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QUASI-ELLIS GROUPS AND SOME SUBGROUPS OF

THE AUTOMORPHISM GROUP

Hyungsoo Song

Abstract. In this paper we give some relationships between quasi-
Ellis groups and some subgroups of the automorphism group. In par-
ticular, we investigate several characterizations on some subgroups
of the automorphism group.

1. Introduction

Universal minimal sets were studied by R. Ellis in [3]. S. Glasner
introduced the Ellis group which is a certain group of the universal
minimal set In [5]. Given a homomorphism of pointed minimal sets π :
(X, x0)→ (Y, y0), we can define quasi-Ellis groups S(X, x0) and S(Y, y0)
which are generalizations of the Ellis groups and give some relationships
between the homomorphism and quasi-Ellis groups.

Let G be the automorphism group of universal minimal set M . Given
a minimal set X and a homomorphism γ : M → X, we may define
subgroups G(X, γ) and S(X, γ) of G, and study some characterizations
onG(X, γ) and S(X, γ). In particular, we investigateG and the subgroup
of M are isomorphic.
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2. Preliminaries

A transformation group, or flow, (X,T ), will consist of a jointly con-
tinuous action of the topological group T on the compact Hausdorff space
X. The group T , with identity e, is assumed to be topologically discrete
and remain fixed throughout this paper, so we may write X instead of
(X,T ).

A point transitive flow, (X, x0) consists of a flow X with a distin-
guished point x0 which has dense orbit.

A homomorphism of flows is a continuous, equivariant map. A homo-
morphism whose domain is point transitive is determined by its value
at a single point. A one-one homomorphism of X onto X is called an
automorphism of X. We denote the group of automorphisms of X by
A(X).

A flow is said to be minimal if every point has dense orbit. Minimal
flows are also referred to as minimal sets. M is said to be a universal
minimal set if it is a minimal set such that every minimal set is a ho-
momorphic image of M . A homomorphism whose range is minimal is
always surjective.

Given a flow (X,T ), we may regard T as a set of self-homeomorphisms
of X. We define E(X), the enveloping semigroup of X to be the closure
of T in XX , taken with the product topology. E(X) is at once a flow and
a sub-semigroup of XX . The minimal right ideals of E(X), considered
as a semigroup, coincide with the minimal sets of E(X).

The points x, x′ ∈ X are said to be proximal if there exists a net
(ti) in T such that lim xti = limx′ti. The points x, x′ ∈ X are said
to be distal if either x = x′ or x and x′ are not proximal. Thus if x
and x′ are both proximal and distal, they must be equal. The set of
all proximal pairs in X will be denoted P (X,T ) or simply P (X). X is
said to be distal if P (X) = 4X , the diagonal of X × X and is said
to be proximal if P (X) = X × X. Given any point x ∈ X, we define
P (x) = {x′ ∈ X | (x, x′) ∈ P (X)}.

A homomorphism π : X → Y is said to be proximal (resp. distal) if
whenever x, x′ ∈ π−1(y) then x and x′ are proximal (resp. distal).

A homomorphism π : X → Y is said to be regular if whenever x, x′ ∈
X with π(x) = π(x′), then (φ(x), x′) ∈ P (X) for some φ ∈ A(X).

If E is some enveloping semigroup, and there exists a homomorphism
θ : (E, e)→ (E(X), e) we say that E is an enveloping semigroup for X.
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If such a homomorphism exists, it must be unique, and, given x ∈ X
and p ∈ E we may write xp to mean xθ(p) unambiguously.

Lemma 2.1. ([6]) Let E be an enveloping semigroup for X and let I
be a minimal right ideal in E. The following are true :

(1) The set J(I) of idempotent elements in I is non-empty.
(2) pI = I for all p ∈ I.
(3) up = p whenever p ∈ I and u ∈ J(I).
(4) If u ∈ J(I) then Iu is a group with identity u.
(5) If p ∈ I then there exists a unique u ∈ J(I) with pu = p.
(6) Given x ∈ X, the following are equivalent :

(a) x is an almost periodic point.
(b) xT = xI.
(c) x = xu for some u ∈ J(I).

