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REGULARITY AND SEMIPOTENCY OF HOM
Hamza HAKMI

ABSTRACT. Let M, N be modules over a ring R and [M,N] =
Homp (M, N). The concern is study of: (1) Some fundamental prop-
erties of [M, N] when [M, N] is regular or semipotent. (2) The sub-
structures of [M, N] such as radical, the singular and co-singular
ideals, the total and others has raised new questions for research in
this area. New results obtained include necessary and sufficient con-
ditions for [M, N] to be regular or semipotent. New substructures
of [M, N] are studied and its relationship with the Tot of [M, N].
In this paper we show that, the endomorphism ring of a module M
is regular if and only if the module M is semi-injective (projective)
and the kernel (image) of every endomorphism is a direct summand.

1. Introduction.

In this paper rings R, are associative with identity unless otherwise
indicated. All modules over a ring R are unitary right modules. We
write J(R) and U(R) for the Jacobson radical and the group of units of
a ring R. A submodule N of a module M is said to be small in M, if
N + K # M for any proper submodule K of M [1]. Also, a submodule
() of a module M is said to be large (essential) in M if Q@ N K # 0 for
every nonzero submodule K of M [1]. For a submodule N of a module
M, we use N C% M to mean that N is a direct summand of M, and
write N <, M and N < M to indicate that N is an large, respectively
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small, submodule of M. We use the notation: FEjp = Endg(M) and
[M,N| = Hompg(M, N). Thus, [M,N] is an (Ep, Ex)-bimodule. Our
main concern is about the four substructures of Homg(M, N) and the
regularity, semipotency of Homg(M, N) given as follows [9].

e The Jacobson radical.

JIM,N]={a:a€[M,N]; pa € J(Ey) for all 5 € [N, M]}.

JIM,N]={a:ae€[M,N]; apf € J(Ey) for all g € [N, M]}.

Thus J[M, M| = J(Ey). In particular, J[R, R] = J(R).

e The singular ideal A[M,N] ={a:a € [M,N], Ker(a) <. M}. In
particular, A(Ey) = A[M, M| ={a: a € Ey;Ker(a) <, M}.

e The co-singular ideal V[M,N| = {a: a € [M,N], Im(a) < M}.
In particular, V(Ey) = VIM, M| ={a:a € Ey;Im(a) < M}

e The total.

Tot[M,N] ={a: a € [M,N]; [N, M]a contains no nonzero idempotents}.

Tot[M,N] ={a:«a € [M,N]; a[N, M| contains no nonzero idempotents}.

The Total is the concept was first introduced by F.Kasch. An excel-
lent reference on the study of the total as will as its connections with
the Jacobson radical and the singular and co-singular ideals or other
substructures of ring. In section 2, it is proved some basic properties
of [M, N] when [M, N] is regular include necessary and sufficient con-
ditions for [M, N] to be regular. In section 3, it is proved that for
a module M, F,; is regular if and only if M is semi-projective and
Im(«) €% M if and only if M is semi-injective and Ker(a) C® M for
any o € Fy;. The semipotentness of [M, N] is studied in section 4, in-
clude necessary and sufficient conditions for [M, N] to be semipotent.
A new description of J[M, N] is obtained in case [M, N| is semipotent.
Also, it is proved that for a semi-projective module P; J(Ep) = {a: o €
Ep;Im(1 —af) = P for all § € Ep} and for a semi-injective module @;
J(Eq) ={a:a € Eg;Ker(l —apf) =0 for all 5 € Eg}. In addition to,
it is proved that for a locally projective module P; Tot(Ep) = {a: a €
Ep;Im(1 — af) = P for all § € Ep} and for a locally injective module
Q; Tot(Eg) = {a:a € Eg;Ker(1 —af) =0 for all € Eg}.
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2. Regularity of [M, N]|.

Let Mg, Ng be modules. An element « of [M, N| is called regular [2],
if there exists 8 € [N, M| such that o = afa. [M, N] is called regular
if each o € [M, N]| is regular. We start with the following fundamen-
tal lemma which gives information about relationship between any two
elements of [M, N].

LEMMA 2.1. Let Mg, Ng be modules and « € [M,N], 5 € [N, M].
The following hold:
(1) Im(a) + Im(1y — af) = N.
(2) Im(a — afa) = Im(a) N Im(1y — af).
(3) Im(f3) + Im(1p — Pa) = M.
(4) Im(B — Bap) = Im(5) N Im(1y — Pa).
(5) Ker(a) N Ker(1y; — fa) = 0.
(6) Ker(a — afa) = Ker(a) + Ker(1y — fa).
(7) Ker(8) N Ker(1y — af) = 0.
(8) Ker(f — Baf) = Ker(B) + Ker(1y — af3).

Proof. We have a8 € Ey and fa € E,y,.

(1). It is clear that N = Im(af)+Im(1y —af) C Im(a)+Im(1y—af) C
N. Similarly (3) holds.

