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REGULARITY AND SEMIPOTENCY OF HOM

Hamza Hakmi

Abstract. Let M , N be modules over a ring R and [M,N ] =
HomR(M,N). The concern is study of: (1) Some fundamental prop-
erties of [M,N ] when [M,N ] is regular or semipotent. (2) The sub-
structures of [M,N ] such as radical, the singular and co-singular
ideals, the total and others has raised new questions for research in
this area. New results obtained include necessary and sufficient con-
ditions for [M,N ] to be regular or semipotent. New substructures
of [M,N ] are studied and its relationship with the Tot of [M,N ].
In this paper we show that, the endomorphism ring of a module M
is regular if and only if the module M is semi-injective (projective)
and the kernel (image) of every endomorphism is a direct summand.

1. Introduction.

In this paper rings R, are associative with identity unless otherwise
indicated. All modules over a ring R are unitary right modules. We
write J(R) and U(R) for the Jacobson radical and the group of units of
a ring R. A submodule N of a module M is said to be small in M , if
N +K 6= M for any proper submodule K of M [1]. Also, a submodule
Q of a module M is said to be large (essential) in M if Q ∩K 6= 0 for
every nonzero submodule K of M [1]. For a submodule N of a module
M , we use N ⊆⊕ M to mean that N is a direct summand of M , and
write N ≤e M and N � M to indicate that N is an large, respectively
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small, submodule of M . We use the notation: EM = EndR(M) and
[M,N ] = HomR(M,N). Thus, [M,N ] is an (EM , EN)-bimodule. Our
main concern is about the four substructures of HomR(M,N) and the
regularity, semipotency of HomR(M,N) given as follows [9].

• The Jacobson radical.

J [M,N ] = {α : α ∈ [M,N ]; βα ∈ J(EM) for all β ∈ [N,M ]}.

J [M,N ] = {α : α ∈ [M,N ]; αβ ∈ J(EN) for all β ∈ [N,M ]}.

Thus J [M,M ] = J(EM). In particular, J [R,R] = J(R).

• The singular ideal 4[M,N ] = {α : α ∈ [M,N ], Ker(α) ≤e M}. In
particular, ∆(EM) = ∆[M,M ] = {α : α ∈ EM ; Ker(α) ≤e M}.
• The co-singular ideal ∇[M,N ] = {α : α ∈ [M,N ], Im(α) � M}.

In particular, ∇(EM) = ∇[M,M ] = {α : α ∈ EM ; Im(α)�M}
• The total.

Tot[M,N ] = {α : α ∈ [M,N ]; [N,M ]α contains no nonzero idempotents}.

Tot[M,N ] = {α : α ∈ [M,N ]; α[N,M ] contains no nonzero idempotents}.

The Total is the concept was first introduced by F.Kasch. An excel-
lent reference on the study of the total as will as its connections with
the Jacobson radical and the singular and co-singular ideals or other
substructures of ring. In section 2, it is proved some basic properties
of [M,N ] when [M,N ] is regular include necessary and sufficient con-
ditions for [M,N ] to be regular. In section 3, it is proved that for
a module M , EM is regular if and only if M is semi-projective and
Im(α) ⊆⊕ M if and only if M is semi-injective and Ker(α) ⊆⊕ M for
any α ∈ EM . The semipotentness of [M,N ] is studied in section 4, in-
clude necessary and sufficient conditions for [M,N ] to be semipotent.
A new description of J [M,N ] is obtained in case [M,N ] is semipotent.
Also, it is proved that for a semi-projective module P ; J(EP ) = {α : α ∈
EP ; Im(1− αβ) = P for all β ∈ EP} and for a semi-injective module Q;
J(EQ) = {α : α ∈ EQ; Ker(1− αβ) = 0 for all β ∈ EQ}. In addition to,
it is proved that for a locally projective module P ; Tot(EP ) = {α : α ∈
EP ; Im(1 − αβ) = P for all β ∈ EP} and for a locally injective module
Q; Tot(EQ) = {α : α ∈ EQ; Ker(1− αβ) = 0 for all β ∈ EQ}.
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2. Regularity of [M,N ].

Let MR, NR be modules. An element α of [M,N ] is called regular [2],
if there exists β ∈ [N,M ] such that α = αβα. [M,N ] is called regular
if each α ∈ [M,N ] is regular. We start with the following fundamen-
tal lemma which gives information about relationship between any two
elements of [M,N ].

Lemma 2.1. Let MR, NR be modules and α ∈ [M,N ], β ∈ [N,M ].
The following hold:
(1) Im(α) + Im(1N − αβ) = N .
(2) Im(α− αβα) = Im(α) ∩ Im(1N − αβ).
(3) Im(β) + Im(1M − βα) = M .
(4) Im(β − βαβ) = Im(β) ∩ Im(1M − βα).
(5) Ker(α) ∩Ker(1M − βα) = 0.
(6) Ker(α− αβα) = Ker(α) + Ker(1M − βα).
(7) Ker(β) ∩Ker(1N − αβ) = 0.
(8) Ker(β − βαβ) = Ker(β) + Ker(1N − αβ).

