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SOME PROOFS OF THE CLASSICAL INTEGRAL

HARDY INEQUALITY

Iddrisu Mohammed Muniru∗, Okpoti Christopher Adjei,
and Gbolagade Kazeem Alagbe

Abstract. We present some proofs of the classical integral Hardy
inequality. Our approach makes use of continuous functions with
compact support in (0,∞), homogeneity of the norm and Schur’s
criterion for integral operators.

1. Introduction

The classical integral inequality announced by G. H. Hardy in 1920
is given by

(1)

∫ ∞
0

(
1

x

∫ x

0

f(t)dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

fp(x)dx,

where p > 1, x > 0, f is a nonnegative measurable function on (0,∞)

and the constant
(

p
p−1

)p
is the best possible [4]. This interesting re-

sult (1) was later proved by Hardy himself in 1925 (see [1], [5], [7], [8],
[9] and the references therein.) Inequality (1) can also be written as

(2)

∫ ∞
0

F p(x)dx ≤
(

p

p− 1

)p ∫ ∞
0

fp(x)dx,
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where 0 < F (x) = 1
x

∫ x
0
f(t)dt <∞, f > 0.

The inequalities (1) and (2) are very popular in the research environ-
ment. See also [6].

Our task in this paper is mainly to deepen understanding of the Hardy
inequality (2) by providing elaborate proofs.

2. Preliminary Notes

We define continuous functions and present some auxilliary results.

Definition (Continuous functions) [11]. Let X be a subset of the set
of real numbers <, and let f : X → < be a function. Let x0 ∈ X. We say
that f is continuous at x0 if and only if we have limx→x0 f(x) = f(x0)
for every x ∈ X. In other words, the limit of f(x) as x converges to x0
in X exists and is equal to f(x0).

Support of a function. Let I be a nonempty open set in <n, and let
f be a continuous function on I. The support of f , denoted by supp(f),
is defined to be the complement of the largest open set on which f is
zero. That is

supp(f) = {x ∈ I : f(x) 6= 0},
the closure of the set x ∈ I where f(x) 6= 0. (See [3], p. 134).

Fatou’s Lemma ([2], p. 52). Let X be a measure space with mea-
sure µ. Let {fn} be any sequence of measurable functions on X with
range in [0,∞]. For each positive integer n,

(3)

∫
X

(lim inf
n→∞

fn)dµ ≤ lim inf
n→∞

∫
X

fndµ.

Hölder’s inequality ([2], p.182). Suppose 1 < p <∞ and 1
p

+ 1
q

= 1

(that is p + q = pq). Let X be a measure space with measure µ. If f
and g are measurable functions on X with range in [0,∞], then

(4)

∫
X

fgdµ ≤
{∫

X

fpdµ

} 1
p
{∫

X

gqdµ

} 1
q

,
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In particular, if f ∈ Lp and g ∈ Lq, then fg ∈ L1, and in this case
equality holds in (4) if and only if α|f |p = β|g|q almost everywhere for
some constants α, β with αβ 6= 0. See [2] and also [10] for proofs of
inequalities (3) and (4).

Proposition 1. ([2], p.195). For f ∈ Lp and g ∈ Lq, let

Tf(x) = x−1
∫ x

0

f(y)dy, Sg(y) =

∫ +∞

y

x−1g(x)dx.

Then for 1 < p ≤ ∞ and 1 ≤ q <∞,

‖Tf‖p ≤
p

p− 1
‖f‖p, ‖Sg‖q ≤ q‖g‖q.

Proof. Let

K(x, y) =


1
x

if 0 < y < x

0 otherwise .

Then ∫ +∞

0

|K(1, y)|y−
1
pdy =

∫ 1

0

y−
1
pdy =

p

p− 1
= q,

where 1
p

+ 1
q

= 1, yielding the result.

We now present our main results which are basically the different
approaches to the proof of inequality (2). We denote by Cc(0,+∞), the
set of all continuous functions with compact support in (0,+∞).

3. First Proof

Integration by parts and Hölder’s inequality are essentially applied
here.

3.1. Case 1: Let p > 1, f is positive and continuous with compact
support in (0,+∞) and F is positive and differentiable on [0,+∞).

Setting u = F p and dv = dx implies du = pF p−1F ′dx and v = x.
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Consider (a,A0) with 0 < a < A0 < ∞ so that the suppf ⊂ [a,A0].

Integration by parts of
∫ A0

a
F pdx gives

(5)

∫ A0

a

F pdx = [xF p]A0

a − p
∫ A0

a

xF p−1F ′dx.

But
∫ A
0
F pdx =

∫ a
0
F pdx +

∫ A0

a
F pdx +

∫ A
A0
F pdx for 0 < A0 < A < ∞.

Since f ∈ Cc(0,+∞) with suppf ⊂ [a,A0] then F (x) = 0 for 0 ≤ x < a
and A0 < x ≤ A. Thus∫ A0

0

F p(x)dx =

∫ A

0

F p(x)dx

and (5) becomes

(6)

∫ A

0

F p(x)dx = AF p(A)− p
∫ A

0

xF p−1(x)F ′(x)dx.