(2). a—afa € [M,N]. Im(a—apfa) =Im((1y —af)a) C Im(ly —af)
and Im(a — afa) = Im(a(ly — fa)) € Im(a). So Im(a — afa) C
Im(a) NIm(1y — af).

Let x € Im(a) NIm(1y — af); v € N and = = a(y) = (In — af)(2)
where y € M, 2z € N. Soxz = z—af(z), z = v+ af(z) = aly) +
af(z) = aly + B(z)). Let yo = y+ B(2) € M. Then z = a(yy) and
r=(1y —af)(z) = (Iy — af)a(y) = (a — afa)(yo) € Im(a — afa).
Thus, Im(a) N Im(1y — af) C Im(a — afa). Similarly (4) holds. (5)
and (7) are clears.

(6) It is clear that Ker(a) C Ker(ao—afa) and Ker(1y, — fa) C Ker(a—
afa), so Ker(a)+Ker(1y—pa) C Ker(a—afa). Let x € Ker(a—afa).
Then z € M and a(x) = afa(z). Since x = fa(z) + (1 — Ba)(x)
and Ba(z) € Ker(ly — fa), (1y — Ba)(z) € Ker(a), hence (1 —
pa)(fa(zr)) = fa(r) = fafa(r) = Pa(z) - fa(z) = 0, a(ly —fa)(x) =
a(z)—afa(z) = a(r)—a(x) = 0. Sox € Ker(1,—fa)+Ker(a). Thus,
Ker(a — afa) C Ker(a) + Ker(1); — SBa). Similarly (8) holds. O

The following Lemma is continuation of Lemma 2.1 [2].
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LEMMA 2.2. Let Mg, Ng be modules and o € [M,N], g € [N, M].
The following hold:
(1) Im(1y — af) = N if and only if Im(1y; — fa) = M.
(2) Ker(1y — af8) = 0 if and only if Ker(1,, — fa) = 0.
(3) 1N — Oéﬁ € U(EN) if and Oﬂly IflM — 60& € U(EM)

Proof. (1)(=-). Suppose that Im(1y —af) = N, then Im(8 — faf) =
Im(B). By Lemma 2.1; Im(5) = Im(5 — faf) = Im(B8) NIm(1y — Sa),
so Im(B) C Im(1,; — Bar). By Lemma 2.1; M = Im(S) + Im(1y — fa) =
Im(15 — fa). Similarly (<) holds.

(2)(=). Suppose that Ker(1y — af) = 0. Let 2 € Ker(1,; — Sa). Then
r € M and fa(z) =z, so afa(zr) = a(z) and (1y — af)(a(z)) = 0. So
by assumption; a(z) € (1y —af) =0 and a(x) = 0, z € Ker(a). Thus,
Ker(1)—pa) C Ker(a) and by Lemma 2.1; 0 = Ker(a)NKer(1y—fa) =
Ker(1y — Ba). So Ker(1y — fa) = 0. Similarly (<) holds.

(3). By (1) and (2). O

Let Mg be a module and o € Ey;. R. Ware in [7], proved that, «
is regular if and only if Im(«) and Ker(«) are direct summands of M.
The next Proposition gives information about o € [M, N], when « is a
regular element.

PROPOSITION 2.3. Let M, N be modules and o € [M,N]. The
following are equivalent:
(1) There exists € [M, N] such that a = afa.
(2) Im(a) €% N and Ker(a) C% M.
(3) There exists € [N, M] such that Im(a) N Im(1y — af) = 0.
(4) There exists § € [N, M] such that Ker(«) + Ker(1y — fa) = M.

Proof. (1) < (2). By [3, Characterization 2.2].
(1) & (3). a—afa =0 if and only if Im(av — afa) = 0 if and only if
Im(a) NIm(1y — af) =0, by Lemma 2.1.
(1) & (4). @« —apfa =0 if and only if Ker(aw — affa) = M if and only if
M = Ker(«) + Ker(1,, — fa), by Lemma 2.1. O

Let Mg, Ngr be modules and o € [M, N]. The following Theorem
describe the submodules a[N, M| and [M, N]a when [M, N] is regular.

THEOREM 2.4. Let M, N be modules and «, € [M, N]. If [M, N]
is regular, then the following hold:
(1) Im(a) C Im(p) if and only if [N, M| C [N, M].
(2) Im(a) = Im(pB) if and only if «[N, M| = B[N, M].
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(3) a[N, M] ={p: p € Ey; Im(p) C Im(a)}.

(4) Ker( ) g er(p) if and only if [N, M]3 C [N, M]a.
(5) Ker(«) = Ker(5) if and only if [N, M| = [N, M|a.
(6) [N, Mo = {u € Ey; Ker(a) € Ker(u)}-
Proof. (1)(=-). Suppose that Im(a) C Im(/3). Since [M, N] is regular

there exists u € [N, M] such that 8 = SuB. For e = Bu; ¢ = e € Ey
and Im(e) = Im(3), so Im(a) C Im(e). Thus, for all x € M; e(a(z)) =
a(x), so a = ea = Pua € fEy. Therefore, a[N, M] C BEM[N, M] C
B[N, M].