Proof. We have αβ ∈ EN and βα ∈ EM .
(1). It is clear that N = Im(αβ)+Im(1N−αβ) ⊆ Im(α)+Im(1N−αβ) ⊆
N . Similarly (3) holds.
(2). α−αβα ∈ [M,N ]. Im(α−αβα) = Im((1N −αβ)α) ⊆ Im(1N −αβ)
and Im(α − αβα) = Im(α(1M − βα)) ⊆ Im(α). So Im(α − αβα) ⊆
Im(α) ∩ Im(1N − αβ).
Let x ∈ Im(α) ∩ Im(1N − αβ); x ∈ N and x = α(y) = (1N − αβ)(z)
where y ∈ M , z ∈ N . So x = z − αβ(z), z = x + αβ(z) = α(y) +
αβ(z) = α(y + β(z)). Let y0 = y + β(z) ∈ M . Then z = α(y0) and
x = (1N − αβ)(z) = (1N − αβ)α(y0) = (α − αβα)(y0) ∈ Im(α − αβα).
Thus, Im(α) ∩ Im(1N − αβ) ⊆ Im(α − αβα). Similarly (4) holds. (5)
and (7) are clears.
(6) It is clear that Ker(α) ⊆ Ker(α−αβα) and Ker(1M−βα) ⊆ Ker(α−
αβα), so Ker(α)+Ker(1M−βα) ⊆ Ker(α−αβα). Let x ∈ Ker(α−αβα).
Then x ∈ M and α(x) = αβα(x). Since x = βα(x) + (1M − βα)(x)
and βα(x) ∈ Ker(1M − βα), (1M − βα)(x) ∈ Ker(α), hence (1M −
βα)(βα(x)) = βα(x)−βαβα(x) = βα(x)−βα(x) = 0, α(1M−βα)(x) =
α(x)−αβα(x) = α(x)−α(x) = 0. So x ∈ Ker(1M−βα)+Ker(α). Thus,
Ker(α− αβα) ⊆ Ker(α) + Ker(1M − βα). Similarly (8) holds.

The following Lemma is continuation of Lemma 2.1 [2].
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Lemma 2.2. Let MR, NR be modules and α ∈ [M,N ], β ∈ [N,M ].
The following hold:
(1) Im(1N − αβ) = N if and only if Im(1M − βα) = M .
(2) Ker(1N − αβ) = 0 if and only if Ker(1M − βα) = 0.
(3) 1N − αβ ∈ U(EN) if and only if 1M − βα ∈ U(EM).

Proof. (1)(⇒). Suppose that Im(1N −αβ) = N , then Im(β−βαβ) =
Im(β). By Lemma 2.1; Im(β) = Im(β − βαβ) = Im(β) ∩ Im(1M − βα),
so Im(β) ⊆ Im(1M −βα). By Lemma 2.1; M = Im(β) + Im(1M −βα) =
Im(1M − βα). Similarly (⇐) holds.
(2)(⇒). Suppose that Ker(1N − αβ) = 0. Let x ∈ Ker(1M − βα). Then
x ∈M and βα(x) = x, so αβα(x) = α(x) and (1N − αβ)(α(x)) = 0. So
by assumption; α(x) ∈ (1N − αβ) = 0 and α(x) = 0, x ∈ Ker(α). Thus,
Ker(1M−βα) ⊆ Ker(α) and by Lemma 2.1; 0 = Ker(α)∩Ker(1M−βα) =
Ker(1M − βα). So Ker(1M − βα) = 0. Similarly (⇐) holds.
(3). By (1) and (2).

Let MR be a module and α ∈ EM . R. Ware in [7], proved that, α
is regular if and only if Im(α) and Ker(α) are direct summands of M .
The next Proposition gives information about α ∈ [M,N ], when α is a
regular element.

Proposition 2.3. Let M , N be modules and α ∈ [M,N ]. The
following are equivalent:
(1) There exists β ∈ [M,N ] such that α = αβα.
(2) Im(α) ⊆⊕ N and Ker(α) ⊆⊕ M .
(3) There exists β ∈ [N,M ] such that Im(α) ∩ Im(1N − αβ) = 0.
(4) There exists β ∈ [N,M ] such that Ker(α) + Ker(1M − βα) = M .

Proof. (1)⇔ (2). By [3, Characterization 2.2].
(1) ⇔ (3). α − αβα = 0 if and only if Im(α − αβα) = 0 if and only if
Im(α) ∩ Im(1N − αβ) = 0, by Lemma 2.1.
(1)⇔ (4). α− αβα = 0 if and only if Ker(α− αβα) = M if and only if
M = Ker(α) + Ker(1M − βα), by Lemma 2.1.

Let MR, NR be modules and α ∈ [M,N ]. The following Theorem
describe the submodules α[N,M ] and [M,N ]α when [M,N ] is regular.

Theorem 2.4. Let M , N be modules and α, β ∈ [M,N ]. If [M,N ]
is regular, then the following hold:
(1) Im(α) ⊆ Im(β) if and only if α[N,M ] ⊆ β[N,M ].
(2) Im(α) = Im(β) if and only if α[N,M ] = β[N,M ].
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(3) α[N,M ] = {µ : µ ∈ EN ; Im(µ) ⊆ Im(α)}.
(4) Ker(α) ⊆ Ker(β) if and only if [N,M ]β ⊆ [N,M ]α.
(5) Ker(α) = Ker(β) if and only if [N,M ]β = [N,M ]α.
(6) [N,M ]α = {µ : µ ∈ EM ; Ker(α) ⊆ Ker(µ)}.

