Korean J. Math. 22 (2014), No. 4, pp. 621-632
http://dx.doi.org/10.11568 /kjm.2014.22.4.621

REDEFINED FUZZY CONGRUENCES ON
SEMIGROUPS

INHEUNG CHON

ABSTRACT. We redefine a fuzzy congruence, discuss some properties
of the fuzzy congruences, find the fuzzy congruence generated by
a fuzzy relation on a semigroup, and give some lattice theoretic
properties of the fuzzy congruences on semigroups.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([8]).
Subsequently, many researchers ([2], [7], [5], [4]) studied fuzzy relations
in various contexts. The original definition of a reflexive fuzzy relation u
on a set X was u(x,z) = 1 for all z € X, which seemed to be too strong.
Gupta et al. ([3]) suggested a G-reflexive fuzzy relation by generalizing
the definition, defined a fuzzy G-equivalence relation, and developed
some properties of that relation. Chon ([1]) defined a generalized fuzzy
congruence using the G-reflexive fuzzy relation and characterized that
congruence. However the generalized fuzzy congruence turned out not
to have some crucial properties (see [1]) such that the congruence on a
semigroup is not always generated by a fuzzy relation and the collection
of all those congruences is not a complete lattice. In this note, we suggest
a new reflexive fuzzy relation as u(z,z) > e > 0 for all x € X and
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tin)g wu(t,t) > u(y, z) for all y # 2z € X, define a fuzzy congruence, and
€

show that the redefined fuzzy congruence has those crucial properties
which the generalized fuzzy congruence does not have. Also our work
may be considered as a generalization of the studies which Samhan ([6])
performed based on the original reflexive fuzzy relation.

In section 2 we redefine a fuzzy congruence and review some basic
definitions and properties of fuzzy relations which will be used in the
next section. In section 3 we discuss some basic properties of the fuzzy
congruences, find the fuzzy congruence generated by a fuzzy relation on
a semigroup, show that the collection C(S) of all fuzzy congruences on
a semigroup S is a complete lattice, and show that if S is a group, then
Ci(S)={pu e C(S): ulc,c) =k for all ¢ € S} is a modular lattice for
OD<e<k<l.

2. Preliminaries

We redefine a fuzzy congruence and recall some properties of fuzzy
relations which will be used in the next section.

DEFINITION 2.1. A function B from a set X to the closed unit interval
[0, 1] in R is called a fuzzy subset of X. For every x € X, B(x) is called
a membership grade of x in B. A fuzzy relation p in a set Z is a fuzzy
subset of Z x Z.

The original definition of a fuzzy reflexive relation p in a set X was
p(z,x) =1 for all z € X. Gupta et al. ([3]) defined a G-reflexive fuzzy
relation p in a set X by pu(z,z) > 0 forall x € X and tin)f(’ w(t,t) > p(z,y)

€

for all z,y € X such that = # y. But the fuzzy congruence defined from
the G-fuzzy reflexive relation does not have some crucial properties (see
[1]). We redefine the fuzzy congruence for a settlement of these problems.

DEFINITION 2.2. Let u be a fuzzy relation in a set X. pu is reflexive in
X if p(z,x) > € > 0 and tin)g w(t,t) > p(x,y) for all z,y € X such that
S

r #y. pis symmetric in X if p(z,y) = p(y,x) for all z,y in X. The
composition A o u of two fuzzy relations A, u in X is the fuzzy subset of
X x X defined by

(Ao p)(@,y) = sup min(A(z, 2), 4z, 9)).
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A fuzzy relation p in X is transitive in X if o p C p. A fuzzy relation
pin X is called a fuzzy equivalence relation if p is reflexive, symmetric,
and transitive.

Let Fx be the set of all fuzzy relations in a set X. Then it is easy to
see that the composition o is associative, Fyx is a monoid under the oper-
ation of composition o, and a fuzzy equivalence relation is an idempotent
element of Fyx.

DEFINITION 2.3. Let p be a fuzzy relation in a set X. p is called
fuzzy left (right) compatible if p(z,y) < p(zzx,zy) (w(z,y) < plrz,yz))
for all x,y,z € X. A fuzzy equivalence relation on X is called a fuzzy left
congruence (right congruence) if it is fuzzy left compatible (right com-
patible). A fuzzy equivalence relation on X is called a fuzzy congruence
if it is a fuzzy left and right congruence.