But F (x) = 1
x

∫ x
0
f(t)dt implies xF (x) =

∫ x
0
f(t)dt. Differentiating gives

xF ′(x) + F (x) = f(x)
Thus (6) becomes∫ A

0

F p(x)dx = AF p(A)− p
∫ A

0

F p−1(x){f(x)− F (x)}dx

= AF p(A)− p
∫ A

0

F p−1(x)f(x)dx+ p

∫ A

0

F p(x)dx,

(7)

∫ A

0

F p(x)dx =
AF p(A)

1− p
+

p

p− 1

∫ A

0

F p−1(x)f(x)dx.

By Hölder’s inequality,

(8)

∫ A

0

F p−1(x)f(x)dx ≤
(∫ A

0

F (p−1)q(x)dx

) 1
q
(∫ A

0

fp(x)dx

) 1
p

where 1
p

+ 1
q

= 1 or q = p
p−1 .

Putting (8) into (7), then
(9)∫ A

0

F p(x)dx ≤ AF p(A)

1− p
+

p

p− 1

(∫ A

0

F (p−1)q(x)dx

) 1
q
(∫ A

0

fp(x)dx

) 1
p

.
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Let I =
∫ A
0
f(t)dt so that F (A) = I

A
. Then AF p(A) = Ip

Ap−1 turns to 0
as A→∞. Thus (9) simplies to

(10)

∫ ∞
0

F p(x)dx ≤ p

p− 1

(∫ ∞
0

F p(x)dx

)(1− 1
p
)(∫ ∞

0

fp(x)dx

) 1
p

.

Since
(∫∞

0
F p(x)dx

)(1− 1
p
)
> 0, then

(∫ ∞
0

F p(x)dx

) 1
p

≤ p

p− 1

(∫ ∞
0

fp(x)dx

) 1
p

,

Thus ∫ ∞
0

F p(x)dx ≤
(

p

p− 1

)p ∫ ∞
0

fp(x)dx.

3.2. Case 2: We consider f not necessarily positive. Let f ∈ Lp(0,+∞)
and set f+ = max(f, 0) and f− = −min(0, f). Consider sequence
(fn)n∈N of functions in Cc(0,+∞) such that fn −→ f in Lp(0,+∞).
For a fixed x > 0, F (x) = 1

x

∫ x
0
f(t)dt is well defined for f ≥ 0. By

Hölder’s inequality,∣∣∣∣1x
∫ x

0

f(t)dt

∣∣∣∣ ≤ 1

x

∫ x

0

|f(t)|dt

≤ 1

x

(∫ x

0

|f(t)|pdt
) 1

p
(∫ x

0

1qdt

) 1
q

≤ x−
1
p

(∫ x

0

|f(t)|pdt
) 1

p

.

Hence, by Fubini, we get∫ ∞
0

|F (x)|pdx ≤
(

p

p− 1

)p ∫ ∞
0

|(f(x)|pdx,

where the constant
(

p
p−1

)p
is the best possible.

Also set f = f+ − f−, |f | = f+ + f− and F = F+ − F−, |F | = F+ + F−
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and
∫
|F | <∞. Let ‖fn − f‖ < 1

n
. Then

|Fn(x)− F (x)| =
∣∣∣∣1x
∫ x

0

fn(t)dt− 1

x

∫ x

0

f(t)dt

∣∣∣∣
≤ 1

x

∫ x

0

|fn(t)− f(t)| dt

≤ 1

x

(∫ x

0

|fn(t)− f(t)|pdt
) 1

p
(∫ x

0

1qdt

) 1
q

by (4)

≤ x−
1
p‖fn − f‖p

<
x−

1
p

n
→ 0 as n→∞.

This shows pointwise convergence: |Fn(x)| → |F (x)| as→∞. Therefore

(11)

∫ ∞
0

|Fn(x)|pdx ≤
(

p

p− 1

)p ∫ ∞
0

|fn(x)|pdx.

Suppose that f is positive and so is F . Suppose also that fn is positive
which implies Fn is positive. Then∫ +∞

0

|F (x)|pdx =

∫ +∞

0

lim
n→+∞

|Fn(x)|pdx

≤ lim
n→+∞

∫ +∞

0

|Fn(x)|pdx (Fatou’s lemma)

≤ lim
n→+∞

[(
p

p− 1

)p ∫ +∞

0

|fn(x)|pdx
]

≤
(

p

p− 1

)p ∫ +∞

0

|f(x)|pdx.

4. Second Proof

The approach here makes use of homogeneity of a norm and the use
of a kernel.