Proof. (1)(⇒). Suppose that Im(α) ⊆ Im(β). Since [M,N ] is regular
there exists µ ∈ [N,M ] such that β = βµβ. For e = βµ; e2 = e ∈ EN

and Im(e) = Im(β), so Im(α) ⊆ Im(e). Thus, for all x ∈ M ; e(α(x)) =
α(x), so α = eα = βµα ∈ βEM . Therefore, α[N,M ] ⊆ βEM [N,M ] ⊆
β[N,M ].
(⇐). Suppose that α[N,M ] ⊆ β[N,M ]. Since [M,N ] is regular; α =
αλα for some λ ∈ [N,M ]. Since αλ ∈ α[N,M ] ⊆ β[N,M ]; αλ = βδ for
some δ ∈ [N,M ]. Thus, Im(α) = Im(αλα) = Im(βδα) ⊆ Im(β).
(2) and (3) are clear by (1).
(4)(⇒). Suppose that Ker(α) ⊆ Ker(β), then β(Ker(α)) = 0. Since
[M,N ] is regular there exists µ ∈ [M,N ] such that α = αµα. For
e = µα ∈ EM ; e2 = e and Ker(α) = Ker(e), so β(Ker(α)) = β(Ker(e)) =
β(Im(1M − e)) = Im(β(1M − e)) = 0. Thus, β(1M − e) = 0 and that
β = βe = βµα ∈ (EN)α. So [N,M ]β ⊆ [N,M ](EN)α ⊆ [N,M ]α.
(⇐). Suppose that [N,M ]β ⊆ [N,M ]α. Since [M,N ] is regular; β =
βδβ for some δ ∈ [N,M ] and δβ ∈ [N,M ]β ⊆ [N,M ]α. So δβ = λα for
some λ ∈ [N,M ]. Thus, β = βλα and Ker(α) ⊆ Ker(β).
(5) and (6) are clear by (4).

The next Corollary is a special case of Theorem 2.4, for M = N .

Corollary 2.5. Let M be a module with EM is a regular ring and
α, β ∈ EM . The following hold:
(1) Im(α) ⊆ Im(β) if and only if αEM ⊆ βEM .
(2) Im(α) = Im(β) if and only if αEM = βEM .
(3) αEM = {β : β ∈ EM ; Im(β) ⊆ Im(α)}.
(4) Ker(α) ⊆ Ker(β) if and only if (EM)β ⊆ (EM)α.
(5) Ker(α) = Ker(β) if and only if (EM)α = (EM)β.
(6) (EM)α = {β : β ∈ EM ; Ker(α) ⊆ Ker(β)}.

3. Semi-injective (projective) modules.

Theorem 3.1 ([8], p.260). For every module MR the following are
equivalent:
(1) For every submodule N of M and every epimorphism α : M → N ,
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homomorphism λ : M → N there exists β ∈ EM such that αβ = λ.
(2) For every α ∈ EM ; αEM = HomR(M, Im(α)).
(3) For every α ∈ EM ; αEM = {β : β ∈ EM ; Im(β) ⊆ Im(α)}.

Proof. (1) ⇒ (2). Suppose (1) holds. Let α ∈ EM and λ ∈ αEM .
Then λ = αβ for some β ∈ EM . So Im(λ) ⊆ Im(α); λ ∈ HomR(M, Im(α)).
Let β ∈ HomR(M, Im(α)). By assumption there exists λ ∈ EM such that
αλ = β, so β ∈ αEM .
(2) ⇒ (1). Let N be a submodule of M and α : M → N is an epimor-
phism, λ : M → N is a homomorphism. Then Im(λ) ⊆ N = Im(α), so
λ ∈ HomR(M, Im(α)). By assumption λ = αβ for some β ∈ EM .
(2)⇔ (3) it is clear.

A module MR is called a semi-projective module [8], if it is satisfies
the equivalent conditions of Theorem 3.1.

Theorem 3.2 ([8], p.261). For every module MR the following are
equivalent:
(1) For every factor module N of M and every monomorphism α : N →
M , homomorphism λ : N →M there exists β ∈ EM such that βα = λ.
(2) For every α ∈ EM ; EMα = {β : β ∈ EM ; Ker(α) ⊆ Ker(β)}.

Proof. (1) ⇒ (2). Suppose (1) holds. Let α ∈ EM and β ∈ EMα.
Then β = λα for some λ ∈ EM , so Ker(α) ⊆ Ker(β).
Let β ∈ EM such that Ker(α) ⊆ Ker(β). Then the map α′ : M/Ker(α)→
M is defined by α′(x) = α(x) for all x ∈ M/Ker(α), is monomorphism.
Also, Since Ker(α) ⊆ Ker(β), the map β′ : M/Ker(α) → M is defined
by β′(x) = β(x) for all x ∈ M/Ker(α), is homomorphism. By assump-
tion, there exists λ ∈ EM such that λα′ = β′. Thus, for all x ∈ M ;
λα(x) = λα′(x) = β′(x) = β(x), so λα = β and β ∈ EMα.
(2) ⇒ (1). Let N be a factor module of M and α : N → M is a
monomorphism, β : N →M is a homomorphism. Also, Let π : M → N
be a canonical homomorphism of a module M onto factor module N .
Then απ, βπ ∈ EM and Ker(απ) ⊆ Ker(βπ). By assumption βπ ∈
EM(απ), so βπ = λ(απ) for some λ ∈ EM . Let y ∈ N , then y = π(x) for
some x ∈M and β(y) = βπ(x) = λαπ(x) = λα(y). Thus, β = λα.

A module MR is called a semi-injective module [8], if it is satisfies the
equivalent conditions of Theorem 3.2.

Theorem 3.3. For every module MR. The following are equivalent:
(1) EM is a regular ring.
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(2) M is a semi-projective module and Im(α) ⊆⊕ M for all α ∈ EM .
(3) M is a semi-injective module and Ker(α) ⊆⊕ M for all α ∈ EM .