DEFINITION 2.4. Let p be a fuzzy relation in a set X. ! is defined
as a fuzzy relation in X by u~!(z,y) = u(y, ).

It is easy to see that (uov)™' =v~topu™! for fuzzy relations p and
v. The following Proposition 2.5, Proposition 2.6, and Proposition 2.7
are due to Samhan ([6]).

PROPOSITION 2.5. Let i be a fuzzy relation on a set X. Then U, u™

n=1
is the smallest transitive fuzzy relation on X containing p, where u™ =

[LO [LO -~ O [

Proof. See Proposition 2.3 of [6]. O

PROPOSITION 2.6. Let p be a fuzzy relation on a set X. If p is sym-
metric, then so is U;2 , pu", where p"* = ppopo---op.

Proof. See Proposition 2.4 of [6]. O

PROPOSITION 2.7. If u is a fuzzy relation on a semigroup S that is
fuzzy left and right compatible, then so is U, p", where p" = po po

e e+ O /,L.
Proof. See Proposition 3.6 of [6]. O
PROPOSITION 2.8. Let pu and each v; be fuzzy relations in a set X for
alli € I. Then o (ﬂlui) C ﬂI(,u o;) and (ﬂlyi) ouC 'ﬂl(yi o).
1€ 1€ (S 1€

Proof. Straightforward. O
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PROPOSITION 2.9. If i is a reflexive fuzzy relation on a set X, then
p A (z,y) > p"(z,y) for all natural numbers n and all z,y € X.

Proof. Straightforward. O

3. Redefined fuzzy congruences on semigroups

In this section we develop some basic properties of the fuzzy con-
gruences, find the fuzzy congruence generated by a fuzzy relation on a
semigroup, and give some lattice theoretic properties of fuzzy congru-
ences.

PROPOSITION 3.1. Let y be a fuzzy relation on a set S. If i is reflexive,

then so is Uy2 , pu", where p"* = ppopo---o p.

Proof. Clearly pu' = p is reflexive. Suppose that u* is reflexive. Then
pF(x,2) > pF(z,2) > € > 0 for all x € S by Proposition 2.9. The
remaining part of the proof is exactly same as that of Proposition 3.1 in
[1]. O

PROPOSITION 3.2. Let u and v be fuzzy congruences in a set X. Then
i N v is a fuzzy congruence.

Proof. 1t is clear from Proposition 2.8. m

It is easy to see that even though p and v are fuzzy congruences,
(Uv is not necessarily a fuzzy congruence. We find the fuzzy congruence
generated by p U v in the following proposition.

PROPOSITION 3.3. Let u and v be fuzzy congruences on a semigroup
S. Then the fuzzy congruence generated by pUv in S is U2 (pUv)" =

(pU)U[(pUrv)o (pUrv)|U....

Proof. Clearly (nUv)(x,x) > € > 0 for all z € S. The remaining part
of the proof is exactly same as that of Proposition 3.3 in [1]. O

We now turn to the characterization of the fuzzy congruence generated
by a fuzzy relation on a semigroup.

DEFINITION 3.4. Let u be a fuzzy relation on a semigroup S and let
St = S U {e}, where e is the identity of S. We define the fuzzy relation
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u*on S as
p(x,y) = U w(a,b) for all z,y € S.

c,dest,
cad=z,
cbd=y
PROPOSITION 3.5. Proposition 3.5 Let ;1w and v be two fuzzy relations
on a semigroup S. Then

(1)

(2)

(3) If p C v, then pu* C v*

(4) (pUw)" = p Uv”

(5) p = p* if and only if p is fuzzy left and right compatible

(6) (u)" = p*

Proof. See Proposition 3.5 of [6]. O

The generalized fuzzy congruence in a semigroup is not always gen-
erated by a fuzzy relation (see Theorem 3.6 of [1]). We show that the
fuzzy congruence on a semigroup, which is newly defined in this note, is
always generated by a fuzzy relation.