(«<). Suppose that a[N, M] C B[N, M]. Since [M, N] is regular; oo =
ala for some A € [N, M]. Since aX € ofN, M| C B[N, M]; aX = 5 for
some § € [N, M]. Thus, Im(a) = Im(ala) = Im(5da) C Im(p).

(2) and (3) are clear by (1).

(4)(=). Suppose that Ker(a) C Ker(f3), then g(Ker(a)) = 0. Since
[M, N] is regular there exists u € [M, N| such that @« = apa. For
e = ua € Eyr; e = e and Ker(a) = Ker(e), so f(Ker(a)) = B(Ker(e)) =
B(Im(1y —e)) = Im(5(1y —e)) = 0. Thus, S(1y —e) = 0 and that
p = fe=pua e (Ex)a. So [N,M]s C [N, M]|(Ex)a C [N, M]a.

(«<). Suppose that [N, M]3 C [N, M]a. Since [M, N] is regular; § =
B0 for some ¢ € [N, M] and 65 € [N, M|S C [N, M]a. So 65 = A for
some A € [N, M]. Thus, § = fAa and Ker(a) C Ker(p).

(5) and (6) are clear by (4). O

The next Corollary is a special case of Theorem 2.4, for M = N.

COROLLARY 2.5. Let M be a module with F); is a regular ring and
a, 8 € Ey. The following hold:
(1) Im(«) C Im(f) if and only if aEy C BE)y,.
(2) Im(«v) = Im(B) if and only if aEy = BE.
(4) Ker(a) C Ker(B) if and only if (EM)ﬁ c (Ey)a.
(5) Ker(a) = Ker() if and only if (Ey)a = (Ey)pB.
(6) (Ep)a={p: B € Ey; Ker(a) C Ker(B)}.

3. Semi-injective (projective) modules.

THEOREM 3.1 ([8], p.260). For every module Mg the following are
equivalent:
(1) For every submodule N of M and every epimorphism « : M — N,
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homomorphism X\ : M — N there exists § € Ey; such that af = \.
(2) For every a € Eyy; aFEy = Homg(M, Im(«)).
(3) For every a € Ep; aEy ={f: 5 € Ey; Im(B) C Im(a)}.

Proof. (1) = (2). Suppose (1) holds. Let a € Ej; and A\ € aE)y,.
Then A = af for some § € Ey;. SoIm(A) C Im(a); A € Hompg(M, Im(av)).
Let 5 € Homg(M, Im(«)). By assumption there exists A € E); such that
aX = f,s0 [ € al)y.

(2) = (1). Let N be a submodule of M and o : M — N is an epimor-
phism, A : M — N is a homomorphism. Then Im(\) C N = Im(«), so
A € Hompg(M,Im(«)). By assumption A = a3 for some § € Ey;.

(2) < (3) it is clear. O

A module Mpg is called a semi-projective module [8], if it is satisfies
the equivalent conditions of Theorem 3.1.

THEOREM 3.2 ([8], p.261). For every module Mg the following are
equivalent:
(1) For every factor module N of M and every monomorphism o : N —
M, homomorphism X : N — M there exists 8 € Fy; such that fa = \.
(2) For every a € Ey; Eyyao= {5 : 8 € Ey; Ker(a) C Ker(B)}.

Proof. (1) = (2). Suppose (1) holds. Let a € Ey and 8 € Eya.
Then = Aa for some X € Eyy, so Ker(a) C Ker(f).
Let f € Ey such that Ker(a) C Ker(5). Then the map o : M/Ker(a) —
M is defined by o/(T) = a(x) for all T € M /Ker(a), is monomorphism.
Also, Since Ker(a) C Ker(f), the map 5’ : M/Ker(a) — M is defined
by B'(z) = B(x) for all T € M /Ker(«), is homomorphism. By assump-
tion, there exists A € E); such that Ao/ = . Thus, for all x € M;
Aa(z) =M/ (T) = B'(T) = B(x), so A\a = [ and € Epa.
(2) = (1). Let N be a factor module of M and a : N — M is a
monomorphism, 8 : N — M is a homomorphism. Also, Let 7: M — N
be a canonical homomorphism of a module M onto factor module N.
Then ar, fm € Ej and Ker(ar) C Ker(f7). By assumption fr €
Ey(am), so B = A an) for some A € Eyy. Let y € N, then y = 7(z) for
some x € M and S(y) = fr(z) = Aaw(z) = Aa(y). Thus, f=Aa. O

A module My, is called a semi-injective module [8], if it is satisfies the
equivalent conditions of Theorem 3.2.

THEOREM 3.3. For every module Mpg. The following are equivalent:
(1) Ey is a regular ring.
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(2) M is a semi-projective module and Im(«) C% M for all o € E}y.
(3) M is a semi-injective module and Ker(a) C® M for all a € Ey.