Proof. (1) ⇒ (2). Suppose that EM is regular. Then Im(α) ⊆⊕ M
for all α ∈ EM . On the other hand, by Corollary 2.5(3) and Theorem
3.1, implies that M is semi-projective.
(2) ⇒ (1). Let α ∈ EM , by assumption Im(α) ⊆⊕ M . Let π : M →
Im(α) the projection. Then Im(α) = Im(π), by Theorem 4.1, π ∈ αEM ,
so π = αβ for some β ∈ EM . On the other hand, for every x ∈ M ;
α(x) ∈ Im(α), so π(α(x)) = α(x). Thus, πα = α and that αβα = α. So
EM is regular.
(1) ⇒ (3). Suppose that EM is regular. Then ker(α) ⊆⊕ M for all
α ∈ EM . On the other hand, by Corollary 2.5(6) and Theorem 3.2,
implies that M is semi-injective.
(3) ⇒ (1). Let α ∈ EM , by assumption Ker(α) ⊆⊕ M . Then M =
Ker(α) ⊕ K for some submodule K of M . Let π : M → K be the
projection. Then Ker(α) = Ker(π) and α(Ker(π)) = α(Im(1− π)) = 0,
so α = απ. Since M is semi-injective and Ker(α) ⊆ Ker(π); π ∈ EMα.
Thus, π = βα for some β ∈ EM , so α = αβα.

A module MR is called semi-simple [1], if every submodule of M is a
direct summand of M . A ring R is semi-simple if RR is semi-simple.

Corollary 3.4. For any ring R the following are equivalent:
(1) A ring R is semi-simple.
(2) M is semi-simple for every M ∈ mod−R.
(3) EM is a regular ring for every M ∈ mod−R.
(4) EF is a regular ring for every free module F ∈ mod−R.
(5) For every M ∈ mod− R, M is semi-injective and Ker(α) ⊆⊕ M for
all α ∈ EM .
(6) For every M ∈ mod−R, M is semi-projective and Im(α) ⊆⊕ M for
all α ∈ EM .

Proof. (1)⇔ (2), (2)⇒ (3) and (3)⇒ (4) are clear. (4)⇒ (1) by [6,
Theorem 1]. (4)⇔ (5)⇔ (6) by Theorem 3.3.

4. Semipotency of [M,N ].

An element a of a ring R is called partially invertible or pi for short,
if a is a divisor of an idempotent [2]. The next Proposition gives infor-
mation about α ∈ EM , when α is a divisor of an idempotent.
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Proposition 4.1. Let M , N be modules and α ∈ [M,N ]. The fol-
lowing are equivalent:
(1) There exists β ∈ [N,M ] such that β = βαβ.
(2) There exists δ ∈ [N,M ] such that Im(αδ), Ker(αδ) are direct sum-
mands of N .
(3) There exists γ ∈ [N,M ] such that Im(γα), Ker(γα) are direct sum-
mands of M .
(4) There exists β ∈ [N,M ] such that Im(β) ∩ Im(1M − βα) = 0.
(5) There exists β ∈ [N,M ] such that Ker(β) + Ker(1N − αβ) = N .

Proof. (1)⇒ (2). If β = βαβ for some β ∈ [N,M ]; (αβ)2 = αβ ∈ EN ,
so Im(αβ) and Ker(αβ) are direct summand of N .
(2) ⇒ (1). If Im(αδ) and Ker(αδ) are direct summand of N for some
δ ∈ [N,M ]; by Lemma 2.3 there exists µ ∈ EN such that (αδ)µ(αδ) =
αδ. Then for β = δµαδµ ∈ [N,M ]; βαβ = β. Similarly (1)⇔ (3) holds.
(1) ⇒ (4). Suppose that βαβ = β for some β ∈ [N,M ]. Then Im(β −
βαβ) = 0, by Lemma 2.1 Im(α) ∩ Im(1M − βα) = 0.
(4) ⇒ (1). If Im(α) ∩ Im(1M − βα) = 0 for some β ∈ [N,M ], then by
Lemma 2.1 Im(β − βαβ) = 0, so βαβ = β.
(1)⇔ (5). For some β ∈ [N,M ]; βαβ = β if and only if Ker(β−βαβ) =
M if and only if Ker(α) + Ker(1N − αβ) = N by Lemma 2.1.

Let M , N be modules. Recall that [M,N ] is semipotent by Zhou [9,
Theorem 2.2], if Tot[M,N ] = J [M,N ].

Corollary 4.2. Let MR, NR be modules. The following are equiv-
alent:
(1) [M,N ] is semipotent.
(2) For every α ∈ [M,N ] \ J [M,N ] there exists β ∈ [N,M ] such that
β = βαβ.
(3) For every α ∈ [M,N ] \ J [M,N ] there exists β ∈ [N,M ] such that
Im(αβ), Ker(αβ) are direct summands of N .
(4) For every α ∈ [M,N ] \ J [M,N ] there exists β ∈ [N,M ] such that
Im(βα), Ker(βα) are direct summands of M .
(5) For every α ∈ [M,N ] \ J [M,N ] there exists β ∈ [N,M ] such that
Im(β) ∩ Im(1M − βα) = 0.
(6) For every α ∈ [M,N ] \ J [M,N ] there exists β ∈ [N,M ] such that
Ker(β) + Ker(1N − αβ) = N .

Proof. By Proposition 4.1.
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Let M,N be modules. Write:

∇1[M,N ] = {α : α ∈ [M,N ]; Im(1N − αβ) = N for all β ∈ [N,M ]}.

∇2[M,N ] = {α : α ∈ [M,N ]; Im(1M − βα) = M for all β ∈ [N,M ]}.
It is clear that ∇1[M,N ] and ∇2[M,N ] are non empty subsets in

[M,N ], (0 ∈ ∇1[M,N ], 0 ∈ ∇2[M,N ]). By using Lemma 2.2(1), it is
easy to see that ∇1[M,N ] = ∇2[M,N ]. Therefore we use the notation:

∇̂[M,N ] = {α : α ∈ [M,N ]; Im(1N − αβ) = N for all β ∈ [N,M ]}.

= {α : α ∈ [M,N ]; Im(1M − βα) = M for all β ∈ [N,M ]}.

∇̂[M,N ] is a semi-ideal in mod−R, which means hat it is closed under
arbitrary multiplication from either side, by the following Lemma.

