].

Let \star be a semistar operation on a domain *D*. Recall from [17] that, *D* is called a *Prüfer* \star -*multiplication domain* (for short, a P \star MD) if each

finitely generated ideal of D is \star_f -invertible; i.e., if $(II^{-1})^{\star_f} = D^{\star}$ for all $I \in f(D)$. When $\star = v$, we recover the classical notion of PvMD; when $\star = d_D$, the identity (semi)star operation, we recover the notion of Prüfer domain.

2. Nagata ring

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star be a semistar operation on R, H be the set of nonzero homogeneous elements of R. An overring T of R, with $R \subseteq T \subseteq R_H$ will be called a *homogeneous* overring if $T = \bigoplus_{\alpha \in \langle \Gamma \rangle} (T \cap (R_H)_{\alpha})$. Thus T is a graded integral domain with $T_{\alpha} = T \cap (R_H)_{\alpha}$.

In this section we study the homogeneous elements of $QSpec^*(R)$, denoted by h- $QSpec^*(R)$, and the graded integral domain analogue of \star -Nagata ring. Let h- $QMax^*(R)$ denote the set of ideals of R which are maximal in the set of all proper homogeneous quasi- \star -ideals of R. The following lemma shows that, if $R^* \subsetneq R_H$ and $\star = \star_f$ sends homogeneous fractional ideals to homogeneous ones, then h- $QMax^{\star_f}(R)$ is nonempty and each proper homogeneous quasi- \star_f -ideal is contained in a maximal homogeneous quasi- \star_f -ideal.

LEMMA 2.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a finite type semistar operation on R which sends homogeneous fractional ideals to homogeneous ones, and such that $R^{\star} \subsetneq R_{H}$. If I is a proper homogeneous quasi- \star -ideal of R, then I is contained in a proper homogeneous quasi- \star -prime ideal.

Proof. Let $X := \{I | I \text{ is a homogeneous quasi-}*-\text{ideal of } R\}$. Then it is easy to see that X is nonempty. Indeed, in this case R^* is a homogeneous overring of R, and if $u \in H$ is a nonunit in R^* , then $uR^* \cap R$ is a proper homogeneous quasi-*-ideal of R. Also X is inductive (see proof of [16, Lemma 4.20]). From Zorn's Lemma, we see that every proper homogeneous quasi-*-ideal of R is contained in some maximal element Q of X.

Now we show that Q is actually prime. Take $f, g \in H \setminus Q$ and suppose that $fg \in Q$. By the maximality of Q we have $(Q, f)^* = R^*$ (note that $(Q, f)^* \cap R$ is a homogeneous quasi-*-ideal of R and properly contains Q). Since \star is of finite type, we can find a finitely generated ideal $J \subseteq Q$

such that $(J, f)^* = R^*$. Then $g \in gR^* \cap R = g(J, f)^* \cap R \subseteq Q^* \cap R = Q$ a contradiction. Thus Q is a prime ideal. \Box

The following example shows that we can not drop the condition that, * sends homogeneous fractional ideals to homogeneous ones, in the above lemma.

EXAMPLE 2.2. Let k be a field and X, Y be indeterminates over k. Let R = k[X, Y], which is a (\mathbb{N}_0) -graded Noetherian integral domain with deg $X = \deg Y = 1$. Set M := (X, Y + 1) which is a maximal non-homogeneous ideal of R. Let T be a DVR [11], with maximal ideal N, dominating the local ring R_M . If $R_H \subseteq T$, then there exists a prime ideal P of R such that, $P \cap H = \emptyset$ and $N \cap R_H = PR_H$. Thus $M = N \cap R = N \cap R_H \cap R = PR_H \cap R = P$. Hence $M \cap H = \emptyset$, which is a contradiction, since $X \in M \cap H$. So that, $R_H \not\subseteq T$. Let \star be a semistar operation on R defined by $E^* = ET \cap ER_H$ for each $E \in \overline{\mathcal{F}}(R)$. Then clearly $\star = \star_f$ and $R^{\star} \subsetneq R_H$. If P is a nonzero prime ideal of R, such that $P \cap H = \emptyset$, then $P^{\star_f} \cap R = PT \cap PR_H \cap R = PT \cap P = P$. Thus P is a quasi- \star_f -prime ideal. On the other hand if P is any nonzero prime ideal of R such that $P \cap H \neq \emptyset$, then $PT = N^k$, for some integer $k \geq 1$. Therefore, if we assume that P is a quasi- \star_f -ideal of R, then we would have $P = PT \cap PR_H \cap R = PT \cap R = N^k \cap R \supseteq M^k$, which implies that P = M. Thus $\operatorname{QSpec}^{\star_f}(R) = \{M\} \cup \{P \in \operatorname{Spec}(R) | P \neq 0$ and $P \cap H = \emptyset$. Therefore by [16, Lemma 4.1, Remark 4.5], we have $\operatorname{QSpec}^{\widetilde{\star}}(R) = \{Q \in \operatorname{Spec}(R) | 0 \neq Q \subset M\} \cup \{P \in \operatorname{Spec}(R) | P \neq 0 \text{ and }$ $P \cap H = \emptyset$. Hence in the present example we have h-QSpec^{*}(R) = h- $\operatorname{QMax}^{\star_f}(R) = \emptyset$, and $h\operatorname{-QSpec}^{\star}(R) = h\operatorname{-QMax}^{\star}(R) = \{(X)\}$. Note that in this example h-QMax $\tilde{\star}(R) \not\subseteq$ QMax $\tilde{\star}(R) =$ QMax ${\star}_{f}(R)$.

From now on in this paper, we are interested and consider, the semistar operations \star on R, such that $R^{\star} \subsetneq R_H$ and sends homogeneous fractional ideals to homogeneous ones. For any such semistar operation, if I is a homogeneous ideal of R, we have $I^{\star f} = R^{\star}$ if and only if $I \not\subseteq Q$ for each $Q \in h$ -QMax^{$\star f$}(R). Also if P is a quasi- \star -prime ideal of R, then either $P_h = 0$ or P_h is a quasi- \star -prime ideal of R. Indeed, if $P_h \neq 0$, then $P_h \subseteq (P_h)^{\star} \cap R \subseteq P^{\star} \cap R = P$, which implies that $P_h = (P_h)^{\star} \cap R$, since $(P_h)^{\star} \cap R$ is a homogeneous ideal.

The following proposition is the key result in this paper.

PROPOSITION 2.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar operation on R such that $R^{\star} \subseteq R_{H}$. Then, $\tilde{\star}$ sends

homogeneous fractional ideals to homogeneous ones. In particular h-QMax $\tilde{*}(R) \neq \emptyset$, and $R\tilde{*}$ is a homogeneous overring of R.

Proof. Let E be a homogenous fractional ideal of R. To show that $E^{\tilde{\star}}$ is homogeneous let $f \in E^{\tilde{\star}}$. Then $fJ \subseteq E$ for some finitely generated ideal J of R such that $J^{\star} = R^{\star}$. Suppose that $J = (g_1, \dots, g_n)$. Using [4, Lemma 1.1(1)], there is an integer $m \geq 1$ such that $C(g_i)^{m+1}C(f) = C(g_i)^m C(fg_i)$ for all $i = 1, \dots, n$. Since E is a homogeneous fractional ideal and $fg_i \in E$, we have $C(fg_i) \subseteq E$. Thus we have $C(g_i)^{m+1}C(f) \subseteq E$. Let $J_0 := C(g_1)^{m+1} + \dots + C(g_n)^{m+1}$. Thus J_0 is a finitely generated homogeneous ideal of R such that $J_0^{\star} = R^{\star}$. Since $C(f)J_0 \subseteq E$, $C(f) \subseteq E^{\tilde{\star}}$. Therefore $E^{\tilde{\star}}$ is a homogeneous ideal.

LEMMA 2.4. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a semistar operation on R which sends homogeneous fractional ideals to homogeneous ones. Then \star_f sends homogeneous fractional ideals to homogeneous ones.

Proof. Let E be a homogenous fractional ideal of R. Let $0 \neq x \in E^{\star f}$. Then, there exists an $F \in f(R)$ such that $F \subseteq E$ and $x \in F^{\star}$. Suppose that F is generated by $y_1, \dots, y_n \in R_H$. Let G be a homogeneous fractional ideal of R, generated by homogeneous components of y_1, \dots, y_n . Note that $F \subseteq G \subseteq E$ and $x \in G^{\star}$. Thus homogeneous components of x belong to $G^{\star} \subseteq E^{\star f}$. This shows that $E^{\star f}$ is homogeneous.

Note that the v-operation sends homogeneous fractional ideals to homogeneous ones by [3, Proposition 2.5]. Using the above two results, the t and w-operations also, send homogeneous fractional ideals to homogeneous ones.

It it well-known that $QMax^{\star f}(R) = QMax^{\tilde{\star}}(R)$, see [5, Theorem 2.16], for star operation case, and [18, Corollary 3.5(2)], in general semistar operations. Although Example 2.2, shows that it may happen that h- $QMax^{\star f}(R) \neq h$ - $QMax^{\tilde{\star}}(R)$, we have the following proposition whose proof is almost the same as [4, Theorem 2.16].