THEOREM 3.6. Let pu be a fuzzy relation on a semigroup S. Then the
fuzzy congruence generated by p is

uee, [ U (w)~tuer)™, if p(x,y) >0 for some x £y € S
U, (prucgH)”, if u(z,y) =0 foralz#yeSs

where 0(z,z) = max [ sup u(z,y), € forall z € S, 0 =071, 0(x,y) <
TH#yeS

p(x,y) for all z,y € S with x # vy, ((z,2z) =€ for all z € S, {(z,y) =0

for all x # y € S, and p*, 6%, and (* are fuzzy relation on S defined in

Definition 3.4.

Proof. We consider the case that p(z,y) > 0 for some x # y € S. Let
py = p* U ()"t Ut Then uy(z,2) > 0%(2,2) > 0(z,2) > € > 0 for
all z € S. Let S' = S U {e}, where ¢ is the identity of S. Since x # y
implies a # b in Definition 3.4, p*(z,y) < sup p(z,y) < 0(¢,t) for all

r#YyeS
t € S. Since §(z,y) < p(z,y), 0*(z,y) < p*(z,y) by (3) of Proposition
3.5. That is,

1 > ] * > > * > 9* .
inf (¢, 1) > inf 0°(t, 1) 2 0(t,) 2 p*(2,y) 2 0 (2, y)
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Since inf yu(1,1) > 0(t,1) > p*(y,2), inf p(£,1) > ()" (2.). Thus
€ €

inf g (t,1) > max{p’(z,y), ()" (2,y), 0"(z,9)] = (2, y).

That is, p is reflexive. By Proposition 3.1, Up2; uf is reflexive. Since
=01 0= (0"1) = (6*)"! by (2) of Proposition 3.5, and hence

i (z,y) = max [(u*) " (y, 2), 0 (y, @), (0%) "z, )] = pu(y, @)

Thus p; is symmetric. By Proposition 2.6, Uy, pf is symmetric. By
Proposition 2.5, Us2; uf is transitive. Hence Up2, pf is a fuzzy equiva-

lence relation containing u. By (2), (4), and (6) of Proposition 3.5,
pi= (U ()Tt U0 = (U () U = () U (1)) U ()
=p U () U =t U ()T U8 = .

Thus py is fuzzy left and right compatible by (5) of Proposition 3.5.
By Proposition 2.7, Uy, uf is fuzzy left and right compatible. Thus
Uo®, uf is a fuzzy congruence containing p. Let v be a fuzzy congruence
containing g. Then (U p~! U0)(z,y) < v(z,y) for all z,y € S such
that x # y. Since 0(a,a) = max [ sup u(x,y), € < v(a,a) for all
z#Yy€eS

a € S, max [u(a,a), " (a,a),0(a,a)] < v(a,a) for all a € S. Thus
pUp Ul Cv. By (2), (3), and (4) of Proposition 3.5,

pr = U ()T U = U () Ul = (pu Tt Ul C

Since v is fuzzy left and right compatible, v = v* by (5) of Proposition
3.5. Thus p; C v. Suppose ¥ C v. Then

it (b, ) = (pf o 1) (b, ) = sup min[uf (b, d), 1 (d, )]

< sup min [v(b,d),v(d,c)] = (vov)(b,c)
des
for all b,c € S. That is, uf™ C (v ov). Since v is transitive, uf™ C v.

By the mathematical induction, pf C v for every natural number n.
Thus

Unsy [ U ()7 ue" = U2y ™ = U (o) U (puopom) - - C v.

We consider the case that p(z,y) = 0 for all x # y € S. Let uy =
p*UC*. Then po(a,a) > e >0 for all a € S. Let S* = S U {e}, where
e is the identity of S. Since x # y implies a # b in Definition 3.4,
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w(z, ) =0 and (*(z,y) = 0 from pu(z,y) =0 and ((z,y) = 0. That is,
(U ) (z,y) < ((t,t) for all t € S. Thus

inf pp(t,1) > inf ¢°(¢, 1) > C(t,1) > max{p™(z,y), ¢*(z,y)] = pa(,y).