Lemma 4.3. For arbitraryM,N,X, Y ∈ mod−R, the following hold:

(1) ∇̂[M,N ][X,M ] ⊆ ∇̂[X,N ].

(2) [N, Y ]∇̂[M,N ] ⊆ ∇̂[M,Y ].

(3) [N, Y ]∇̂[M,N ][X,M ] ⊆ ∇̂[X, Y ].

Proof. (1). Let α ∈ ∇̂[M,N ] and λ ∈ [X,M ]. Then αλ ∈ [X,N ].
For all β ∈ [N,X]; Im(1N − (αλ)β) = Im(1N − α(λβ)) = N , hence

λβ ∈ [N,M ]. Thus, αλ ∈ ∇̂[X,N ]. (2) is analogous.
(3) by (1) and (2).

Let M,N be modules. Write

41[M,N ] = {α : α ∈ [M,N ]; Ker(1N − αβ) = 0 for all β ∈ [N,M ]}.

42[M,N ] = {α : α ∈ [M,N ]; Ker(1M − βα) = 0 for all β ∈ [N,M ]}.

It is clear that41[M,N ] and42[M,N ] are non empty subsets in [M,N ],
(0 ∈ 41[M,N ], 0 ∈ 42[M,N ]). By using Lemma 2.2(2), it is easy to
see that 41[M,N ] = 42[M,N ]. Therefore we use the notation:

4̂[M,N ] = {α : α ∈ [M,N ]; Ker(1N − αβ) = 0 for all β ∈ [N,M ]}.

= {α : α ∈ [M,N ]; Ker(1M − βα) = 0 for all β ∈ [N,M ]}.

4̂[M,N ] is a semi-ideal in mod−R, which means hat it is closed under
arbitrary multiplication from either side, by the following Lemma.
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Lemma 4.4. For arbitraryM,N,X, Y ∈ mod−R, the following hold:

(1) 4̂[M,N ][X,M ] ⊆ 4̂[X,N ].

(2) [N, Y ]4̂[M,N ] ⊆ 4̂[M,Y ].

(3) [N, Y ]4̂[M,N ][X,M ] ⊆ 4̂[X, Y ].

Proof. (1). Let α ∈ 4̂[M,N ] and λ ∈ [X,M ]. Then αλ ∈ [X,N ].
For all β ∈ [N,X]; Ker(1N − (αλ)β) = Ker(1N − α(λβ)) = 0, hence

λβ ∈ [N,M ]. Thus, αλ ∈ 4̂[X,N ]. (2) is analogous.
(3) by (1) and (2).

Corollary 4.5. Let M , N be modules. The following hold:

(1) ∇[M,N ] ⊆ ∇̂[M,N ].

(2) 4[M,N ] ⊆ 4̂[M,N ].

Proof. It is clear by Lemma 2.1.

Lemma 4.6. Let M , N be modules. The following hold:

(1) J [M,N ] ⊆ ∇̂[M,N ] ∩ 4̂[M,N ].

(2) ∇̂[M,N ] ∪ 4̂[M,N ] ⊆ Tot[M,N ].
(3) J [M,N ] ⊆ Tot[M,N ].

Proof. (1). Let α ∈ J [M,N ]. Then for all β ∈ [N,M ]; 1N − αβ ∈
U(EN) and 1M−βα ∈ U(EM), so there exists g ∈ EN , λ ∈ EM such that
(1N − αβ)g = 1N and λ(1M − βα) = 1M . Therefore Im(1N − αβ) = N

and Ker(1M − βα) = 0. Thus α ∈ ∇̂[M,N ] and α ∈ 4̂[M,N ]. So

J [M,N ] ⊆ ∇̂[M,N ] ∩ 4̂[M,N ].

(2). Let α ∈ ∇̂[M,N ]. Then for all β ∈ [N,M ]; Im(1N − αβ) = N . If
α 6∈ Tot[M,N ], there exists δ ∈ [N,M ] such that 0 6= (αδ)2 = αδ ∈ EN .
So Ker(αδ) = Im(1N − αδ) = N , thus αδ = 0 a contradiction. So
α ∈ Tot[M,N ].

Let α ∈ 4̂[M,N ]. Then for all β ∈ [N,M ]; Ker(1N − αβ) = 0. If
α 6∈ Tot[M,N ], there exists δ ∈ [N,M ] such that 0 6= (αδ)2 = αδ ∈ EN .
So Im(αδ) = Ker(1N − αδ) = 0, thus αδ = 0 a contradiction. So
α ∈ Tot[M,N ].
(3) by (1) and (2).

The following Proposition describe the Jacobson radical of [M,N ]
when [M,N ] is semipotent.

Proposition 4.7. Let M , N be modules with [M,N ] is semipotent.
Then the following hold:
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(1) J [M,N ] = ∇̂[M,N ].

(2) J [M,N ] = 4̂[M,N ].

(3) ∇̂[M,N ] = 4̂[M,N ].

Proof. Suppose that [M,N ] is semipotent.

(1). By Lemma 4.6, we have J [M,N ] ⊆ ∇̂[M,N ]. Let α ∈ ∇̂[M,N ].
Then for all β ∈ [N,M ]; Im(1N −αβ) = N . Suppose that α 6∈ J [M,N ],
then there exists δ ∈ [N,M ] such that δαδ = δ 6= 0, so 0 6= (αδ)2 =
αδ ∈ EN and Ker(αδ) = Im(1N − αδ) = N , so αδ = 0 a contradiction.
Thus, α ∈ J [M,N ].