PROPOSITION 2.5. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a semistar operation on R such that $R^{\star} \subsetneq R_{H}$, which sends homogeneous fractional ideals to homogeneous ones. Then h-QMax^{$\star f$}(R) = h-QMax^{$\tilde{\star}$}(R).

Proof. Assume that $Q \in h$ -QMax^{*}f(R). Then since $\tilde{\star} \leq \star_f$ by [18, Lemma 2.7(1)], we have $Q \subseteq Q^{\tilde{\star}} \cap R \subseteq Q^{\star_f} \cap R = Q$, that is Q is a quasi- $\tilde{\star}$ -ideal. Suppose that $Q \notin h$ -QMax^{$\tilde{\star}}(R)$. Then Q is properly contained in some $P \in h$ -QMax^{$\tilde{\star}}(R)$. So since $Q \in h$ -QMax^{$\star f$}(R), using Lemma 2.1, we must have $P^{\star_f} = R^{\star}$. Thus there is some finitely generated ideal $F \subseteq P$ such that $F^{\star} = R^{\star}$. So for any $r \in R, rF \subseteq F \subseteq P$. But then, $r \in P^{\tilde{\star}}$, so $R \subseteq P^{\tilde{\star}}$, which implies that $P^{\tilde{\star}} = R^{\tilde{\star}}$, a contradiction. Therefore, we must have $Q \in h$ -QMax^{$\tilde{\star}$}(R).</sup></sup>

If $Q \in h$ -QMax^{*}(R), then $Q = Q^{*} \cap R \subseteq Q^{*_{f}} \cap R \subseteq R$. Suppose that $Q^{*_{f}} \cap R = R$, which implies that $Q^{*_{f}} = R^{*}$. Then there is a finitely generated ideal $F \subseteq Q$ such that $F^{*} = R^{*}$. Now for any $r \in R$, $rF \subseteq F \subseteq Q$. Therefore $R \subseteq Q^{*}$, and so $R = Q^{*} \cap R = Q$, which is a contradiction. So $Q^{*_{f}} \cap R \subsetneq R$. Now, since $Q^{*_{f}} \cap R$ is a homogeneous quasi- $*_{f}$ -ideal, there is a $P \in h$ -QMax^{*_{f}}(R) such that $Q \subseteq Q^{*_{f}} \cap R \subseteq P$. From the first half of the proof, we know that $P \in h$ -QMax^{*}(R). So we must have P = Q. Therefore $Q \in h$ -QMax^{*_{f}}(R).

Park in [31, Lemma 3.4], proved that $I^w = \bigcap_{P \in h\text{-}QMax^w(R)} IR_{H \setminus P}$ for each homogeneous ideal I of R.

PROPOSITION 2.6. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a semistar operation on R such that $R^{\star} \subsetneq R_{H}$. Then $I^{\tilde{\star}} = \bigcap_{P \in h-QMax^{\tilde{\star}}(R)} IR_{H\setminus P}$ for each homogeneous ideal I of R. Moreover $I^{\tilde{\star}}R_{H\setminus P} = IR_{H\setminus P}$ for all homogeneous ideal I of R and all $P \in h$ - $QMax^{\tilde{\star}}(R)$.

Proof. By Proposition 2.3, $I^{\tilde{\star}}$ is a homogeneous ideal. Also note that $\bigcap_{P \in h\text{-}QMax^{\tilde{\star}}(R)} IR_{H\setminus P}$ is a homogeneous ideal of R. Let $f \in I^{\tilde{\star}}$ be homogeneous. Then $fJ \subseteq I$ for some homogeneous finitely generated ideal J of R such that $J^{\star} = R^{\star}$. It is easy to see that $J^{\tilde{\star}} = R^{\tilde{\star}}$. Hence we have $J \not\subseteq P$ for all $P \in h\text{-}QMax^{\tilde{\star}}(R)$. Thus $f \in IR_{H\setminus P}$ for all $P \in h\text{-}QMax^{\tilde{\star}}(R)$. Conversely, let $f \in \bigcap_{P \in h\text{-}QMax^{\tilde{\star}}(R)} IR_{H\setminus P}$ be homogeneous. Then (I:f) is a homogeneous ideal which is not contained in any $P \in h\text{-}QMax^{\tilde{\star}}(R)$. Therefore $(I:f)^{\tilde{\star}} = R^{\tilde{\star}}$. So that there exist a finitely generated ideal $J \subseteq (I:f)$ such that $J^{\star} = R^{\star}$. Thus $fJ \subseteq I$, i.e., $f \in I^{\tilde{\star}}$. The second assertion follows from the first one.

Let D be a domain with quotient field K, and let X be an indeterminate over K. For each $f \in K[X]$, we let $c_D(f)$ denote the content of

the polynomial f, i.e., the (fractional) ideal of D generated by the coefficients of f. Let \star be a semistar operation on D. If $N_{\star} := \{g \in D[X] | g \neq 0 \text{ and } c_D(g)^{\star} = D^{\star}\}$, then $N_{\star} = D[X] \setminus \bigcup \{P[X] | P \in \operatorname{QMax}^{\star_f}(D)\}$ is a saturated multiplicative subset of D[X]. The ring of fractions

$$\operatorname{Na}(D,\star) := D[X]_{N_{\star}}$$

is called the \star -Nagata domain (of D with respect to the semistar operation \star). When $\star = d$, the identity (semi)star operation on D, then Na(D, d) coincides with the classical Nagata domain D(X) (as in, for instance [28, page 18], [23, Section 33] and [18]).

Let $N_{\star}(H) = \{f \in R | C(f)^{\star} = R^{\star}\}$. It is easy to see that $N_{\star}(H)$ is a saturated multiplicative subset of R. Indeed assume $f, g \in N_{\star}(H)$. Then $C(f)^{n+1}C(g) = C(f)^n C(fg)$ for some integer $n \geq 1$ by [4, Lemma 1.1(2)], and $C(fg) \subseteq C(f)C(g)$. Thus $fg \in N_{\star}(H) \Leftrightarrow C(fg)^{\star} = R^{\star} \Leftrightarrow$ $C(f)^{\star} = C(g)^{\star} = R^{\star} \Leftrightarrow f, g \in N_{\star}(H)$. Also it is easy to show that $N_{\star}(H) = N_{\star_f}(H) = N_{\tilde{\star}}(H)$. We define the graded integral domain analogue of \star -Nagata ring, by the quotient ring $R_{N_{\star}(H)}$. When $\star = v$, $R_{N_{\star}(H)}$ was studied in [4], denoted by $R_{N(H)}$.

LEMMA 2.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar operation on R such that $R^{\star} \subsetneq R_H$, which sends homogeneous fractional ideals to homogeneous ones.

- (1) $N_{\star}(H) = R \setminus \bigcup_{Q \in h \text{-} QMax^{\star f}(R)} Q.$
- (2) $\operatorname{Max}(R_{N_{\star}(H)}) = \{QR_{N_{\star}(H)} | Q \in h \operatorname{-QMax}^{\star_{f}}(R)\}$ if and only if R has the property that if I is a nonzero ideal of R with $C(I)^{\star} = R^{\star}$, then $I \cap N_{\star}(H) \neq \emptyset$.

Proof. (1) Let $x \in R$. Then $x \in N_{\star}(H) \Leftrightarrow C(x)^{\star} = R^{\star} \Leftrightarrow C(x) \nsubseteq Q$ for all $Q \in h$ -QMax^{$\star f$}(R) $\Leftrightarrow x \notin Q$ for all $Q \in h$ -QMax^{$\star f$}(R) $\Leftrightarrow x \in R \setminus \bigcup_{Q \in h$ -QMax^{$\star f$}(R) Q.

(2) (\Rightarrow) Let I is a nonzero ideal of R with $C(I)^* = R^*$. Then $I \nsubseteq Q$ for all $Q \in h$ -QMax^{*f}(R), and hence $IR_{N_*(H)} = R_{N_*(H)}$. Thus $I \cap N_*(H) \neq \emptyset$.

(\Leftarrow) Let *I* be a nonzero ideal of *R* such that $I \subseteq \bigcup_{Q \in h \text{-} QMax^{\star_f}(R)} Q$. If $C(I)^{\star_f} = R^{\star}$, then, by assumption, there exists an $f \in I$ with $C(f)^{\star} = R^{\star}$. But, since $I \subseteq \bigcup_{Q \in h \text{-} QMax^{\star_f}(R)} Q$, we have $f \in Q$ for some $Q \in h$ -QMax^{\star_f}(*R*), a contradiction. Thus $C(I)^{\star} \subsetneq R^{\star}$, and hence $I \subseteq Q$ for some $Q \in h$ -QMax^{\star_f}(*R*). Thus $\{QR_{N_{\star}(H)}|Q \in h \text{-} QMax^{\star_f}(R)\}$ is the set of maximal ideals of $R_{N_{\star}(H)}$ by [23, Proposition 4.8].

We will say that R satisfies property $(\#_*)$ if, for any nonzero ideal I of $R, C(I)^* = R^*$ implies that there exists an $f \in I$ such that $C(f)^* = R^*$.