Proof. (1) = (2). Suppose that F) is regular. Then Im(a) C¥ M
for all @ € Ej;. On the other hand, by Corollary 2.5(3) and Theorem
3.1, implies that M is semi-projective.

(2) = (1). Let o € Eyy, by assumption Im(a) C® M. Let 7 : M —
Im(a) the projection. Then Im(a)) = Im(w), by Theorem 4.1, 7 € aE)y,
so m = af for some B € Ej;. On the other hand, for every xz € M;
a(x) € Im(a), so m(a(x)) = a(x). Thus, T = « and that afa = a. So
E) is regular.

(1) = (3). Suppose that E)s is regular. Then ker(a) C%¥ M for all
a € Ej. On the other hand, by Corollary 2.5(6) and Theorem 3.2,
implies that M is semi-injective.

(3) = (1). Let oo € Eyy, by assumption Ker(a) C¥ M. Then M =
Ker(a) @& K for some submodule K of M. Let 7 : M — K be the
projection. Then Ker(a) = Ker(m) and a(Ker(7)) = a(Im(1 — 7)) = 0,
so a = am. Since M is semi-injective and Ker(«a) C Ker(n); 7 € Eya.
Thus, 7 = Ba for some B € Eyy, so a = afa. n

A module My, is called semi-simple [1], if every submodule of M is a
direct summand of M. A ring R is semi-simple if Ry is semi-simple.

COROLLARY 3.4. For any ring R the following are equivalent:
(1) A ring R is semi-simple.
(2) M is semi-simple for every M € mod — R.
(3) Ey is a regular ring for every M € mod — R.
(4) Er is a regular ring for every free module F' € mod — R.
(5) For every M € mod — R, M is semi-injective and Ker(a) C% M for
all a € Eyy.
(6) For every M € mod — R, M is semi-projective and Im(a) C® M for
all « € Eyy.

Proof. (1) < (2), (2) = (3) and (3) = (4) are clear. (4) = (1) by [6,
Theorem 1]. (4) < (5) < (6) by Theorem 3.3. O

4. Semipotency of [M, N].

An element a of a ring R is called partially invertible or pi for short,
if a is a divisor of an idempotent [2]. The next Proposition gives infor-
mation about a € Fy;, when « is a divisor of an idempotent.
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PROPOSITION 4.1. Let M, N be modules and o € [M, N|. The fol-
lowing are equivalent:
(1) There exists § € [N, M| such that 5 = fag.
(2) There exists § € [N, M| such that Im(ad), Ker(ad) are direct sum-
mands of N.
(3) There exists v € [N, M] such that Im(y«), Ker(ya) are direct sum-
mands of M.
(4) There exists € [N, M] such that Im(8) N Im(1, — fa) = 0.
(5) There exists € [N, M] such that Ker() + Ker(1y — af) = N.

Proof. (1) = (2). If 8 = Baf for some B € [N, M]; (a3)? = aff € Ey,
so Im(af) and Ker(af) are direct summand of N.
(2) = (1). If Im(ad) and Ker(ad) are direct summand of N for some
d € [N, M]; by Lemma 2.3 there exists p € Ex such that (ad)u(ad) =
ad. Then for f = duadp € [N, M]; paff = 5. Similarly (1) < (3) holds.
(1) = (4). Suppose that Saf = g for some § € [N, M]. Then Im(5 —
faf) =0, by Lemma 2.1 Im(«) N Im(1,, — Sar) = 0.
(4) = (1). If Im(a) N Im(1p; — Ba) = 0 for some B € [N, M], then by
Lemma 2.1 Im(8 — Baf) =0, so faf = 5.
(1) < (5). For some (8 € [N, M]; a8 = B if and only if Ker(5 — faf) =
M if and only if Ker(a)) + Ker(1y — aff) = N by Lemma 2.1. O

Let M, N be modules. Recall that [M, N] is semipotent by Zhou |9,
Theorem 2.2], if Tot[M, N] = J[M, N].

COROLLARY 4.2. Let My, Ngr be modules. The following are equiv-
alent:
(1) [M, N] is semipotent.
(2) For every a € [M,N]\ J[M, N] there exists § € [N, M| such that
B = pap.
(3) For every a € [M,N]\ J[M, N] there exists § € [N, M| such that
Im(ap), Ker(af) are direct summands of N.
(4) For every a € [M,N]\ J[M, N] there exists § € [N, M| such that
Im(Ba), Ker(fa) are direct summands of M.
(5) For every a € [M,N]\ J[M, N] there exists § € [N, M] such that
Im(B) N Im(1py — Pa) = 0.
(6) For every a € [M,N]\ J[M, N] there exists § € [N, M| such that
Ker(B) + Ker(1y — af) = N.

Proof. By Proposition 4.1. m
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Let M, N be modules. Write:
Vi[M,N]={a:a € [M N]; Im(1y —af) =N for all e [N, M]}.

Vo[M,N] ={a:a € [M,N]; Im(1y — fa) = M for all g € [N, M]}.