(2). By Lemma 4.6, we have J [M,N ] ⊆ 4̂[M,N ]. Let α ∈ 4̂[M,N ].
Then for all β ∈ [N,M ]; Ker(1N −αβ) = 0. Suppose that α 6∈ J [M,N ],
then there exists δ ∈ [N,M ] such that δαδ = δ 6= 0, so 0 6= (αδ)2 =
αδ ∈ EN and Im(αδ) = Ker(1N − αδ) = 0, so αδ = 0 a contradiction.
Thus, α ∈ J [M,N ].
(3) by (1) and (2).

Corollary 4.8. Let M , N be modules with [M,N ] is semipotent
and α ∈ [N,M ]. Then the following hold:
(1) α ∈ J [N,M ] if and only if Im(1N − αβ) = N for all β ∈ [N,M ] if
and only if Ker(1N − αβ) = 0 for all β ∈ [N,M ].
(2) α ∈ J [N,M ] if and only if Im(1M − βα) = M for all β ∈ [N,M ] if
and only if Ker(1M − βα) = 0 for all β ∈ [N,M ].

Proof. By Proposition 4.7.

Theorem 4.9. (1) For a moduleN the following conditions are equiv-
alent:
(i) ∇̂[M,N ] ⊆ J [M,N ] for all M ∈ mod−R.
(ii) ∇̂(EN) ⊆ J(EN).

(iii) For every α ∈ EN with 1− α ∈ ∇̂(EN) is one-to-one.
(2) For a module M the following conditions are equivalent:

(i) 4̂[M,N ] ⊆ J [M,N ] for all N ∈ mod−R.
(ii) 4̂(EM) ⊆ J(EM).

(iii) For every α ∈ EM with 1− α ∈ 4̂(EM) is onto.

Proof. (1)(i)⇒ (ii). It is clear.

(ii)⇒ (iii). Let α ∈ EN with 1−α ∈ ∇̂(EN). Then Im(1−(1−α)β) = N
for all β ∈ EN . On the other hand, 1− α ∈ J(EN) by assumption. So,
α = 1− (1− α) ∈ U(EN) and α is one-to-one.
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(iii)⇒ (i). Let α ∈ ∇̂[M,N ]. Then Im(1N−αβ) = N for all β ∈ [N,M ].
Thus, for every λ ∈ EN ; Im(1N − (αβ)λ) = Im(1N −α(βλ)) = N , hence

α ∈ ∇̂[M,N ] and βλ ∈ [N,M ]. So αβ = (1N − (1N −αβ)) ∈ ∇̂(EN), by
assumption 1N−αβ is one to one. Thus, 1N−αβ ∈ U(EN), αβ ∈ J(EN)
and α ∈ J [M,N ].
(2)(i)⇒ (ii). It is clear.

(ii) ⇒ (iii). Let α ∈ EM with 1 − α ∈ 4̂(EM). Then Ker(1M −
β(1M − α)) = 0 for all β ∈ EM . On the other hand, 1− α ∈ J(EM) by
assumption. So, α = 1− (1− α) ∈ U(EM) and α is one-to-one.

(iii) ⇒ (i). Let α ∈ 4̂[M,N ]. Then Ker(1M − βα) = 0 for all β ∈
[N,M ]. Thus, for every λ ∈ EM ; Ker(1M−λ(βα)) = Ker(1M−(λβ)α) =

0, hence α ∈ 4̂[M,N ] and λβ ∈ [N,M ]. So βα = (1M − (1M − βα)) ∈
4̂(EM) is onto by assumption. Thus, 1M − βα ∈ U(EM), βα ∈ J(EM)
and α ∈ J [M,N ].

Theorem 4.10. Let M , N be modules. The following conditions are
equivalent:
(1) Tot[M,N ] = ∇[M,N ].
(2) For all α ∈ [M,N ] with Im(α) is not small in N there exists β ∈
[N,M ] such that Im(β) ∩ Im(1M − βα) = 0.
(3) For all α ∈ [M,N ] with Im(α) is not small in N there exists β ∈
[N,M ] such that Ker(β) + Ker(1N − αβ) = N .

Proof. (1) ⇒ (2). Suppose (1) holds. Let α ∈ [M,N ] with Im(α)
is not small in N . Then α 6∈ ∇[M,N ], by assumption there exists
λ ∈ [M,N ] such that 0 6= (λα)2 = λα ∈ EM . For β = λαλ; βαβ = β.
By Lemma 2.1; 0 = Im(β − βαβ) = Im(β) ∩ Im(1M − βα).
(2)⇒ (3). Suppose (2) holds. Let α ∈ [M,N ] with Im(α) is not small in
N . By assumption there exists β ∈ [M,N ] such that Im(β) ∩ Im(1M −
βα) = 0. By Lemma 2.1(4); β − βαβ = 0, so N = Ker(β − βαβ) =
Ker(β) + Ker(1N − αβ) by Lemma 2.1(8), giving (3).
(3) ⇒ (1). It is clear that ∇[M,N ] ⊆ Tot[M,N ]. Let α ∈ Tot[M,N ].
Suppose that α 6∈ ∇[M,N ], then Im(α) is not small in N , by assumption
there exists β ∈ [N,M ] such that N = Ker(β) + Ker(1N − αβ). By
Lemma 4.1; β = βαβ, so 0 6= (αβ)2 = αβ ∈ EN a contradiction, hence
α ∈ Tot[M,N ]. Thus, α ∈ ∇[M,N ].

Theorem 4.11. LetM , N be modules. The following are equivalent:
(1) Tot[M,N ] = 4[M,N ].
(2) For all α ∈ [M,N ] with Ker(α) is not large in M there exists β ∈
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[N,M ] such that Im(β) ∩ Im(1M − βα) = 0.
(3) For all α ∈ [M,N ] with Ker(α) is not large in M there exists β ∈
[N,M ] such that Ker(β) + Ker(1N − αβ) = N .