EXAMPLE 2.8. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and let \star be a semistar operation on R. If R contains a unit of nonzero degree, then R satisfies property ($\#_{\star}$) (see [4, Example 1.6] for the case $\star = t$).

The next result is a generalization of the fact that $I^{\check{\star}} = I \operatorname{Na}(R, \star) \cap K$, where K is the quotient field of R [18, Proposition 3.4(3)].

LEMMA 2.9. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar operation on R such that $R^{\star} \subsetneq R_{H}$, with property $(\#_{\star})$. Then $I^{\tilde{\star}} = IR_{N_{\star}(H)} \cap R_{H}$ and $I^{\tilde{\star}}R_{N_{\star}(H)} = IR_{N_{\star}(H)}$ for each homogeneous ideal I of R. In particular $R^{\tilde{\star}}$ is integrally closed if and only if $R_{N_{\star}(H)}$ is integrally closed.

Proof. If $I^{\tilde{\star}} = IR_{N_{\star}(H)} \cap R_{H}$, then it is easy to see that $I^{\tilde{\star}}R_{N_{\star}(H)} = IR_{N_{\star}(H)}$. Hence it suffices to show that $I^{\tilde{\star}} = IR_{N_{\star}(H)} \cap R_{H}$.

 (\subseteq) Let $f \in I^{\tilde{\star}}(\subseteq R_H)$, and let J be a finitely generated ideal of R such that $J^* = R^*$ and $fJ \subseteq I$. Then $C(J)^* = R^*$, and since R satisfies property $(\#_*)$, there exists an $h \in J$ with $C(h)^* = R^*$. Hence $h \in N_*(H)$ and $fh \in I$. Thus $f \in IR_{N_*(H)} \cap R_H$.

(⊇) Let $f = \frac{g}{h} \in IR_{N_{\star}(H)} \cap R_{H}$, where $g \in I$ and $h \in N_{\star}(H)$. Then $fh = g \in I$, and since $C(h)^{m+1}C(f) = C(h)^{m}C(fh)$ for some integer $m \geq 1$ by [4, Lemma 1.1(1)], we have $fC(h)^{m+1} \subseteq C(f)C(h)^{m+1} = C(h)^{m}C(fh) = C(h)^{m}C(g) \subseteq I$. Also note that $(C(h)^{m+1})^{\star} = R^{\star}$, since $C(h)^{\star} = R^{\star}$. Thus $f \in I^{\star}$.

For the in particular case, assume that $R_{N_{\star}(H)}$ is integrally closed. Using [3, Proposition 2.1], R_H is a GCD-domain, hence is integrally closed. Therefore $R^{\tilde{\star}} = R_{N_{\star}(H)} \cap R_H$ is integrally closed. Conversely, assume that $R^{\tilde{\star}}$ is integrally closed. Then R_Q is integrally closed by [14, Proposition 3.8] for all $Q \in \operatorname{QSpec}^{\tilde{\star}}(R)$. Let $QR_{N_{\star}(H)}$ be a maximal ideal of $R_{N_{\star}(H)}$ for some $Q \in h$ -QMax $^{\tilde{\star}}(R)$. Then $(R_{N_{\star}(H)})_{QR_{N_{\star}(H)}} = R_Q$ is integrally closed. Thus $R_{N_{\star}(H)}$ is integrally closed. \Box

LEMMA 2.10. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar operation on R such that $R^{\star} \subseteq R_{H}$, with property $(\#_{\star})$. Then for each nonzero finitely generated homogeneous ideal I of R, I is \star_{f} -invertible if and only if, $IR_{N_{\star}(H)}$ is invertible.

Proof. Let *I* be nonzero finitely generated homogeneous ideal of *R*, such that *I* is \star_f -invertible. Let $QR_{N_\star(H)} \in \operatorname{Max}(R_{N_\star(H)})$, where $Q \in h$ - $Q\operatorname{Max}^{\tilde{\star}}(R)$ by Lemma 2.7(2). Thus by [22, Theorem 2.23], $(IR_{N_\star(H)})_{QR_{N_\star(H)}} = IR_Q$ is invertible (is principal) in R_Q . Hence $IR_{N_\star(H)}$ is invertible by [23, Theorem 7.3]. Conversely, assume that *I* is finitely generated, and $IR_{N_\star(H)}$ is invertible. By flatness we have $I^{-1}R_{N_\star(H)} =$ $(R:I)R_{N_\star(H)} = (R_{N_\star(H)}:IR_{N_\star(H)}) = (IR_{N_\star(H)})^{-1}$. Therefore, $(II^{-1})R_{N_\star(H)} = (IR_{N_\star(H)})(I^{-1}R_{N_\star(H)}) = (IR_{N_\star(H)})(IR_{N_\star(H)})^{-1} =$ $R_{N_\star(H)}$. Hence $II^{-1} \cap N_\star(H) \neq \emptyset$. Let $f \in II^{-1} \cap N_\star(H)$. So that $R^{\star} = C(f)^{\star} \subseteq (II^{-1})^{\star_f} \subseteq R^{\star}$. Thus *I* is \star_f -invertible. □

COROLLARY 2.11. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar operation on R such that $R^{\star} \subseteq R_H$, with property $(\#_{\star})$ and $0 \neq f \in R$. Then the following conditions are equivalent:

- (1) C(f) is \star_f -invertible.
- (2) $C(f)R_{N_{\star}(H)}$ is invertible.
- (3) $C(f)R_{N_{\star}(H)} = fR_{N_{\star}(H)}$.

Proof. Exactly is the same as [4, Corollary 1.9].

Let \mathbb{Z} be the additive group of integers. Clearly, the direct sum $\Gamma \oplus \mathbb{Z}$ of Γ with \mathbb{Z} is a torsionless grading monoid. So if y is an indeterminate over $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$, then $R[y, y^{-1}]$ is a graded integral domain graded by $\Gamma \oplus \mathbb{Z}$. In the following proposition we use a technique for defining semistar operations on integral domains, due to Chang and Fontana [9, Theorem 2.3].

PROPOSITION 2.12. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with quotient field K, let y, X be two indeterminates over R and let \star be a semistar operation on R such that $R^{\star} \subseteq R_H$. Set $T := R[y, y^{-1}]$, $K_1 := K(y)$ and take the following subset of Spec(T):

$$\Delta^{\star} := \{ Q \in \operatorname{Spec}(T) | Q \cap R = (0) \text{ or } Q = (Q \cap R)R[y, y^{-1}] \\ and (Q \cap R)^{\star_f} \subsetneq R^{\star} \}.$$

Set $S^{\star} := T[X] \setminus (\bigcup \{Q[X] | Q \in \Delta^{\star}\})$ and:
 $E^{\star'} := E[X]_{S^{\star}} \cap K_1, \text{ for all } E \in \overline{\mathcal{F}}(T).$

- (a) The mapping $\star \prime : \overline{\mathcal{F}}(T) \to \overline{\mathcal{F}}(T), E \mapsto E^{\star \prime}$ is a stable semistar operation of finite type on T, i.e., $\check{\star \prime} = \star \prime$.
- (b) $(\widetilde{\star})\prime = (\star_f)\prime = \star\prime.$
- (c) $(ER[y, y^{-1}])^{\star} \cap K = E^{\tilde{\star}}$ for all $E \in \overline{\mathcal{F}}(R)$.

- (d) $(ER[y, y^{-1}])^{\star\prime} = E^{\tilde{\star}}R[y, y^{-1}]$ for all $E \in \overline{\mathcal{F}}(R)$.
- (e) $T^{\star\prime} \subsetneq T_{H'}$, where H' is the set of nonzero homogeneous elements of T, and $\star\prime$ sends homogeneous fractional ideals to homogeneous ones.
- (f) $\operatorname{QMax}^{\star\prime}(T) = \{Q | Q \in \operatorname{Spec}(T) \text{ such that } Q \cap R = (0) \text{ and } c_R(Q)^{\star_f} = R^{\star}\} \cup \{PR[y, y^{-1}] | P \in \operatorname{QMax}^{\star_f}(R)\}.$
- (g) h-QMax^{*}(T) = { $PR[y, y^{-1}]|P \in h$ -QMax^{*}(R)}.
- (h) $(w_R)\prime = (t_R)\prime = (v_R)\prime = w_T.$

Proof. Set $\nabla^* := \{Q \in \operatorname{Spec}(T) | Q \cap R = (0) \text{ and } c_D(Q)^{*_f} = R^* \text{ or } Q = PR[y, y^{-1}] \text{ and } P \in \operatorname{QMax}^{*_f}(D)\}$. Then it is easy to see that the elements of ∇^* are the maximal elements of Δ^* (see proof of [9, Theorem 2.3]). Thus

$$S^{\star} := T[X] \setminus (\bigcup \{Q[X] | Q \in \Delta^{\star}\}) = T[X] \setminus (\bigcup \{Q[X] | Q \in \nabla^{\star}\}).$$

(a) It follows from [9, Theorem 2.1 (a) and (b)], that $\star \prime$ is a stable semistar operation of finite type on T.