Lemma 2.2. ([6]) Let E be an enveloping semigroup for X, Then for
any points x, x′ ∈ X, (a) and (b) are equivalent :

(a) (x, x′) ∈ P (X,T ).
(b) There exists a minimal right ideal I in E such that xp = x′p for

every p ∈ I.
Moreover, if X is minimal, (a) and (b) are equivalent to :
(c) There exists u ∈ J(I) such that x′ = xu.

Lemma 2.3. ([6]) If (X, x) and (Y, y) are point transitive flows, and
E is an enveloping semigroup for both X and Y , there exists a unique
homomorphism ψ : (X, x) → (Y, y) if and only if xp = xq for p, q ∈ E
implies yp = yq.

Lemma 2.4. ([3]) The following are equivalent :
(a) (X,T ) is distal.
(b) (XI , T ) is pointwise almost periodic where I is a set with at least

two elements.

3. Some results on homomorphisms of pointed minimal sets

Let βT be the Stone-Cěch compactification of T . Then (βT, e) is a
universal point transitive flow. It is also clear that βT is an enveloping
semigroup for X, whenever X is a flow with acting group T . Now let
M be a fixed minimal right ideal in βT . Then (M,T ) is a universal
minimal set. We choose a distinguished idempotent u in J(M) = J
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and let G denote the group Mu. Given a minimal set X, we choose a
distinguished onto homomorphism γ : M → X and let γ(u) = x0. Then
x0u = x0. Thus x0 ∈ Xu.

Now we define the Ellis group G(X, x0) and the quasi-Ellis group
S(X, x0) as follows ;

G(X, x0) = {α ∈ G | x0α = x0} ([5])

S(X, x0) = {α ∈ G | h(x0)α = x0 for some h ∈ A(X)}.
Clearly G(X, x0) ⊂ S(X, x0), and G(X, x0) and S(X, x0) are sub-

groups of G.
Let G = A(M). Given a homomorphism γ : M → X we define the

subgroups G(X, γ) and S(X, γ) of G as follows(see [1], [8]);

G(X, γ) = {θ ∈ G | γ◦θ = γ}
S(X, γ) = {θ ∈ G | h◦γ◦θ = γ for some h ∈ A(X)}.

Lemma 3.1. The following are true :
(1) Let α ∈ G(X, x0) and let θ : M → M be the map with θ(u) = α.

Then θ ∈ G(X, γ).
(2) Let θ ∈ G(X, γ) and let θ(u) = α. Then γ(α) = x0 and α ∈

G(X, x0).

Proof. (1) Let α ∈ G(X, x0) and define the map θ : M → M by
θ(u) = α. Given elements p and q in M with up = uq, we also have
αp = αq. This imples that θ is a unique homomorphism by Lemma 2.3.
Hence it follows from [3, Proposition 14] that θ ∈ A(M).

Moreover, γ◦θ(u) = γ(θ(u)) = γ(α) = γ(uα) = γ(u)α = x0α = x0 =
γ(u). Thus θ ∈ G(X, γ).

(2) Let θ ∈ G(X, γ) and let θ(u) = α. Then γ(α) = γ(θ(u)) =
γ◦θ(u) = γ(u) = x0 and hence x0α = γ(u)α = γ(uα) = γ(α) = x0. But
since α = θ(u) = θ(u)u = αu ∈ G, it follows that θ ∈ A(M).

Theorem 3.2. The groups G and G are isomorphic.

Proof. Define Φ : G → G by Φ(θ) = θ(u) for all θ ∈ G . Since
θ(u) = θ(u)u ∈ G, Φ is well defined. Let Φ(θ1) = Φ(θ2). Since θ1(u) =
θ2(u), it follows from the minimality of M that θ1 = θ2. This means
that Φ is injective. Now let α ∈ G. Then there exists p ∈ M with
α = pu and we can choose θ ∈ G with θ(u) = p by Lemma 3.1 (1).
Thus Φ(θ) = θ(u) = θ(u)u = pu = α whence Φ is surjective. Finally
let θ, η ∈ G. Then Φ(θη) = θη(u) = θ(uη(u)) = θ(u)η(u) = Φ(θ)Φ(η),
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which means that Φ is a homomorphism. Therefore Φ is a isomorphism
whence G and G are isomorphic.