Proof. (1) ⇒ (2). Suppose (1) holds. Let α ∈ [M,N ] with Ker(α)
is not large in M . Then α 6∈ 4[M,N ], by assumption there exists
λ ∈ [M,N ] such that 0 6= (λα)2 = λα ∈ EM . For β = λαλ; βαβ = β.
By Lemma 4.1; Im(β) ∩ Im(1M − βα) = 0.
(2) ⇒ (3). Suppose (2) holds. Let α ∈ [M,N ] with Ker(α) is not large
in M . By assumption there exists β ∈ [M,N ] such that Im(β)∩Im(1M−
βα) = 0. By Lemma 2.1; Im(β − βαβ) = 0, so Ker(β − βαβ) = N =
Ker(β) + Ker(1N − αβ).
(3) ⇒ (1). It is clear that 4[M,N ] ⊆ Tot[M,N ]. Let α ∈ Tot[M,N ].
Suppose that α 6∈ 4[M,N ], then Ker(α) is not large in M , by assump-
tion there exists β ∈ [N,M ] such that N = Ker(β) + Ker(1N − αβ). By
Lemma 4.1; Ker(β − βαβ) = N , so β = βαβ and 0 6= (αβ)2 = αβ ∈ EN

a contradiction, hence α ∈ Tot[M,N ]. Thus, α ∈ 4[M,N ].

Theorem 4.12. Let N be a module. The following are equivalent:

(1) Tot(EN) = ∇̂(EN).

(2) Tot[M,N ] = ∇̂[M,N ] for all M ∈ mod−R.
(3) Tot[N,W ] = ∇̂[N,W ] for all W ∈ mod−R.

Proof. (1) ⇒ (2). It is clear that ∇̂[M,N ] ⊆ Tot[M,N ] by Lemma
4.6.
Let α ∈ Tot[M,N ]. If α 6∈ ∇̂[M,N ], there exists β ∈ [N,M ] such that

Im(1N − αβ) 6= N , so αβ 6∈ ∇̂(EN) = Tot(EN). Thus, there exists
λ ∈ EN such that 0 6= ((αβ)λ)2 = (αβ)λ ∈ EN , so 0 6= (α(βλ))2 =
α(βλ) and βλ ∈ [N,M ] a contradiction, hence α ∈ Tot[M,N ]. Thus

α ∈ ∇̂[M,N ].
(2)⇒ (1). It is clear. Similarly equivalent (1)⇔ (3) holds.

Theorem 4.13. Let N be a module. The following are equivalent:

(1) Tot(EN) = 4̂(EN).

(2) Tot[M,N ] = 4̂[M,N ] for all M ∈ mod−R.
(3) Tot[N,W ] = 4̂[N,W ] for all W ∈ mod−R.

Proof. (1) ⇒ (2). It is clear that 4̂[M,N ] ⊆ Tot[M,N ] by Lemma
4.6.
Let α ∈ Tot[M,N ]. Suppose that α 6∈ 4̂[M,N ]. Then there exists
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β ∈ [N,M ] such that Ker(1N − αβ) 6= 0. So αβ 6∈ 4̂(EM) = Tot(EN).
Thus, there exists δ ∈ EN such that 0 6= ((αβ)δ)2 = (αβ)δ ∈ EN . So
0 6= (α(βδ))2 = α(βδ) ∈ EN and βδ ∈ [N,M ] a contradiction, hence
α ∈ Tot[M,N ].
(2)⇒ (1). It is clear. Similarly equivalent (1)⇔ (3) holds.

Write
4̂Φ(R) = {M : M ∈ mod − R; Tot[M,N ] = 4̂[M,N ] for all N ∈
mod−R}.
4̂Γ(R) = {N : N ∈ mod − R; Tot[M,N ] = 4̂[M,N ] for all M ∈
mod−R}.
4̂(R) = {M : M ∈ mod−R; Tot(EM) = 4̂(EM)}.
∇̂Φ(R) = {M : M ∈ mod − R; Tot[M,N ] = ∇̂[M,N ] for all N ∈
mod−R}.
∇̂Γ(R) = {N : N ∈ mod − R; Tot[M,N ] = ∇̂[M,N ] for all M ∈
mod−R}.
∇̂(R) = {M : M ∈ mod−R; Tot(EM) = ∇̂(EM)}.

Theorem 4.14. For any ring R the following hold:

(1) 4̂Φ(R) = 4̂Γ(R) = 4̂(R).

(2) ∇̂Φ(R) = ∇̂Γ(R) = ∇̂(R).

Proof. (1). Let M ∈ 4̂Φ(R). Then Tot[M,N ] = 4̂[M,N ] for all

N ∈ mod − R. By Lemma 4.12; Tot(EM) = 4̂(EM) and Tot[W,M ] =

4̂[W,M ] for all W ∈ mod−R, so M ∈ 4̂Γ(R). Thus, 4̂Φ(R) ⊆ 4̂Γ(R).

Let N ∈ 4̂Γ(R). Then Tot[M,N ] = 4̂[M,N ] for all M ∈ mod − R.

By Lemma 3.12(2); Tot(EN) = 4̂(EN) and Tot[N, V ] = 4̂[N, V ] for all

V ∈ mod−R, so N ∈ 4̂Φ(R). Thus, 4̂Γ(R) ⊆ 4̂Φ(R).

Let M ∈ 4̂Φ(R), then Tot[M,N ] = 4̂[M,N ] for all M ∈ mod − R, so

Tot(EM) = 4̂(EM) and that 4̂Φ(R) ⊆ 4̂(R).

If M ∈ 4̂(R), then Tot(EM) = 4̂(EM) by Lemma 4.13; Tot[M,N ] =

4̂[M,N ] for all N ∈ mod−R, so M ∈ Φ̂(R) and that 4̂(R) ⊆ 4̂Φ(R).
Similarly (2) holds.