It is clear that V;[M, N] and Vs[M, N] are non empty subsets in
[M, N], (0 € Vi[M,N], 0 € Vo[M, N]). By using Lemma 2.2(1), it is
easy to see that V[M, N| = Vo[M, N]. Therefore we use the notation:

~

VIM,N]={a:a€[M,N]; Im(ly —af) = N for all §¢€ [N, M|}.
={a:a € [M,N]; Im(1y; — fa) = M for all § € [N, M]}.

A~

V[M, N is a semi-ideal in mod — R, which means hat it is closed under
arbitrary multiplication from either side, by the following Lemma.

LEMMA 4.3. For arbitrary M, N, X, Y € mod— R, the following hold:
(1) V[M, N][X, M] C V[X, N].

(2) [N,Y]V[M,N] C V[M,Y].
(3) [N,Y|V[M, N][X, M] C V[X,Y].

Proof. (1). Let a € V[M,N] and A € [X, M]. Then a\ € [X,N].
For all g € [N, X]; Im(1y — (aN)B) = Im(1y — a(AB)) = N, hence
AB € [N, M]. Thus, o) € V[X, N]. (2) is analogous.

(3) by (1) and (2). O

Let M, N be modules. Write
MM, N ={a:ae[M,N]; Ker(ly —af) =0 for all g€ [N, M]}.
DNo[M,N)={a:a e [M,N]; Ker(ly, — fa) =0 for all e [N, M]}.

It is clear that A[M, N] and As[M, N] are non empty subsets in [M, N/,
(0 € A[M,N], 0 € Ag[M, N]). By using Lemma 2.2(2), it is easy to
see that Ay[M, N| = Ay[M, N|. Therefore we use the notation:

-~

A[M,N] ={a:a € [M,N]; Ker(ly —af) =0 for all g€ [N, M]}.
={a:ae[M,N]; Ker(ly, — pa) =0 for all g € [N, M]}.

~

A[M, N]is a semi-ideal in mod — R, which means hat it is closed under
arbitrary multiplication from either side, by the following Lemma.
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L/lijMMA 4.4. For arbitrary M, N, XY € mod— R, the following hold:
(1) A[M, N|[X, M] C A[X, N].

(2) [N,Y]A[M,N] C A[M,Y].
(3) [N, Y]A[M, N|[X, M] C A[X,Y].

Proof. (1). Let a € A[M,N] and A € [X, M]. Then a) € [X,N].
For all 8 € [N, X]; Ker(1y — (aN)f) = Ker(1xy — a(A3)) = 0, hence
AB € [N, M]. Thus, a) € ﬁ[X, N]. (2) is analogous.

(3) by (1) and (2). O

COROLLARY}.E). Let M, N be modules. The following hold:
(1) VM, N| C 9[M, N].
(2) DM, N] € A[M, N]

Proof. 1t is clear by Lemma 2.1. O]

LEMMA 4.6. Let M, N be modules. The following hold:
(1) J[M,N] C V[M, N]n A[M, N].
(2) V[M, N] U A[M, N] C Tot[M, N].
(3) J[M, N] C Tot[M, N].

Proof. (1). Let a € J[M,N]. Then for all 5 € [N,M]; 1y —af €
U(Ey) and 1), —pa € U(E)y), so there exists g € En, A € E) such that
(Iy —af)g = 1y and A(1p; — Ba) = 1y, Therefore Im(1y — aff) = N
and Ker(1y — Ba) = 0. Thus a € V[M,N] and o € A[M,N]. So
JIM, N] C V[M, N]n A[M, NJ.

(2). Let a € V[M, N]. Then for all 8 € [N, M]; Im(1y — af) = N. If
a & Tot[M, N|, there exists § € [N, M] such that 0 # (ad)* = ad € Ey.
So Ker(ad) = Im(1ly — @d) = N, thus ad = 0 a contradiction. So
a € Tot[M, N].

Let o € A[M,N]. Then for all 8 € [N, M]; Ker(ly — af) = 0. If
a & Tot[M, N|, there exists § € [N, M] such that 0 # (ad)? = ad € Ey.
So Im(ad) = Ker(ly — ad) = 0, thus ad = 0 a contradiction. So
a € Tot[M, N].

(3) by (1) and (2). O

The following Proposition describe the Jacobson radical of [M, N]
when [M, N| is semipotent.

PROPOSITION 4.7. Let M, N be modules with [M, N] is semipotent.
Then the following hold:
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(1) J[M,N] = V[M, N].

(2) JIM,N] = A[M, N].
(3) V[M, N] = A[M, N].

Proof. Suppose that [M, N] is semipotent.

(1). By Lemma 4.6, we have J[M, N] C V[M,N]. Let a € V[M,N].
Then for all 8 € [N, M]; Im(1y —af) = N. Suppose that o ¢ J[M, N|,
then there exists § € [N, M] such that dad = § # 0, so 0 # (ad)? =
ad € Ey and Ker(ad) = Im(1y — ad) = N, so ad = 0 a contradiction.
Thus, o € J[M, NJ.