(b) Since $\operatorname{QMax}^{\star_f}(D) = \operatorname{QMax}^{\star}(D)$, the conclusion follows easily from the fact that $S^{\tilde{\star}} = S^{\star_f} = S^{\star}$.

(c) and (d) Exactly are the same as proof of [9, Theorem 2.3(c) and (d)].

(e) From part (d) we have $T^{\star\prime} = R^{\tilde{\star}}R[y, y^{-1}] \subsetneq R_HR[y, y^{-1}] = T_{H'}$. The second assertion follows from Proposition 2.3, since $\tilde{\star\prime} = \star\prime$ by (a).

(f) Follows from [9, Theorem 2.1(e)] and the remark in the first paragraph in the proof.

(g) Let $M \in h$ -QMax^{*}(T). Since $y, y^{-1} \in T$, clearly we have $M \cap R \neq (0)$. Then by (f), there is $P \in \text{QMax}^{*_f}(R)$ such that $M \subseteq PR[y, y^{-1}]$. If $P \in h$ -QMax^{*}(R), then $M = PR[y, y^{-1}]$ and we are done. So suppose that $P \notin h$ -QMax^{*}(R). Then note that $P_h \in h$ -QSpec^{*}(R) and $M \subseteq P_hR[y, y^{-1}] = (PR[y, y^{-1}])_h$; hence $M = P_hR[y, y^{-1}]$, because M is a homogeneous maximal quasi-*/-ideal. Note that in this case $P_h \in h$ -QMax^{*}(R) by [16, Lemma 4.1, Remark 4.5]. So that $M \in \{PR[y, y^{-1}] | P \in h$ -QMax^{*}(R)\}. The other inclusion is trivial.

(h) Suppose that $\star_f = t$. Note that if $M \in \text{QMax}^{\star'}(T)$, and $M \cap R \neq (0)$, then, $M = (M \cap R)[y, y^{-1}]$ and $M \cap R \in \text{QMax}^t(R)$ (cf. [24, Proposition 1.1]). Moreover, if $Q \in \text{Spec}(T)$ is such that $Q \cap R = (0)$, then Q is a quasi-t-maximal ideal of T if and only if $c_R(Q)^t = R$. Indeed, if Q is a quasi-t-maximal ideal of T, and $c_R(Q)^t \subsetneq R$, then there exists

a quasi-t-maximal ideal P of R such that $c_R(Q)^t \subseteq P$. Hence $Q \subseteq P[y, y^{-1}]$, and therefore $Q = P[y, y^{-1}]$. Consequently $(0) = Q \cap R = P[y, y^{-1}] \cap R = P$ which is a contradiction. Conversely assume that $c_R(Q)^t = R$. Suppose Q is not a quasi-t-maximal ideal of T, and let M be a quasi-t-maximal ideal of T which contains Q. Since the containment is proper, we have $M \cap R \neq (0)$. Thus $M = (M \cap R)[y, y^{-1}]$ and $M \cap R \in QMax^t(R)$ (cf. [24, Proposition 1.1]). Since $Q \subseteq M$, $c_R(Q)$ is contained in the quasi-t-ideal $M \cap R$, so that $c_R(Q)^t \neq R$ which is a contradiction. Thus we showed that $QMax^t(T) = \{Q|Q \in \text{Spec}(T) \text{ such that } Q \cap R = (0) \text{ and } c_R(Q)^{\star_f} = R^{\star}\} \cup \{PR[y, y^{-1}]|P \in QMax^{\star_f}(R)\} = QMax^{\star'}(T),$ where the second equality is by (f). Thus using (a) and (b), we obtain $(w_R)' = (t_R)' = (v_R)' = w_T$.

It is known that Pic(D(X)) = 0 [1, Theorem 2]. More generally, if * is a star operation on D, then $Pic(\operatorname{Na}(D, *)) = 0$, [26, Theorem 2.14]. Also in the graded case it is shown in [4, Theorem 3.3], that $Pic(R_{N_v(H)}) = 0$, where $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ is a graded integral domain containing a unit of nonzero degree. We next show in general that $Pic(R_{N_*(H)}) = 0$.

THEOREM 2.13. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree, and \star be a semistar operation on R such that $R^{\star} \subsetneq R_{H}$. Then $Pic(R_{N_{\star}(H)}) = 0$.

Proof. Let y be an indeterminate over R, and $T = R[y, y^{-1}]$. Using Proposition 2.12(e) and (g) and Lemma 2.7, we deduce that $\operatorname{Max}(T_{N_{\star'}(H)})$ $= \{QT_{N_{\star'}(H)}|Q \in h\text{-}Q\operatorname{Max}^{\star_f}(R)\}$. Next since $\operatorname{Max}((R_{N_{\star}(H)})(y)) =$ $\{P(y)|P \text{ is a maximal ideal of } R_{N_{\star}(H)}\}$, [23, Proposition 33.1], we have $\operatorname{Max}((R_{N_{\star}(H)})(y)) = \{(QR_{N_{\star}(H)})(y)|Q \in h\text{-}Q\operatorname{Max}^{\star_f}(R)\}$. Thus by a computation similar to the proof of [4, Lemma 3.2], we obtain the equality $T_{N_{\star'}(H)} = (R_{N_{\star}(H)})(y)$. The rest of the proof is exactly the same as proof of [4, Theorem 3.3], using Proposition 2.12. \Box

Let D be a domain and T an overring of D. Let \star and \star' be semistar operations on D and T, respectively. One says that T is (\star, \star') -linked to D (or that T is a (\star, \star') -linked overring of D) if

$$F^{\star} = D^{\star} \Rightarrow (FT)^{\star'} = T^{\star'}$$

for each nonzero finitely generated ideal F of D. (The preceding definition generalizes the notion of "t-linked overring" which was introduced

in [13].) It is shown in [15, Theorem 3.8], that T is a (\star, \star') -linked overring of D if and only if $\operatorname{Na}(D, \star) \subseteq \operatorname{Na}(T, \star')$. We need a graded analogue of linkedness.

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and T be a homogeneous overring of R. Let \star and \star' be semistar operations on R and T, respectively. We say that T is homogeneously (\star, \star') -linked overring of R if

$$F^{\star} = D^{\star} \Rightarrow (FT)^{\star'} = T^{\star}$$

for each nonzero homogeneous finitely generated ideal F of R. We say that T is homogeneously t-linked overring of R if T is homogeneously (t,t)-linked overring of R. Also it can be seen that T is homogeneously (\star, \star') -linked overring of R if and only if T is homogeneously $(\check{\star}, \check{\star'})$ -linked overring of R (cf. [15, Theorem 3.8]).

EXAMPLE 2.14. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and let \star be a semistar operation on R such that $R^{\star} \subseteq R_{H}$. Let $P \in h$ -QSpec^{$\tilde{\star}$}(R). Then, $R_{H\setminus P}$ is a homogeneously (\star, \star')-linked overring of R, for all semistar operation \star' on $R_{H\setminus P}$. Indeed assume that F is a nonzero finitely generated homogeneous ideal of R such that $F^{\star} = R^{\star}$. Then we have $F^{\tilde{\star}} = R^{\tilde{\star}}$. Thus using Proposition 2.6, we have $FR_{H\setminus P} =$ $F^{\tilde{\star}}R_{H\setminus P} = R^{\tilde{\star}}R_{H\setminus P} = R_{H\setminus P}$.

LEMMA 2.15. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree, and let T be a homogeneous overring of R. Let \star (resp. \star') be a semistar operation on R (resp. on T). Then, Tis a homogeneously (\star, \star') -linked overring of R if and only if $R_{N_{\star}(H)} \subseteq T_{N_{\star'}(H)}$.

Proof. Let $f \in R$ such that $C_R(f)^* = R^*$. Then by assumption $C_T(f)^{\star'} = (C_R(f)T)^{\star'} = R^{\star'}$. Hence $R_{N_{\star}(H)} \subseteq T_{N_{\star'}(H)}$. Conversely let F be a nonzero homogeneous finitely generated ideal of R such that $F^* = R^*$. Since R has a unit of nonzero degree we can choose an element $f \in R$ such that $C_R(f) = F$. From the fact that $C_R(f)^* = R^*$, we have that f is a unit in $R_{N_{\star}(H)}$ and so by assumption, f is a unit in $T_{N_{\star'}(H)}$. This implies that $C_T(f)^{\star'} = (C_R(f)T)^{\star'} = T^{\star'}$, i.e., $(FT)^{\star'} = T^{\star'}$.

3. Kronecker function ring

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, * an e.a.b. star operation on R. The graded analogue of the well known Kronecker

function ring (see [23, Theorem 32.7]) of R with respect to * is defined by

$$\operatorname{Kr}(R,*) := \left\{ \frac{f}{g} \middle| f, g \in R, g \neq 0, \text{ and } C(f) \subseteq C(g)^* \right\}$$

in [4]. The following lemma is proved in [4, Theorems 2.9 and 3.5], for an e.a.b. star operation *. We need to state it for e.a.b. semistar operations. Since the proof is exactly the same as star operation case, we omit the proof.