Theorem 3.3. The following are true :
(1) G(X, x0) and G(X, γ) are isomorphic.
(2) S(X, x0) and S(X, γ) are isomorphic.

Proof. (1) By Lemma 3.1 (2), Φ|G(X,γ) : G(X, γ) → G(X, x0) is well
defined. Also Φ|G(X,γ) is surjective by Lemma 3.1 (1). Therefore it is
trivial the fact that G(X, x0) and G(X, γ) are isomorphic.

(2) This follows from Definition and 3.3 (1).

The next theorems follow from Theorem 3.3.

Theorem 3.4. ([8]) The following are true :
(1) G(X, x0) is a normal subgroup of S(X, x0).
(2) G(X, γ) is a normal subgroup of S(X, γ).

Theorem 3.5. ([5]) Let π : (X, x0)→ (Y, y0) be a homomorphism of
pointed minimal sets. Then the following are true :

(1) G(X, x0) ⊂ G(Y, y0).
(2) G(X, γ) ⊂ G(Y, π◦γ).

Remark 3.6. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets and let γ : M → X be a fixed homomorphism.
Then the following are true :

(1) The groups G, G(X, x0), and S(X, x0) can be identified with the
groups G, G(X, γ), and S(X, γ), respectively.

(2) The group G(Y, y0) can be identified with the group G(Y, π◦γ).

Theorem 3.7. Let (X,T ) be a minimal set and let x0 ∈ Xu. Then
β ∈ G − G(X, x0) if and only if (x0, x0β) 6∈ P (X).

Proof. Let β ∈ G − G(X, x0) and suppose (x0, x0β) ∈ P (X). Then
there exists q ∈ M with x0q = x0βq. Since qM = M , it follows that
there exists r ∈ M with qr = u. Hence x0 = x0u = x0qr = x0βqr =
x0βu = x0β. This is a contradiction because β 6∈ G(X, x0).

Now let β ∈ G and suppose (x0, x0β) 6∈ P (X). Then x0p 6= x0βp
for all p ∈ βT . Hence x0 = x0u 6= x0βu = x0β. This implies β 6∈
G − G(X, x0).

Lemma 3.8. Let (X,T ) be a flow. Then the following are true :
(1) If (x, x′) 6∈ P (X), then xu 6= x′u.
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(2) Let (X,T ) be a minimal set and let x, x′ ∈ Xu. Then there exists
β ∈ G such that x = x′β.

Proof. (1) Suppose xu = x′u. Then xp = xup = x′up = x′p for all
p ∈ G and hence (x, x′) ∈ P (X).

(2) Let x, x′ ∈ Xu. Since x′M = X, it follows that there exists q ∈M
such that x′q = x. Set qu = β. Then β ∈ G and x′β = x′qu = xu = x.

Remark 3.9. (1) Note that if p ∈ M , p has a unique decomposition
as p = αv where α ∈ G and v ∈ J by Lemma 2.1 (5).

(2) If x, x′ ∈ Xu, then there exists β ∈ G such that G(X, x′) =
βG(X, x)β−1. In fact, if β ∈ G with x′β = x and α ∈ G(X, x), then
βαβ−1 ∈ G(X, x′) by Lemma 3.8 (2). Also, if δ ∈ G(X, x′), then it is
immediate that δ ∈ βG(X, x)β−1.

Theorem 3.10. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets. Then the following are true :

(1) If P (x0) = X, then P (X) = X ×X.
(2) If P (x0) = X, then P (y0) = Y .
(3) If G(X, x0) = G, then P (X) = X ×X and P (Y ) = Y × Y .

Proof. (1) Let x, x′ ∈ X. Then we have from Lemma 2.2 and P (x0) =
X that there exist v, w ∈ J such that x = x0v and x′ = x0w. Then
xw = (x0v)w = x0w = x′. Therefore (x, x′) ∈ P (X) and hence P (X) =
X ×X.

(2) Let y ∈ Y . Since π is surjective, it follows that there exists x ∈ X
with π(x) = y. Since P (x0) = X, we have that there exists v ∈ J such
that x = x0v. Then y = π(x) = π(x0v) = y0v. Thus y ∈ P (y0). This
means that P (y0) = Y .