(2). By Lemma 4.6, we have J[M,N] C A[M,N]. Let a € A[M,N].
Then for all 8 € [N, M]; Ker(1y —af) = 0. Suppose that o & J[M, N/,
then there exists § € [N, M] such that dad = § # 0, so 0 # (ad)? =
ad € Ey and Im(ad) = Ker(ly — ad) = 0, so ad = 0 a contradiction.
Thus, o € J[M, NJ.

(3) by (1) and (2). O

COROLLARY 4.8. Let M, N be modules with [M, N] is semipotent
and o € [N, M|. Then the following hold:
(1) a € J[N,M] if and only if Im(1y — aff) = N for all § € [N, M] if
and only if Ker(1y — af) =0 for all 5 € [N, M].
(2) a € J[N, M] if and only if Im(1y; — Ba) = M for all B € [N, M] if
and only if Ker(1y; — fa) = 0 for all 8 € [N, M].

Proof. By Proposition 4.7. [

THEOREM 4.9. (1) For amodule N the following conditions are equiv-
alent:
(i) VIM,N] C J[M,N] for all M € mod — R.
(i) V(Bx) € J(Ex). )
(iii) For every a € Ex with 1 — a € V(Ey) is one-to-one.
(2) For a module M the following conditions are equivalent:
(i) A[M,N] C JM,N] for all N € mod — R.
(it) A(Ey) C J(Em). R
(iti) For every o € Eyy with 1 —a € A(E)yy) is onto.

Proof. (1)(i) = (di). It is clear.
(ii) = (ii7). Let o € Ey with 1—a € V(Ey). Then Im(1—(1—a)8) = N
for all 5 € Ex. On the other hand, 1 — a € J(Ey) by assumption. So,
a=1—-(1—-a) e U(Ey) and « is one-to-one.



162 Hamza Hakmi

(iii) = (i). Let a € V[M, N]. Then Im(1y—af) = N forall 3 € [N, M].
Thus, for every A € En; Im(1x — (af)A\) = Im(1y — a(BA)) = N, hence
a € V[M,N] and BA € [N, M]. So a8 = (1y — (1y —a3)) € V(Ey), by
assumption 1y — a3 is one to one. Thus, Iy —af € U(Ey), af € J(Ey)
and o € J[M, N].

(2)(i) = (4i). It is clear.

(i) = (iii). Let o € Ep with 1 — a € A(Ey). Then Ker(ly —
B(1y — ) =0 for all € Ep. On the other hand, 1 — o € J(E)y) by
assumption. So, « =1 — (1 —a) € U(Ey) and « is one-to-one.

(iti) = (i). Let o € A[M,N]. Then Ker(1y — Ba) = 0 for all 8 €
[N, M]. Thus, for every A € Ey; Ker(1),—A(Ba)) = Ker(1y—(Af)a) =
0, hence a € A[M,N] and \G € [N, M]. So fa = (1 — (1 — Pa)) €
A(Ey) is onto by assumption. Thus, 15, — Ba € U(Ey), Ba € J(Ey)
and a € J[M, N|. O

THEOREM 4.10. Let M, N be modules. The following conditions are
equivalent:
(1) Tot[M, N] = V[M, N].
(2) For all « € [M, N] with Im(«) is not small in N there exists f €
[N, M| such that Im(f) N Im(1,; — Ba) = 0.
(3) For all « € [M,N] with Im(«) is not small in N there exists €
[N, M] such that Ker(f) + Ker(1ly —af) = N.

Proof. (1) = (2). Suppose (1) holds. Let a € [M, N]| with Im(c)
is not small in N. Then a ¢ V[M, N], by assumption there exists
A € [M, N] such that 0 # (Aa)? = Ma € Ey. For 8 = Aa); Baf = 3.
By Lemma 2.1; 0 = Im(5 — faf) = Im(B) N Im(1y — Ba).

(2) = (3). Suppose (2) holds. Let a € [M, N] with Im(«) is not small in
N. By assumption there exists 8 € [M, N] such that Im(8) N Im(15 —
fa) = 0. By Lemma 2.1(4); 8 — faf = 0, so N = Ker(8 — faf) =
Ker(p8) + Ker(1y — af8) by Lemma 2.1(8), giving (3).

(3) = (1). Tt is clear that V[M, N] C Tot[M, N]. Let a € Tot[M, N].
Suppose that a ¢ V[M, N], then Im(«) is not small in N, by assumption
there exists f € [N, M| such that N = Ker(5) + Ker(1y — af). By
Lemma 4.1; 8 = Baf, so 0 # (af)? = a8 € Ey a contradiction, hence
a € Tot[M, N]. Thus, a € V[M, N]. O

THEOREM 4.11. Let M, N be modules. The following are equivalent:
(1) Tot[M, N] = A[M, N].