LEMMA 3.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star an e.a.b. semistar operation on R, and

$$\operatorname{Kr}(R,\star) := \left\{ \frac{f}{g} \middle| f, g \in R, g \neq 0, \text{ and } C(f) \subseteq C(g)^{\star} \right\}.$$

Then

(1) $\operatorname{Kr}(R, \star)$ is an integral domain.

In addition, if R has a unit of nonzero degree, then,

- (2) $\operatorname{Kr}(R, \star)$ is a Bézout domain.
- (3) $I \operatorname{Kr}(R, \star) \cap R_H = I^{\star}$ for every nonzero finitely generated homogeneous ideal I of R.

Inspired by the work of Fontana and Loper in [20], we can generalize this definition of $Kr(R, \star)$ to all semistar operations on R which send homogeneous fractional ideals, to homogeneous ones, provided that Rhas a unit of nonzero degree. Before doing that we need a lemma.

LEMMA 3.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star a semistar operation on R which sends homogeneous fractional ideals to homogeneous ones. Suppose that $a \in R$ is homogeneous and $B, F \in f(R)$, with B homogeneous and $F \subseteq R_H$, such that $aF \subseteq (BF)^*$. Then there exists a homogeneous $T \in f(R)$ such that $aT \subseteq (BT)^*$.

Proof. Suppose that F is generated by $y_1, \dots, y_n \in R_H$. Let $y_i = \sum t_{ij}$ be the decomposition of y_i to homogeneous elements for $i = 1, \dots, n$. Then $ay_i \in (BF)^* = (\sum y_i B)^* \subseteq (\sum t_{ij} B)^*$. Since $(\sum t_{ij} B)^*$ is homogeneous we have $at_{ij} \in (\sum t_{ij} B)^*$. Let T be the fractional ideal of R, generated by all homogeneous elements t_{ij} . So that $aT \subseteq (BT)^*$ and $T \in f(R)$ is homogeneous.

THEOREM 3.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree, \star a semistar operation on R which sends homogeneous fractional ideals to homogeneous ones, and

$$\operatorname{Kr}(R,\star) := \left\{ \frac{f}{g} \middle| \begin{array}{c} f, g \in R, g \neq 0, \text{ and there is } 0 \neq h \in R \\ \text{such that } C(f)C(h) \subseteq (C(g)C(h))^{\star} \end{array} \right\}$$

Then

- (1) $\operatorname{Kr}(R, \star) = \operatorname{Kr}(R, \star_a).$
- (2) $\operatorname{Kr}(R, \star)$ is a Bézout domain.
- (3) $I \operatorname{Kr}(R, \star) \cap R_H = I^{\star_a}$ for every nonzero finitely generated homogeneous ideal I of R.
- (4) If $f, g \in R$ are nonzero such that $C(f+g)^* = (C(f) + C(g))^*$, then $(f,g) \operatorname{Kr}(R,\star) = (f+g) \operatorname{Kr}(R,\star)$. In particular, $f \operatorname{Kr}(R,\star) = C(f) \operatorname{Kr}(R,\star)$ for all $f \in R$.

Proof. It it clear from the definition that $\operatorname{Kr}(R, \star) = \operatorname{Kr}(R, \star_f)$. Thus using Lemma 2.4, we can assume, without loss of generality, that \star is a semistar operation of finite type.

Parts (2) and (3) are direct consequences of (1) using Lemma 3.1. For the proof of (1) we have two cases:

Case 1: Assume that \star is an e.a.b. semistar operation of finite type. In this case, for $f, g, h \in R \setminus \{0\}$ we have

$$C(f)C(h) \subseteq (C(g)C(h))^* \Leftrightarrow C(f) \subseteq C(g)^*.$$

Therefore $\operatorname{Kr}(R, \star)$ -as defined in this theorem- coincides with $\operatorname{Kr}(R, \star)$ of an e.a.b. semistar operation \star , as defined in Lemma 3.1. Also in this case $\star = \star_a$ by [20, Proposition 4.5(5)]. Hence in this case (1) is true.

Case 2: General case. Let \star be a semistar operation of finite type on R. By definition it is easy to see that, given two semistar operations on R with $\star_1 \leq \star_2$, then $\operatorname{Kr}(R, \star_1) \subseteq \operatorname{Kr}(R, \star_2)$. Using [20, Proposition 4.5(3)] we have $\star \leq \star_a$. Therefore $\operatorname{Kr}(R, \star_2) \subseteq \operatorname{Kr}(R, \star_a)$. Conversely let $f/g \in \operatorname{Kr}(R, \star_a)$. Then, by Case 1, $C(f) \subseteq C(g)^{\star_a}$. Set A := C(f) and B := C(g). Then $A \subseteq B^{\star_a} = \bigcup \{((BH)^{\star} : H) | H \in f(R)\}$. Suppose that A is generated by homogeneous elements $x_1, \dots, x_n \in R$. Then there is $H_i \in f(R)$, such that $x_i H_i \subseteq (BH_i)^{\star}$ for $i = 1, \dots, n$. Choose $0 \neq r_i \in R$ such that $F_i = r_i H_i \subseteq R$. Thus $x_i F_i \subseteq (BF_i)^{\star}$. Therefore Lemma 3.2 gives a homogeneous $T_i \in f(R)$ such that $x_i T_i \subseteq (BT_i)^{\star}$. Now set $T := T_1 T_2 \cdots T_n$ which is a finitely generated homogeneous

fractional ideal of R such that $AT \subseteq (BT)^*$. Now since R has a unit of nonzero degree, we can find an element $h \in R$ such that C(h) = T. Then $C(f)C(h) \subseteq (C(g)C(h))^*$. This means that $f/g \in \operatorname{Kr}(R,\star)$ to complete the proof of (1).

The proof of (4) is exactly the same as [4, Theorem 2.9(3)].

4. Graded P*MDs

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, \star be a semistar operation on R, H be the set of nonzero homogeneous elements of R, and $N_{\star}(H) = \{f \in R | C(f)^{\star} = R^{\star}\}$. In this section we define the notion of graded Prüfer \star -multiplication domain (graded P \star MD for short) and give several characterization of it.

We say that a graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ with a semistar operation \star , is a graded Prüfer \star -multiplication domain (graded $P \star MD$) if every nonzero finitely generated homogeneous ideal of R is a \star_f invertible, i.e., $(II^{-1})^{\star_f} = R^{\star}$ for every nonzero finitely generated homogeneous ideal I of R. It is easy to see that a graded $P \star MD$ is the same as a graded $P \star_f MD$ by definition, and is the same as a graded $P \star MD$ by [22, Proposition 2.18]. When $\star = v$ we recover the classical notion of a graded Prüfer v-multiplication domain (graded PvMD) [2]. It is known that R is a graded PvMD if and only if R is a PvMD [2, Theorem 6.4].

Also when $\star = d$, a graded PdMD is called a graded Prüfer domain [4]. It is clear that every graded Prüfer domain is a graded PvMD and hence a PvMD. In particular every graded Prüfer domain is an integrally closed domain. Although R is a graded PvMD if and only if R is a PvMD, Anderson and Chang in [4, Example 3.6] provided an example of a graded Prüfer domain which is not Prüfer. It is known that if A, B, C are ideals of an integral domain D, then (A+B)(A+C)(B+C) = (A+B+C)(AB+AC + BC). Thus $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ is a graded Prüfer domain if and only if every nonzero ideal of R generated by two homogeneous elements is invertible. We use this result in this section without comments.

The following proposition is inspired by [23, Theorem 24.3].

PROPOSITION 4.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then the following conditions are equivalent:

(1) R is a graded Prüfer domain.

- (2) Each finitely generated nonzero homogeneous ideal of R is a cancelation ideal.
- (3) If A, B, C are finitely generated homogeneous ideals of R such that AB = AC and A is nonzero, then B = C.
- (4) R is integrally closed and there is a positive integer n > 1 such that $(a, b)^n = (a^n, b^n)$ for each $a, b \in H$.
- (5) R is integrally closed and there exists an integer n > 1 such that $a^{n-1}b \in (a^n, b^n)$ for each $a, b \in H$.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ are clear.

 $(3) \Rightarrow (4)$ By the same argument as in the proof of part $(2) \Rightarrow (3)$, in [23, Proposition 24.1], we have that R is integrally closed in R_H . Therefore by [3, Proposition 5.4], R is integrally closed. Now if $a, b \in H$ we have $(a, b)^3 = (a, b)(a^2, b^2)$. Thus by (3) we obtain that $(a, b)^2 = (a^2, b^2)$.

 $(5) \Rightarrow (1)$ If (5) holds then [23, Proposition 24.2], implies that each nonzero homogeneous ideal generated by two homogeneous elements is invertible. Therefore R is a graded Prüfer domain.

The ungraded version of the following theorem is due to Gilmer (see [23, Corollary 28.5]).

THEOREM 4.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then R is a graded Prüfer domain if and only if C(f)C(g) = C(fg) for all $f, g \in R_H$.