4.1. Case 1: Homogeneity of a norm.
Let

F (x) =
1

x

∫ x

0

f(t)dt =

∫ 1

0

f(tx)dt.
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Set ft(x) = f(tx). By Minkowski inequality for integrals,

‖F (x)‖p ≤
∫ 1

0

‖ft(x)‖pdt

≤
∫ 1

0

(∫ 1

0

|ft(x)|pdx
) 1

p

dt

By change of variables with s = tx, ds = tdx, and also by Fubini’s
theorem we have

‖F (x)‖p ≤
∫ 1

0

(∫ 1

0

|f(s)|pds
t

) 1
p

dt

≤
∫ 1

0

t−
1
pdt

(∫ 1

0

|f(s)|pds
) 1

p

‖F (x)‖p ≤
p

p− 1
‖f(s)‖p

Hence

‖F (x)‖pp ≤
(

p

p− 1

)p
‖f‖pp.

4.2. Case 2: Kernel’s approach.

Let K > 0 be a Lebesgue measurable function on (0,∞) x (0,∞) and
define

K(x, y) =


1
x

if 0 < y < x

0 otherwise .

Let f ∈ Lp and consider the integral operator

Tf(x) =

∫ ∞
0

|K(x, y)f(y)|dy.

By change of variables with y = xz, dy = xdz, we have

Tf(x) =

∫ ∞
0

|K(x, xz)|f(xz)xdz.
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Set fz(x) = f(xz) and by Minkowski inequality for integrals, we have

‖Tf(x)‖p ≤
∫ ∞
0

|K(1, z)|‖fz(x)‖pdz

≤
∫ 1

0

(∫ ∞
0

|fz(x)|pdx
) 1

p

dz

Again by change of variables with xz = y, zdx = dy and by Fubini’s
theorem, we have

‖Tf(x)‖p ≤
∫ 1

0

(∫ ∞
0

|f(y)|pdy
z

) 1
p

dz

≤
∫ 1

0

z−
1
pdz

(∫ ∞
0

|f(y)|pdy
) 1

p

≤
(

p

p− 1

)
‖f(y)‖p

Hence

‖Tf‖pp ≤
(

p

p− 1

)p
‖f‖pp.

Remark 1. Let us remark that the proofs for the cases 1 and 2 here
can be described as almost the same, except that the mention of a kernel
and its application is demonstrated in case 2 .

5. Third Proof

Let K be a Lebesgue measurable function on (0,∞) x (0,∞). For
1 < p <∞, and 1

p
+ 1

q
= 1, define a nonnegative kernel

K(x, y) =


1
x

if 0 < y < x

0 otherwise .

and consider the integral operator

(12) Tf(x) =

∫ +∞

0

K(x, y)f(y)dy =
1

x

∫ x

0

f(y)dy = F (x)
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Let h(t) = tα for −1 < α < 0. By Proposition 1, we compute

(13)

∫ +∞

0

K(x, y)h(y)dy =

∫ x

0

1

x
yαdy =

1

x

x(α+1)

α + 1
=

xα

α + 1

and

(14)

∫ +∞

0

K(x, y)h(x)dx =

∫ +∞

y

1

x
xαdx =

∫ +∞

y

x(α−1)dx = − 1

α
yα.

Introduce yα into (12) and applying Hölders inequality, we have

Tf(x) =

∫ +∞

0

K(x, y)yα
f(y)

yα
dy

≤
(∫ +∞

0

K(x, y)yqαdy

) 1
q
(∫ +∞

0

K(x, y)

(
|f(y)|
yα

)p
dy

) 1
p

≤
(

xqα

qα + 1

) 1
q
(∫ +∞

0

K(x, y)

(
|f(y)|
yα

)p
dy

) 1
p

{by (13)}

≤
(

1

qα + 1

) 1
q

xα
(∫ +∞

0

K(x, y)

(
|f(y)|
yα

)p
dy

) 1
p

(15)

Let λ =
(

1
qα+1

) 1
q
. Thus (15) becomes

(16) |Tf(x)|p ≤ λpxpα
(∫ +∞

0

K(x, y)

(
|f(y)|
yα

)p
dy

)

By Fubini’s theorem, we get

∫ +∞

0

|Tf(x)|pdx ≤ λp
∫ +∞

0

(
xpα
(∫ +∞

0

K(x, y)

(
|f(y)|
yα

)p
dy

))
dx

≤ λp
∫ +∞

0

(∫ +∞

0

K(x, y)xpαdx

)(
|f(y)|
yα

)p
dy.(17)
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From (14), Th(y) =
∫ +∞
0

K(x, y)xpαdx = −ypα

pα
. Thus (17) becomes∫ +∞

0

|Tf(x)|pdx ≤ λp
∫ +∞

0

−y
pα

pα

|f(y)|p

ypα
dy

≤ − λ
p

pα

∫ +∞

0

|f(y)|pdy

≤ C

∫ +∞

0

|f(y)|pdy

where C = −λp

pα
for −1 < α < 0. Equivalently

‖Tf(x)‖pP ≤ C‖f(y)‖pp.

Remark 2. The Schur criterion discussed above shows that the op-
erator T is bounded on Lp(0,+∞) with ‖T‖ ≤ C. See ([12], p. 45) for
discussions on Schur test.

6. Conclusion

Precise proofs for the classical integral Hardy inequality were pre-
sented. A number of useful applications of some important theorems
such as Fatou’s lemma and Fubini’s theorem as well as Hölder and
Minkowski inequalities were provided.
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