(2) For all « € [M, N] with Ker(«) is not large in M there exists § €
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[N, M] such that Im(5) N Im(1,, — Ba) = 0.
(3) For all « € [M,N] with Ker(«) is not large in M there exists 3 €
[N, M| such that Ker(f) + Ker(1y — aff) = N.

Proof. (1) = (2). Suppose (1) holds. Let ao € [M, N| with Ker(«)
is not large in M. Then a ¢ A[M, N], by assumption there exists
A € [M, N] such that 0 # (Aa)? = Aa € Ey. For 8 = \a); Baf = 3.
By Lemma 4.1; Im(8) N Im(1, — fa) = 0.

(2) = (3). Suppose (2) holds. Let a € [M, N] with Ker(«) is not large
in M. By assumption there exists § € [M, N] such that Im(8)NIm(1,, —
fa) = 0. By Lemma 2.1; Im(5 — faf) = 0, so Ker(f — pap) = N =
Ker(8) + Ker(1y — af).

(3) = (1). It is clear that A[M,N] C Tot[M, N|. Let a € Tot[M, N].
Suppose that o ¢ A[M, N], then Ker(a) is not large in M, by assump-
tion there exists 8 € [N, M] such that N = Ker(8) + Ker(1y — a/3). By
Lemma 4.1; Ker(8 — Ba8) = N, so 8 = faf and 0 # (af)? = aff € Ey
a contradiction, hence o € Tot[M, N|. Thus, a € A[M, N]. O

THEOREM 4.12. Let N be a module. The following are equivalent:

A~

(1) Tot(Ex) = V(Ey).

A~

(2) Tot[M,N| = V[M, N| for all M € mod — R.

A~

(3) Tot|N, W] = V[N, W] for all W € mod — R.

Proof. (1) = (2). It is clear that V[M, N] C Tot[M, N] by Lemma
4.6.
Let a € Tot[M, N]. If a & V[M, N], there exists § € [N, M] such that
Im(1y — af) # N, so aff &€ V(EN) = Tot(Ey). Thus, there exists
A € Ey such that 0 # ((aB)N)? = (aB)\ € En, so 0 # (a(BN))? =
a(BA) and A € [N, M] a contradiction, hence a € Tot[M, N]. Thus
a € V[M,NJ.
(2) = (1). It is clear. Similarly equivalent (1) < (3) holds. O
THEOREM 4.13. Let N be a module. The following are equivalent:

~

(1) Tot(Ex) = A(Ew).

~

(2) Tot|M, N| = A[M, N] for all M € mod — R.

-~

(3) Tot[N,W| = AIN, W] for all W € mod — R.

Proof. (1) = (2). It is clear that A[M, N] C Tot[M, N] by Lemma
4.6.
Let a € Tot[M,N]. Suppose that a ¢ A[M,N]. Then there exists
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B € [N, M] such that Ker(ly — af) # 0. So a8 & A(Ey) = Tot(Ey).
Thus, there exists § € Ey such that 0 # ((a3)d)? = (af)d € Ey. So
0 # (a(Bd))* = a(B0) € Ex and 3§ € [N, M] a contradiction, hence
a € Tot[M, NJ.

(2) = (1). It is clear. Similarly equivalent (1) < (3) holds. O

Write
AD(R) = {M : M € mod — R; Tot[M,N] = A[M,N] forall N €
mod — R}.
AT(R) = {N : N € mod — R; Tot[M,N] = A[M,N] forall M €
mod — R}.
A(R) ={M : M € mod — R; Tot(Ey) = A(Ey)}.
VO(R) = {M : M € mod — R: Tot|[M,N] = V[M,N] forall N €
mod — R}.
VI(R) = {N : N € mod — R; Tot[M,N] = V[M,N] forall M €
mod — R}.
V(R) ={M : M € mod — R; Tot(Ey) = V(Ey)}.

THEOREM 4.14. For any ring R the following hold:
(1) A<I>( )= AF(R) A(R).
(2) V@( )= VF(R) =V(R).

Proof. (1). Let M € A®(R). Then Tot[M,N] = A[M,N] for all
N € mod — R. By Lemma 4.12; Tot(Ey) = A(Ey) and Tot[W, M] =
A[W, M] for all W € mod—R, so M € AT(R). Thus, A®(R) C AT(R).
Let N € AF(R). Then Tot[M, N] = &[M, N] for all M € mod — R.
By Lemma 3.12(2); Tot(Ey) = A(Ey) and Tot[N, V] = A[N, V] for all

~

V emod — R, so N € A®(R). Thus, AT(R) C A®(R).

Let M € A®(R), then Tot[M, N] = A[M N] for all M € mod — R, so
Tot(Ey) = A(Ey) and that A®(R) € A(R).