Proof. (\Rightarrow) Let $f, g \in R_H$. Then by [4, Lemma 1.1(1)], there exists some positive integer n such that $C(f)^{n+1}C(g) = C(f)^n C(fg)$. Now since R is a graded Prüfer domain, the homogeneous fractional ideal $C(f)^n$ is invertible. Thus C(f)C(g) = C(fg) for all $f, g \in R_H$.

 (\Leftarrow) Let $\alpha \in H$ be a unit of nonzero degree. Assume that C(f)C(g) = C(fg) for all $f, g \in R_H$. Hence R is integrally closed by [2, Theorem 3.7]. Now let $a, b \in H$ be arbitrary. We can choose a positive integer n such that $\deg(a) \neq \deg(\alpha^n b)$. So that $C(a + \alpha^n b) = (a, b)$. Hence, since $(a + \alpha^n b)(a - \alpha^n b) = a^2 - (\alpha^n b)^2$, we have $(a, b)(a, -b) = (a^2, -b^2)$. Consequently $(a, b)^2 = (a^2, b^2)$. Thus by Proposition 4.1, we see that R is a graded Prüfer domain.

LEMMA 4.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain and P be a homogeneous prime ideal. Then, the following statements are equivalent:

- (1) $R_{H\setminus P}$ is a graded Prüfer domain
- (2) R_P is a valuation domain.
- (3) For each nonzero homogeneous $u \in R_H$, u or u^{-1} is in $R_{H\setminus P}$.

Proof. (1) \Rightarrow (2) Suppose that $R_{H\setminus P}$ is a graded Prüfer domain. In particular $R_{H\setminus P}$ is a (graded) PvMD and each nonzero homogeneous ideal of $R_{H\setminus P}$ is a *t*-ideal. So that h-QMax^t $(R_{H\setminus P}) = \{PR_{H\setminus P}\}$. Thus by [10, Lemma 2.7], we see that $(R_{H\setminus P})_{PR_{H\setminus P}} = R_P$ is a valuation domain.

 $(2) \Rightarrow (3)$ Let $0 \neq u \in R_H$. Thus by the hypothesis u or u^{-1} is in R_P . Thus u or u^{-1} is in $R_{H\setminus P}$.

 $(3) \Rightarrow (1)$ Let I, J be two nonzero homogeneous ideals of $R_{H\setminus P}$ and assume that $I \nsubseteq J$. So there is a homogeneous element $a \in I \setminus J$. For each $b \in J$, we have $\frac{a}{b} \notin R_{H\setminus P}$, since otherwise we have $a = (\frac{a}{b})b \in J$. Thus by the hypothesis $\frac{b}{a} \in R_{H\setminus P}$. Hence $b = (\frac{b}{a})a \in I$. Thus we showed that $J \subseteq I$, and so every two homogeneous ideal are comparable.

Now let (a, b) be an ideal generated by two homogeneous elements of $R_{H\setminus P}$. Now by the first paragraph (a, b) = (a) or (a, b) = (b). Thus (a, b) is invertible. Hence $R_{H\setminus P}$ is a graded Prüfer domain.

THEOREM 4.4. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and \star be a semistar operation on R such that $R^{\star} \subsetneq R_{H}$. Then, the following statements are equivalent:

- (1) R is a graded $P\star MD$.
- (2) $R_{H\setminus P}$ is a graded Prüfer domain for each $P \in h$ -QSpec^{*}(R).
- (3) $R_{H\setminus P}$ is a graded Prüfer domain for each $P \in h$ -QMax^{$\tilde{*}$}(R).

(4) R_P is a valuation domain for each $P \in h$ -QSpec^{*}(R).

(5) R_P is a valuation domain for each $P \in h\text{-}QMax^*(R)$.

Proof. $(2) \Rightarrow (3)$ is trivial, and, $(2) \Leftrightarrow (4)$ and $(3) \Leftrightarrow (5)$, follow from Lemma 4.3.

(1) \Rightarrow (2) Let I be a nonzero finitely generated homogeneous ideal of R. Then I is $\tilde{\star}$ -invertible. Therefore, for each $P \in h$ -QSpec $\tilde{\star}(R)$, since $II^{-1} \not\subseteq P$, we have $R_{H\setminus P} = (II^{-1})R_{H\setminus P} = IR_{H\setminus P}I^{-1}R_{H\setminus P} =$ $(IR_{H\setminus P})(IR_{H\setminus P})^{-1}$. So that $IR_{H\setminus P}$ is invertible. Thus $R_{H\setminus P}$ is a graded Prüfer domain for each $P \in h$ -QSpec $\tilde{\star}(R)$.

(3) \Rightarrow (1) Let I be a nonzero finitely generated homogeneous ideal of R. Suppose that I is not $\tilde{\star}$ -invertible. Hence there exists $P \in h$ - $QMax^{\tilde{\star}}(R)$ such that $II^{-1} \subseteq P$. Thus $R_{H\setminus P} = (IR_{H\setminus P})(IR_{H\setminus P})^{-1} =$ $II^{-1}R_{H\setminus P} \subseteq PR_{H\setminus P}$, which is a contradiction. So that $II^{-1} \not\subseteq P$ for

each $P \in h$ -QMax^{$\tilde{\star}$}(R). Therefore $(II^{-1})^{\tilde{\star}} = R^{\tilde{\star}}$, that is I is $\tilde{\star}$ -invertible, and hence R is a graded P \star MD.

The ungraded version of the following theorem is due to Chang in the star operation case [8, Theorem 3.7], and is due to Anderson, Fontana, and Zafrullah in the case of semistar operations [6, Theorem 1.1].

THEOREM 4.5. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree, and \star be a semistar operation on R such that $R^{\star} \subseteq R_{H}$. Then R is a graded $P \star MD$ if and only if $(C(f)C(g))^{\tilde{\star}} = C(fg)^{\tilde{\star}}$ for all $f, g \in R_{H}$.

Proof. (\Rightarrow) Let $f, g \in R_H$. Choose a positive integer n such that $C(f)^{n+1}C(g) = C(f)^n C(fg)$ by [4, Lemma 1.1(1)]. Thus $(C(f)^{n+1}C(g))^{\tilde{\star}} = (C(f)^n C(fg))^{\tilde{\star}}$. Since R is a graded P*MD, the homogeneous fractional ideal $C(f)^n$ is $\tilde{\star}$ -invertible. Thus $(C(f)C(g))^{\tilde{\star}} = C(fg)^{\tilde{\star}}$ for all $f, g \in R_H$.

(⇐) Assume that $(C(f)C(g))^{\tilde{\star}} = C(fg)^{\tilde{\star}}$ for all $f, g \in R_H$. Let $P \in h$ -QMax^{$\tilde{\star}$}(R). Then using Proposition 2.6, we have $C(f)R_{H\setminus P}C(g)R_{H\setminus P} = C(f)C(g)R_{H\setminus P} = (C(f)C(g))^{\tilde{\star}}R_{H\setminus P} = C(fg)^{\tilde{\star}}R_{H\setminus P} = C(fg)R_{H\setminus P}$. Since $R_{H\setminus P}$ has a unit of nonzero degree, Theorem 4.2 shows that $R_{H\setminus P}$ is a graded Prüfer domain. Now Theorem 4.4, implies that R is a graded P \star MD.

We now recall the notion of \star -valuation overring (a notion due essentially to P. Jaffard [25, page 46]). For a domain D and a semistar operation \star on D, we say that a valuation overring V of D is a \star -valuation overring of D provided $F^{\star} \subseteq FV$, for each $F \in f(D)$.

REMARK 4.6. (1) Let \star be a semistar operation on a graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$. Recall that for each $F \in f(R)$ we have

 $F^{\star_a} = \bigcap \{ FV | V \text{ is a } \star \text{-valuation overring of } R \},$

by [19, Propositions 3.3 and 3.4 and Theorem 3.5].

(2) We have $N_{\star}(H) = N_{\tilde{\star}_{a}}(H)$. Indeed, since $\tilde{\star} \leq \tilde{\star}_{a}$ by [20, Proposition 4.5], we have $N_{\star}(H) = N_{\tilde{\star}}(H) \subseteq N_{\tilde{\star}_{a}}(H)$. Now if $f \in R \setminus N_{\star}(H)$ then, $C(f)^{\tilde{\star}} \subsetneq R^{\tilde{\star}}$. Thus there is a homogeneous quasi- $\tilde{\star}$ -prime ideal P of R such that $C(f) \subseteq P$. Let V be a valuation domain dominating R_{P} with maximal ideal M [23, Corollary 19.7]. Therefore V is a $\tilde{\star}$ -valuation overring of R by [18, Theorem 3.9], and $C(f)V \subseteq M$; so $C(f)^{(\tilde{\star})_{a}} \subsetneq R^{(\tilde{\star})_{a}}$ and $f \notin N_{\tilde{\star}_{a}}(H)$. Thus we obtain that $N_{\star}(H) = N_{\tilde{\star}_{a}}(H)$.

In the following theorem we generalize a characterization of PvMDs proved by Arnold and Brewer [7, Theorem 3]. It also generalizes [8, Theorem 3.7], [4, Theorems 3.4 and 3.5], and [17, Theorem 3.1].