Hence py is reflexive. By Proposition 3.1, U2, pf is reflexive. Since
,u*(:v y) = 0 and (*(z,y) = 0, po is Symmetrlc By Proposition 2.6,

>, p5 is symmetric. By Proposition 2.5, US2, u4 is transitive. Hence
U°° °, p5 is a fuzzy equivalence relation containing p. The proof of the
remaining parts is similar to that of the above case. [l

We now turn to the lattice theoretic properties of fuzzy congruences.
For the collection {sx; : j € J} of all generalized fuzzy congruences on a
semigroup S with a relation < defined in Proposition 3.7, it is easy to

see that ({p;:j € J}, S)is not a complete lattice since inf ;; does not
jeJ

exist (see [1]). In next proposition, we show that the collection of the
redefined fuzzy congruences is a complete lattice.

PROPOSITION 3.7. Let C(S) be the collection of all fuzzy congruences
on a semigroup S. Then (C(S), <) is a complete lattice, where < is a
relation on the set of all fuzzy congruences on S defined by u < v iff
pu(x,y) < v(z,y) for all z,y € S.

Proof. Clearly < is a partial order relation. It is easy to check that
the relation o defined by o(x,y) = 1 for all z,y € S is in C(S) and the
relation A defined by A(z,y) = € for v = y and A(z,y) = 0 for z # y is in
C(S). Also o is the greatest element and A is the least element of C(5)
with respect to the ordering <. Let {4;},es be a non-empty collection
of fuzzy congruences in C'(5). Let u(z,y) = JIE§ pi(z,y) for all x,y € S.

Clearly p(z,x) > e forall z € S, 1tin)f(’ p(t,t) > p(y, z) for all y # z € X,
€

pw=put pwlx,y) < plzx, 2y), and p(z,y) < p(rz,yz) for all z,y,2 € S.
It is easy to see that popu C pu (see Proposition 6.1 of [4]). That is,
p € C(S). Since p is the greatest lower bound of {y;}es, (C(S5),S) is
a complete lattice. O

We define a join V and a meet A on C(S) by p Vv =< pUv >,
and pu A v = pNrv, where < pU v >, is the fuzzy congruence generated
by wUwv. It is clear that if pu,v € C(S), then p A v € C(S) and
pV v e C(S) from Proposition 3.2 and Propostion 3.3, respectively. Let
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Ce(S) ={pn € C(S) : u(e,c) =k for all ¢ € S}. Then it is easy to see
that (Cx(S), V, A) is a sublattice of C(S) for 0 < e <k < 1.

DEFINITION 3.8. A lattice (L, V, A) is called modular if (z Vy) Az <
zV (yAz)forall z,y,z € L with z < z.

LEMMA 3.9. Let pu and v be fuzzy congruences on a semigroup S such
that pu(c,c) = v(e,c¢) forallc € S. If pov = vou, then pov is the fuzzy
congruence on S generated by pU v.

Proof. (pov)(a,a) = sug min [p(a, 2),v(z,a)] > min[u(a, a),v(a,a)] >

zE€
e > 0 for all @ € S. The remaining part of the proof is same as that of
Lemma 4.3 in [1]. O

THEOREM 3.10. Let S be a semigroup and let H be a sublattice of
(C(S),V,A\) such that pov = voy for all uyv € H. Then H is a
modular lattice for 0 < e < k < 1.

Proof. Let p,v,p € H with p < p. Let x,y € S. Then it is straight-
forward (see Theorem 4.5 of [6]) that (uov) Ap < pwo (v A p). Since
p, v € Cr(S), u(c,c) =v(e,c) =k for all ¢ € S. By Lemma 3.9, o v is
the fuzzy congruence generated by pUwv. That is, p Vv = powv. Thus
(uVV)Ap < po(vAp). Since H is a sublattice and p,v € H, vAp € H.
Since p € Hand vAp € H, po(vAp) = (vAp)op. Also (vAp)(c,c) =k
and u(c,c) = k for all ¢ € S. By Lemma 3.9, pio (v A p) is the fuzzy
congruence generated by p U (v A p). That is, o (v A p) = puV (v A p).
Thus (uVv)Ap <uV(vAp). Hence H is modular. O

COROLLARY 3.11. If Sisagroup and 0 < € < k < 1, then (Cx(S), V, A)
is a modular lattice.

Proof. 1t is easy to see that if S is a group, then pov = v oy for all
p, v € Ci(S) (see Proposition 4.3 of [6]). By Theorem 3.10, (Cx(S5), V, A)
is modular. O
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