If M € A(R), then Tot(Ey) = A( ) by Lemma 4.13; Tot[M, N] =
A[M, N for all N € mod — R, so M <T>( R) and that A(R) € AD(R).
Similarly (2) holds. O

F. Kasch in [3] studied conditions on modules @) and P, which im-
ply that Tot|@, N] = A[Q, N] = J[Q, N] and Tot[M, P] = V[M, P] =
J[M, P] for all N, M € mod — R. He showed that these equalities hold
if ) is injective, respectively P is semiperfect and projective.
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A module @ is called locally injective [3] if, for every submodule A C
@, which is not large in @), there exists an injective submodule 0 # B C
Q, with AN B =0.

A module P is called locally projective [3] if, for every submodule
B C P, which is not small in P, there exists a projective direct summand
0#£AC® P, with AC B.

It was proved by Kasch [3], that Tot[@, N] = A[Q, N] for all N €
mod— R if and only if @) is a locally injective module and that Tot[M, P] =
V[M, P] for all M € mod — R if and only if P is a locally projective
module.

The following questions were raised by Kasch in [3].

(1) If @ is locally injective, then it is true that Tot[Q, N] = A[Q, N] =
J[Q, N] for all N € mod — R 7.

(2) If P islocally projective, then it is true that Tot[M, P] = V[M, P| =
J[M, P] for all M € mod — R 7.

Zhou in [9], proved that the answer to question (1) is "Yes” if a ring
R is left Noetherian. But in general, the answer to the question is "No”
by [9, Example 4.2].

During our study of answer to questions it is obtained the following
results:

COROLLARY 4.15. The following hold:
(1) If Q is a locally injective module, then Tot|Q, N] = A[Q,N] =
A[Q, N] for all N € mod — R.
(2) If P is a locally projective module, then Tot[M,P| = V[M,P] =

A~

V|[M, P] for all M € mod — R.

Proof. (1). If Q is locally injective, then A[Q,N] C A[Q,N] C
Tot[@, N] = A[Q, N] for all N € mod — R by Lemma 4.6.
(2). If P is locally projective, then V[M, P] C V[M, P] C Tot[M, P] =
V[M, P] by Lemma 4.6. O

COROLLARY 4.16. The following hold:
(1) If Q is a locally injective module and o € Eq, then Ker(a) <. Q if
and only if Ker(1—af) = 0 for all B € Eg if and only if Ker(1—fa) =0
for all B € Eg.
(2) If P is a locally projective module and « € Ep, then Im(«) < P if
and only if Im(1 —af3) = P for all § € Ep if and only if Im(1 — fa)) = P
for all € Ep.



166 Hamza Hakmi

Proof. By corollary 4.15. O

PROPOSITION 4.17. (1) Let N be a semi-projective module. The
following hold:

(i) J(Ex) = V(Ex).

(ii) J[M,N] = V[M, N] for all M € mod — R.

(2) Let N be a semi-injective module. The following hold:
() J(Ex) = A(By).

(ii) JIN,W] = A[N, W] for all W € mod — R.

Proof. (1)(7). It is clear by Lemma 4.6, that J(Ey) C @(EN) Let
a € @(EN) Then Im(1 — af) = N for all § € Ey. Since N semi-
projective; (1 — af3)g = 1 for some g € Ey, so a € J(Ey).
(17) it is clear.
(2)(4). It is clear by Lemma 4.6, that J(Ey) € A(Ey). Let o € A(Ey).
Then Ker(1 — af) = 0 for all § € Ey. Since N semi-injective and
Ker(1 — af) C Ker(B); 8 = M1 — af) for some X\ € Ey. Also, since
l=af+(1—-apf) =arl—-af)+(1—-af) =1+ aN)(1l—ab); so
1 —af € U(Ey) and that a € J(Ey).
(17) it is clear. O

COROLLARY 4.18. The following hold:
(1) If N be a semi-projective module, then V(Ey) C J(Ey).
(2) If N be a semi-injective module, then A(Ex) C J(Ey).

PROPOSITION 4.19. (1) Let N be a semi-projective module. The
following are equivalent:
(i) For every o € E)y there exists € Ey such that faff = (.
(ii) For every a € Ey there exists 5 € Ey such that Im(a) C¥ N.
(2) Let N be a semi-injective module. The following are equivalent:
(i) For every o € Ey there exists § € Ey such that faf = .
(ii) For every a € Ey there exists € Ex such that Ker(fa) C® N.

Proof. (1)(i) = (ii). It is clear by Proposition 4.1.
(i1) = (i). Let @ € Ey. Then Im(af) C% N for some 8 € Ey. Let
7m: N — Im(af) the projection. Since N is semi-projective; (af)A =7
for some A € Ey. For p = AafA; (Bu)a(fu) = Bu.
(2)(i) = (4i). It is clear by Proposition 4.1.
(i1) = (i). Let a € Ex. Then Ker(Sa) C® N for some 8 € Ey. Let
7 the projection on the complementary summand of Ker(S«). Then



Regularity and semipotency of Hom 167

Ker(Ba) = Ker(m). By Theorem 3.2; 7 € Ex(fa) C Eya hence N is
semi-injective. So m = Aa for some A € Fy. For = Aa\; pap = p. O
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