THEOREM 4.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree, and \star be a semistar operation on R such that $R^{\star} \subseteq R_{H}$. Then, the following statements are equivalent:

- (1) R is a graded $P\star MD$.
- (2) Every ideal of $R_{N_{\star}(H)}$ is extended from a homogeneous ideal of R.
- (3) Every principal ideal of $R_{N_{\star}(H)}$ is extended from a homogeneous ideal of R.
- (4) $R_{N_{\star}(H)}$ is a Prüfer domain.
- (5) $R_{N_{\star}(H)}$ is a Bézout domain.
- (6) $R_{N_{\star}(H)} = \operatorname{Kr}(R, \widetilde{\star}).$
- (7) $\operatorname{Kr}(R, \widetilde{\star})$ is a quotient ring of R.
- (8) $\operatorname{Kr}(R, \widetilde{\star})$ is a flat *R*-module.
- (9) $I^{\tilde{\star}} = I^{\tilde{\star}_a}$ for each nonzero homogeneous finitely generated ideal of R.

In particular if R is a graded P*MD, then $R^{\tilde{\star}}$ is integrally closed.

Proof. By Proposition 2.3 and Theorem 3.3, we have $\operatorname{Kr}(R, \widetilde{\star})$ is well-defined and is a Bézout domain.

(1) \Rightarrow (2) Let $0 \neq f \in R$. Then C(f) is $\check{\star}$ -invertible, because R is a graded P \star MD, and thus $fR_{N_{\star}(H)} = C(f)R_{N_{\star}(H)}$ by Corollary 2.11. Hence if A is an ideal of $R_{N_{\star}(H)}$, then $A = IR_{N_{\star}(H)}$ for some ideal I of R, and thus $A = (\sum_{f \in I} C(f))R_{N_{\star}(H)}$.

 $(2) \Rightarrow (3)$ Clear.

 $(3) \Rightarrow (1)$ Is the same as part $(3) \Rightarrow (1)$ in [4, Theorem 3.4].

 $(1) \Rightarrow (4)$ Let A be a nonzero finitely generated ideal of $R_{N_{\star}(H)}$. Then by Corollary 2.11, $A = IR_{N_{\star}(H)}$ for some nonzero finitely generated homogeneous ideal I of R. Since R is a graded P*MD, I is $\tilde{\star}$ -invertible, and thus $A = IR_{N_{\star}(H)}$ is invertible by Lemma 2.10.

 $(4) \Rightarrow (5)$ Follows from Theorem 2.13.

(5) \Rightarrow (6) Clearly $R_{N_{\star}(H)} \subseteq \operatorname{Kr}(R, \widetilde{\star})$. Since $R_{N_{\star}(H)}$ is a Bézout domain, then $\operatorname{Kr}(R, \widetilde{\star})$ is a quotient ring of $R_{N_{\star}(H)}$, by [23, Proposition 27.3]. If $Q \in h$ -QMax $\widetilde{\star}(R)$, then $Q\operatorname{Kr}(R, \widetilde{\star}) \subsetneq \operatorname{Kr}(R, \widetilde{\star})$. Otherwise $Q\operatorname{Kr}(R, \widetilde{\star}) = \operatorname{Kr}(R, \widetilde{\star})$, and hence there is an element $f \in Q$, such that $f\operatorname{Kr}(R, \widetilde{\star}) = \operatorname{Kr}(R, \widetilde{\star})$. Thus $\frac{1}{f} \in \operatorname{Kr}(R, \widetilde{\star})$. Therefore $R = C(1) \subseteq$ $C(f)^{(\widetilde{\star})_a} \subseteq R^{(\widetilde{\star})_a}$, so that $C(f)^{(\widetilde{\star})_a} = R^{(\widetilde{\star})_a}$. Hence $f \in N_{(\widetilde{\star})_a}(H) = N_{\star}(H)$

by Remark 4.6(2). This means that $Q^{\tilde{\star}} = R^{\tilde{\star}}$, a contradiction. Thus $Q \operatorname{Kr}(R, \tilde{\star}) \subsetneq \operatorname{Kr}(R, \tilde{\star})$, and so there is a maximal ideal M of $\operatorname{Kr}(R, \tilde{\star})$ such that $Q \operatorname{Kr}(R, \star) \subseteq M$. Hence $M \cap R_{N_{\star}(H)} = QR_{N_{\star}(H)}$, by Lemma 2.7. Consequently $R_Q \subseteq \operatorname{Kr}(R, \tilde{\star})_M$, and since R_Q is a valuation domain, we have $R_Q = \operatorname{Kr}(R, \tilde{\star})_M$. Therefore $R_{N_{\star}(H)} = \bigcap_{Q \in h-\operatorname{QMax}^{\tilde{\star}}(R)} R_Q \supseteq \bigcap_{M \in \operatorname{Max}(\operatorname{Kr}(R, \tilde{\star}))} \operatorname{Kr}(R, \tilde{\star})_M$. Hence $R_{N_{\star}(H)} = \operatorname{Kr}(R, \tilde{\star})$.

 $(6) \Rightarrow (7)$ and $(7) \Rightarrow (8)$ are clear.

(8) \Rightarrow (6) Recall that an overring T of an integral domain S is a flat S-module if and only if $T_M = S_{M \cap S}$ for all $M \in \text{Max}(T)$ by [32, Theorem 2].

Let A be an ideal of R such that $A \operatorname{Kr}(R, \widetilde{\star}) = \operatorname{Kr}(R, \widetilde{\star})$. Then there exists an element $f \in A$ such that $f \operatorname{Kr}(R, \widetilde{\star}) = \operatorname{Kr}(R, \widetilde{\star})$ using Theorem 3.3; so $\frac{1}{f} \in \operatorname{Kr}(R, \widetilde{\star}) = \operatorname{Kr}(R, \widetilde{\star}_a)$. Thus $R = C(1) \subseteq C(f)^{\widetilde{\star}_a} \subseteq R^{\widetilde{\star}_a}$, and so $C(f)^{\widetilde{\star}_a} = R^{\widetilde{\star}_a}$. Hence $C(f)^{\widetilde{\star}} = R^{\widetilde{\star}}$. Therefore $f \in A \cap N_{\star}(H) \neq \emptyset$. Hence, if P_0 is a homogeneous maximal quasi- $\widetilde{\star}$ -ideal of R, then $P_0 \operatorname{Kr}(R, \widetilde{\star}) \subsetneq \operatorname{Kr}(R, \widetilde{\star})$, and since $P_0 R_{N_{\star}(H)}$ is a maximal ideal of $R_{N_{\star}(H)}$, there is a maximal ideal M_0 of $\operatorname{Kr}(R, \widetilde{\star})$ such that $M_0 \cap R = (M_0 \cap R_{N_{\star}(H)}) \cap R = P_0 R_{N_{\star}(H)} \cap R = P_0$. Thus by (8), $\operatorname{Kr}(R, w)_{M_0} = R_{P_0} = (R_{N(H)})_{P_0 R_{N(H)}}$.

Let M_1 be a maximal ideal of $\operatorname{Kr}(R, \widetilde{\star})$, and let P_1 be a homogeneous maximal quasi- $\widetilde{\star}$ -ideal of R such that $M_1 \cap R_{N_{\star}(H)} \subseteq P_1 R_{N_{\star}(H)}$. By the above paragraph, there is a maximal ideal M_2 of $\operatorname{Kr}(R, \widetilde{\star})$ such that $\operatorname{Kr}(R, \widetilde{\star})_{M_2} = (R_{N_{\star}(H)})_{P_1 R_{N_{\star}(H)}}$. Note that $\operatorname{Kr}(R, \widetilde{\star})_{M_2} \subseteq \operatorname{Kr}(R, \widetilde{\star})_{M_1}$, M_1 and M_2 are maximal ideals, and $\operatorname{Kr}(R, \widetilde{\star})$ is a Prüfer domain; hence $M_1 = M_2$ (cf. [23, Theorem 17.6(c)]) and $\operatorname{Kr}(R, \widetilde{\star})_{M_1} = (R_{N_{\star}(H)})_{P_1 R_{N(H)}}$. Thus

$$\operatorname{Kr}(R,\widetilde{\star}) = \bigcap_{M \in \operatorname{Max}(\operatorname{Kr}(R,\widetilde{\star}))} \operatorname{Kr}(R,\widetilde{\star})_M = \bigcap_{P \in h \operatorname{QMax}^{\widetilde{\star}}(R)} (R_{N_{\star}(H)})_{PR_{N_{\star}(H)}}$$
$$= R_{N_{\star}(H)}.$$

(6) \Rightarrow (9) Assume that $R_{N_{\star}(H)} = \operatorname{Kr}(R, \widetilde{\star})$. Let I be a nonzero homogeneous finitely generated ideal of R. Then by Lemma 2.9 and Theorem 3.3(3), we have $I^{\widetilde{\star}} = IR_{N_{\star}(H)} \cap R_{H} = I\operatorname{Kr}(R, \widetilde{\star}) \cap R_{H} = I^{\widetilde{\star}_{a}}$.