F. Kasch in [3] studied conditions on modules Q and P , which im-
ply that Tot[Q,N ] = 4[Q,N ] = J [Q,N ] and Tot[M,P ] = ∇[M,P ] =
J [M,P ] for all N,M ∈ mod− R. He showed that these equalities hold
if Q is injective, respectively P is semiperfect and projective.
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A module Q is called locally injective [3] if, for every submodule A ⊆
Q, which is not large in Q, there exists an injective submodule 0 6= B ⊆
Q, with A ∩B = 0.

A module P is called locally projective [3] if, for every submodule
B ⊆ P , which is not small in P , there exists a projective direct summand
0 6= A ⊆⊕ P , with A ⊆ B.

It was proved by Kasch [3], that Tot[Q,N ] = 4[Q,N ] for all N ∈
mod−R if and only ifQ is a locally injective module and that Tot[M,P ] =
∇[M,P ] for all M ∈ mod − R if and only if P is a locally projective
module.
The following questions were raised by Kasch in [3].

(1) If Q is locally injective, then it is true that Tot[Q,N ] = 4[Q,N ] =
J [Q,N ] for all N ∈ mod−R ?.

(2) If P is locally projective, then it is true that Tot[M,P ] = ∇[M,P ] =
J [M,P ] for all M ∈ mod−R ?.

Zhou in [9], proved that the answer to question (1) is ”Yes” if a ring
R is left Noetherian. But in general, the answer to the question is ”No”
by [9, Example 4.2].

During our study of answer to questions it is obtained the following
results:

Corollary 4.15. The following hold:
(1) If Q is a locally injective module, then Tot[Q,N ] = 4[Q,N ] =

4̂[Q,N ] for all N ∈ mod−R.
(2) If P is a locally projective module, then Tot[M,P ] = ∇[M,P ] =

∇̂[M,P ] for all M ∈ mod−R.

Proof. (1). If Q is locally injective, then 4[Q,N ] ⊆ 4̂[Q,N ] ⊆
Tot[Q,N ] = 4[Q,N ] for all N ∈ mod−R by Lemma 4.6.

(2). If P is locally projective, then ∇[M,P ] ⊆ ∇̂[M,P ] ⊆ Tot[M,P ] =
∇[M,P ] by Lemma 4.6.

Corollary 4.16. The following hold:
(1) If Q is a locally injective module and α ∈ EQ, then Ker(α) ≤e Q if
and only if Ker(1−αβ) = 0 for all β ∈ EQ if and only if Ker(1−βα) = 0
for all β ∈ EQ.
(2) If P is a locally projective module and α ∈ EP , then Im(α) � P if
and only if Im(1−αβ) = P for all β ∈ EP if and only if Im(1−βα) = P
for all β ∈ EP .
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Proof. By corollary 4.15.

Proposition 4.17. (1) Let N be a semi-projective module. The
following hold:

(i) J(EN) = ∇̂(EN).

(ii) J [M,N ] = ∇̂[M,N ] for all M ∈ mod−R.
(2) Let N be a semi-injective module. The following hold:

(i) J(EN) = 4̂(EN).

(ii) J [N,W ] = 4̂[N,W ] for all W ∈ mod−R.

Proof. (1)(i). It is clear by Lemma 4.6, that J(EN) ⊆ ∇̂(EN). Let

α ∈ ∇̂(EN). Then Im(1 − αβ) = N for all β ∈ EN . Since N semi-
projective; (1− αβ)g = 1 for some g ∈ EN , so α ∈ J(EN).
(ii) it is clear.

(2)(i). It is clear by Lemma 4.6, that J(EN) ⊆ 4̂(EN). Let α ∈ 4̂(EN).
Then Ker(1 − αβ) = 0 for all β ∈ EN . Since N semi-injective and
Ker(1 − αβ) ⊆ Ker(β); β = λ(1 − αβ) for some λ ∈ EN . Also, since
1 = αβ + (1 − αβ) = αλ(1 − αβ) + (1 − αβ) = (1 + αλ)(1 − αβ); so
1− αβ ∈ U(EN) and that α ∈ J(EN).
(ii) it is clear.

Corollary 4.18. The following hold:
(1) If N be a semi-projective module, then ∇(EN) ⊆ J(EN).
(2) If N be a semi-injective module, then 4(EN) ⊆ J(EN).

Proposition 4.19. (1) Let N be a semi-projective module. The
following are equivalent:
(i) For every α ∈ EN there exists β ∈ EN such that βαβ = β.
(ii) For every α ∈ EN there exists β ∈ EN such that Im(αβ) ⊆⊕ N .
(2) Let N be a semi-injective module. The following are equivalent:
(i) For every α ∈ EN there exists β ∈ EN such that βαβ = β.
(ii) For every α ∈ EN there exists β ∈ EN such that Ker(βα) ⊆⊕ N .

Proof. (1)(i)⇒ (ii). It is clear by Proposition 4.1.
(ii) ⇒ (i). Let α ∈ EN . Then Im(αβ) ⊆⊕ N for some β ∈ EN . Let
π : N → Im(αβ) the projection. Since N is semi-projective; (αβ)λ = π
for some λ ∈ EN . For µ = λαβλ; (βµ)α(βµ) = βµ.
(2)(i)⇒ (ii). It is clear by Proposition 4.1.
(ii) ⇒ (i). Let α ∈ EN . Then Ker(βα) ⊆⊕ N for some β ∈ EN . Let
π the projection on the complementary summand of Ker(βα). Then
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Ker(βα) = Ker(π). By Theorem 3.2; π ∈ EN(βα) ⊆ ENα hence N is
semi-injective. So π = λα for some λ ∈ EN . For µ = λαλ; µαµ = µ.
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