(3) Let G(X, x0) = G, x ∈ X, and y ∈ Y . Since X is minimal,
it follows that there exists p ∈ M with x = x0p. Also we have from
Remark 3.9 (1) that there exist α ∈ G, v ∈ J such that p = αv. Since
G(X, x0) = G, it follows that x = x0p = x0αv = x0v. Thus P (x0) = X
and hence P (y0) = Y by (2). It follows from (1) that P (X) = X × X
and P (Y ) = Y × Y .

Theorem 3.11. ([5]) Let π : (X, x0) → (Y, y0) be a homomorphism
of pointed minimal sets. Then the following are equivalent :

(a) π is proximal.
(b) G(X, x0) = G(Y, y0)
(c) Given y ∈ Y , π−1(y) ⊂ xJ(M) for all x ∈ π−1(y).
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The following theorem will show that in the case of distality, the group
determines the flow homomorphism. We prove J. Auslander’s result as
a corollary.

Theorem 3.12. Let X, Y be minimal sets and let x0 ∈ Xu, y0 ∈ Y u,
and Y distal. If G(X, x0) ⊂ G(Y, y0), then there exists a homomorphism
π : (X, x0)→ (Y, y0).

Proof. Let G(X, x0) ⊂ G(Y, y0), (x0, y0) = z0, and z0T = Z. Given
α ∈ G with z0α = z0, we have that (x0, y0)α = (x0, y0) whence α ∈
G(X, x0) and α ∈ G(Y, y0). Thus α ∈ G(X, x0). Now let α ∈ G(X, x0).
Since G(X, x0) ⊂ G(Y, y0), it follows from the Definition that z0α =
z0. This implies that G(X, x0) = G(Z, z0). Therefore, by Theorem 3.11,
there exists a proximal homomorphism ψ : (Z, z0) → (X, x0). Define
φ : (Z, z0) → (Y, y0) by φ(z0) = y0. Then φ is a unique homomorphism
by Lemma 2.3. Now define π : (X, x0) → (Y, y0) by π(x0) = φ(z0). If
ψ(z1) = x0, then (z0, z1) ∈ P (Z) whence (φ(z0), φ(z1)) ∈ P (Y ). Since
Y is distal, it follows Lemma 2.4 that φ(z0) = φ(z1). Thus π is a well
defined homomorphism such that π◦ψ = φ.

Corollary 3.13. ([2]) LetX, Y be minimal sets and let x0 ∈ Xu, y0 ∈
Y u, and Y distal. Then G(X, x0) ⊂ G(Y, y0) if and only if there exists a
homomorphism π : (X, x0)→ (Y, y0).

Proof. This follows from Theorem 3.5 and Theorem 3.12.

In [7], Song proved the following theorems :

Theorem 3.14. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets. Then π is regular if and only if G(Y, y0) ⊂ S(X, x0).

Theorem 3.15. Let π : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal sets. Then the following are true :

(1) If π is regular, then G(X, x0) is a normal subgroup of G(Y, y0).
(2) Let π be regular. For each y ∈ Y and x ∈ π−1(y), there exists

φ ∈ A(X) such that φ(x) ∈ x′J for all x′ ∈ π−1(y).

J. Auslander and S. Glasner proved the following theorem :

Theorem 3.16. ([2], [5]) Let π : (X, x0) → (Y, y0) be a homomor-
phism of pointed minimal sets. Then the following are equivalent :

(a) π is distal.
(b) If y ∈ Y and v ∈ J such that yv = y, then π−1(y)v = π−1(y).
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(c) If y ∈ Y , then π−1(yp) = π−1(y)p for all p ∈M .
(d) Given y ∈ Y and p ∈ M with y0p = y, we have that π−1(y) =

x0G(Y, y0)p.

Remark 3.17. (1) If X is proximal, then G(X, x0) = G(Y, y0) =
S(X, x0). Note that if X is proximal and minimal, then the only homo-
morphism of X into X is the identity (see 1 in [4]).

(2) Note that a homomorphism is both proximal and distal if and
only if it is an isomorphism.
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