(9) \Rightarrow (1) Let *a* and *b* be two nonzero homogeneous elements of *R*. Then $((a,b)^3)^{\tilde{\star}_a} = ((a,b)(a^2,b^2))^{\tilde{\star}_a}$ which implies that $((a,b)^2)^{\tilde{\star}_a} = (a^2,b^2)^{\tilde{\star}_a}$. Hence $((a,b)^2)^{\tilde{\star}} = (a^2,b^2)^{\tilde{\star}}$ and so $(a,b)^2 R_{H\setminus P} = (a^2,b^2) R_{H\setminus P}$ for each homogeneous maximal quasi- $\tilde{\star}$ -ideal *P* of *R*. On the other hand $R^{\tilde{\star}} = R^{\tilde{\star}_a}$ by (9). Hence $R^{\tilde{\star}}$ is integrally closed. Thus $R^{\tilde{\star}} R_{H\setminus P} = R_{H\setminus P}$ is

integrally closed. Therefore by Proposition 4.1, $R_{H\setminus P}$ is a graded Prüfer domain for each homogeneous maximal quasi- \star_f -ideal of R. Thus R is a graded P \star MD by Theorem 4.4.

The following theorem is a graded version of a characterization of Prüfer domains proved by Davis [12, Theorem 1]. It also generalizes [13, Theorem 2.10], in the *t*-operation, and [15, Theorem 5.3], in the case of semistar operations.

THEOREM 4.8. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree, and \star be a semistar operation on R such that $R^{\star} \subseteq R_{H}$. Then, the following statements are equivalent:

- (1) R is a graded $P\star MD$.
- (2) Each homogeneously (\star, t) -linked overring of R is a PvMD.
- (3) Each homogeneously (\star, d) -linked overring of R is a graded Prüfer domain.
- (4) Each homogeneously (\star, t) -linked overring of R, is integrally closed.
- (5) Each homogeneously (\star, d) -linked overring of R, is integrally closed.

Proof. (1) ⇒ (2) Let *T* be a homogeneously (\star, t) -linked overring of *R*. Thus by Lemma 2.15, we have $R_{N_{\star}(H)} \subseteq T_{N_{v}(H)}$. Since *R* is a graded P*MD, by Theorem 4.7, we have $R_{N_{\star}(H)}$ is a Prüfer domain. Thus by [23, Theorem 26.1], we have $T_{N_{v}(H)}$ is a Prüfer domain. Hence, again by Theorem 4.7, we have *T* is a graded PvMD. Therefore using [2, Theorem 6.4], *T* is a PvMD.

 $(2) \Rightarrow (4) \Rightarrow (5)$ and $(3) \Rightarrow (5)$ are clear.

 $(5) \Rightarrow (1)$ Let $P \in h$ -QMax^{*}(R). For a nonzero homogeneous $u \in R_H$, let $T = R[u^2, u^3]_{H \setminus P}$. Then $R_{H \setminus P}$ and T are homogeneous (\star, d) -linked overring of R by Example 2.14. So that $R_{H \setminus P}$ and T are integrally closed. Hence $u \in T$, and since $T = R_{H \setminus P}[u^2, u^3]$, there exists a polynomial $\gamma \in R_{H \setminus P}[X]$ such that $\gamma(u) = 0$ and one of the coefficients of γ is a unit in $R_{H \setminus P}$. So u or u^{-1} is in $R_{H \setminus P}$ by [27, Theorem 67]. Therefore by Lemma 4.3, $R_{H \setminus P}$ is a graded Prüfer domain. Thus R is a graded P*MD by Theorem 4.4.

 $(1) \Rightarrow (3)$ Is the same argument as in part $(1) \Rightarrow (2)$.

The next result gives new characterizations of PvMDs for graded integral domains, which is the special cases of Theorems 4.4, 4.5, 4.7, and 4.8, for $\star = v$.

COROLLARY 4.9. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then, the following statements are equivalent:

- (1) R is a (graded) PvMD.
- (2) $R_{H\setminus P}$ is a graded Prüfer domain for each $P \in h$ -QMax^t(R).
- (3) R_P is a valuation domain for each $P \in h$ -QMax^t(R).
- (4) Every ideal of $R_{N_v(H)}$ is extended from a homogeneous ideal of R.
- (5) $R_{N_v(H)}$ is a Prüfer domain.
- (6) $R_{N_v(H)}$ is a Bézout domain.
- (7) $R_{N_v(H)} = \operatorname{Kr}(R, w).$
- (8) $\operatorname{Kr}(R, w)$ is a quotient ring of R.
- (9) $\operatorname{Kr}(R, w)$ is a flat *R*-module.
- (10) Each homogeneously t-linked overring of R is a PvMD.
- (11) Each homogeneously t-linked overring of R, is integrally closed.
- (12) $(C(f)C(g))^w = C(fg)^w$ for all $f, g \in R_H$.
- (13) $I^w = I^{w_a}$ for each nonzero homogeneous finitely generated ideal of R.

ACKNOWLEDGMENT

I am grateful to the referee for carefully reading the first version of this article.

References

- [1] D. D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Pauli **26** (1977), 137–140.
- [2] D. D. Anderson and D. F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549–569.
- [3] D. D. Anderson and D. F. Anderson, Divisibility properties of graded domains, Canad. J. Math. 34 (1982), 196–215.
- [4] D. F. Anderson and G. W. Chang, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169–184.
- [5] D. D. Anderson and J.S. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461–2475.
- [6] D.F. Anderson, M. Fontana, and M. Zafrullah, Some remarks on Prüfer *multiplication domains and class groups, J. Algebra 319 (2008), 272–295.
- J. T. Arnold and J. W. Brewer, Kronecker function rings and flat D[X]-modules, Proc. Amer. Math. Soc. 27 (1971), 483–485.
- [8] G. W. Chang, Prüfer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309–319.
- [9] G.W. Chang and M. Fontana, Uppers to zero and semistar operations in polynomial rings, J. Algebra 318 (2007), 484–493.

- [10] G. W. Chang, B. G. Kang and J. W. Lim, Prüfer v-multiplication domains and related domains of the form $D + D_S[\Gamma^*]$, J. Algebra **323** (2010), 3124–3133.
- [11] C. C. Chevalley, La notion d'anneau de décomposition, Nagoya Math. J. 7 (1954), 21–33.
- [12] E. Davis, Overrings of commutative rings, II, Trans. Amer. Math. Soc. 110 (1964), 196–212.
- [13] D. E. Dobbs, E. G. Houston, T. G. Lucas and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains, Comm. Algebra 17 (1989), 2835–2852.
- [14] D. E. Dobbs and P. Sahandi, On semistar Nagata rings, Prüfer-like domains and semistar going-down domains, Houston J. Math. 37 (3) (2011), 715–731.
- [15] S. El Baghdadi and M. Fontana, Semistar linkedness and flatness, Prüfer semistar multiplication domains, Comm. Algebra 32 (2004), 1101–1126.
- [16] M. Fontana and J. A. Huckaba, *Localizing systems and semistar operations*, in: S. Chapman and S. Glaz (Eds.), Non Noetherian Commutative Ring Theory, Kluwer, Dordrecht, 2000, 169–197.
- [17] M. Fontana, P. Jara and E. Santos, Prüfer *-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 21–50.
- [18] M. Fontana and K. A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775–4801.
- [19] M. Fontana and K. A. Loper, A Krull-type theorem for semistar integral closure of an integral domain, ASJE Theme Issue "Commutative Algebra" 26 (2001), 89–95.
- [20] M. Fontana and K. A. Loper, Kronecker function rings: a general approach, in: D. D. Anderson and I. J. Papick (Eds.), Ideal Theoretic Methods in Commutative Algebra, Lecture Notes Pure Appl. Math. 220 (2001), Dekker, New York, 189–205.
- [21] M. Fontana and K. A. Loper, A historical overview of Kronecker function rings, Nagata rings, and related starand semistar operations, in: J. W. Brewer, S. Glaz, W. J. Heinzer, B. M. Olberding(Eds.), Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, 169–187.
- [22] M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12 (4) (2005), 645–664.
- [23] R. Gilmer, *Multiplicative Ideal Theory*, New York, Dekker, 1972.
- [24] E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955–1969.
- [25] P. Jaffard, Les Systèmes d'Idéaux, Dunod, Paris, 1960.
- [26] B. G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra **123** (1989), 151–170.
- [27] I. Kaplansky, Commutative Rings, revised ed., Univ. Chicago Press, Chicago, 1974.
- [28] M. Nagata, Local Rings, Wiley-Interscience, New York, 1962.
- [29] D. G. Northcott, Lessons on ringss, modules, and multiplicities, Cambridge Univ. Press, Cambridge, 1968.

- [30] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1–21.
- [31] M. H. Park, Integral closure of a graded integral domain, Comm. Algebra, 35 (2007), 3965–3978.
- [32] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794–799.

Parviz Sahandi Department of Mathematics University of Tabriz Tabriz, Iran *E-mail*: sahandi@tabrizu.ac.ir

School of Mathematics Institute for Research in Fundamental Sciences (IPM) Tehran 19395-5746, Iran *E-mail*: sahandi@ipm.ir