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HIERARCHICAL ERROR ESTIMATORS FOR

LOWEST-ORDER MIXED FINITE ELEMENT METHODS

Kwang-Yeon Kim

Abstract. In this work we study two a posteriori error estimators
of hierarchical type for lowest-order mixed finite element methods.
One estimator is computed by solving a global defect problem based
on the splitting of the lowest-order Brezzi–Douglas–Marini space,
and the other estimator is locally computable by applying the stan-
dard localization to the first estimator. We establish the reliability
and efficiency of both estimators by comparing them with the stan-
dard residual estimator. In addition, it is shown that the error es-
timator based on the global defect problem is asymptotically exact
under suitable conditions.

1. Introduction

In this paper we consider the second-order elliptic problem on a
bounded polygonal domain

(1)

{− div(a∇u) = f in Ω ⊂ R2

u = −g on ∂Ω

for given f ∈ L2(Ω) and g ∈ H1/2(∂Ω). It is assumed that the coefficient
a is a symmetric, bounded and uniformly positive definite matrix-valued
function. The Dirichlet boundary condition is assumed only for the sake
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of simplicity and subsequent results are easily extended to more general
boundary conditions.

When the primary interest is accurate approximation of the vector
variable σ = −a∇u, the following mixed formulation of (1) is often
preferred:

find (σ, u) ∈ H(div,Ω)× L2(Ω) such that

(2)

{
(a−1σ, τ )Ω − (div τ , u)Ω = 〈g, τ · n〉∂Ω ∀τ ∈ H(div,Ω)

(divσ, v)Ω = (f, v)Ω ∀v ∈ L2(Ω),

where H(div,Ω) stands for the space of square-integrable vector-valued
functions whose divergences are also square-integrable. We have partic-
ularly in mind two lowest-order mixed finite element methods(MFEMs)
on triangular meshes for the mixed formulation (2): the standard MFEM
using the lowest-order Raviart–Thomas element [3, 12] and the multipoint-
flux MFEM using the lowest-order Brezzi–Douglas–Marini element [15].

Adaptive refinement based on a posteriori error estimators is now a
well-established tool for efficient implementation of finite element meth-
ods. In the past two decades much effort has been devoted to develop-
ment of a posteriori error estimators for mixed finite element methods
of (2); see, for example, [1, 2, 4, 5, 6, 7, 8, 10, 11, 13, 14] and references
therein. We also refer to [16] for comparison of four different kinds of
error estimators. For the reliability and efficiency of an error estimator,
it is required that the ratio of the estimated error to the actual error
stays between two positive bounds independent of the mesh size (up to
higher order terms). For some error estimators this ratio becomes unity
as the mesh is refined under favorable circumstances. In such cases the
error estimator is said to be asymptotically exact.

In this work we study two a posteriori error estimators of hierarchical
type for the lowest-order mixed finite element methods mentioned above.
The first estimator is based on solution of a global defect problem and
the second estimator is obtained through standard localization of the
first one. While the hierarchical error estimator of [16] targeted the
vector error σ − σh in the H(div)-norm (and the scalar error ‖u −
uh‖0,Ω), we aim at estimating the vector error σ − σh in the L2-norm.
It turns out that we can use a smaller surplus space for this aim and the
resulting error estimators have lower computational costs. We will show
that this simplification maintains the reliability and efficiency of the
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error estimators (under the saturation assumption for the multipoint-
flux MFEM). Moreover, the first estimator based on the global defect
problem is asymptotically exact under suitable conditions.

The rest of the paper is organized as follows. In the next section we
introduce some notation and the mixed finite element methods. In Sec-
tion 3 we present our hierarchical error estimators and then discuss their
reliability and efficiency in Section 4. Finally, the asymptotic exactness
of the error estimator based on the global defect problem is established
in Section 5.

2. Preliminaries

Suppose that Th is a shape-regular triangulation of Ω =
⋃
K∈Th K into

triangles with the mesh size h = maxK∈Th hK . For an element K ∈ Th,
we denote the diameter of K by hK and the set of three edges of K by
EK . The collection of all edges of Th is denoted by Eh = {e}, and we set

EΩ
h = {e ∈ Eh : e ⊂ Ω}, E∂h = {e ∈ Eh : e ⊂ ∂Ω}.

Throughout the paper, we denote by C (with or without a subscript)
a generic positive constant independent of the mesh size h which may
take different values in different places.

Let Pk(K) denote the space of all polynomials on K of total degree
≤ k and let

Wk = {vh ∈ L2(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th}.
The Raviart–Thomas and Brezzi–Douglas–Marini spaces over Th are de-
fined by

RTk = {τ ∈ H(div; Ω) : τ |K ∈ RTk(K) ∀K ∈ Th},
BDMk = {τ ∈ H(div; Ω) : τ |K ∈ (Pk(K))2 ∀K ∈ Th},

where
RTk(K) := (Pk(K))2 ⊕ (x1, x2)Pk(K).

In this paper we will consider the following mixed finite element meth-
ods based on the mixed formulation (2):

(Raviart–Thomas MFEM): Find (σh, uh) ∈ RT0×W0 such that

(3)

{
(a−1σh, τ h)Ω − (div τ h, uh)Ω = 〈g, τ h · n〉∂Ω ∀τ h ∈ RT0

(divσh, vh)Ω = (f, vh)Ω ∀vh ∈ W0.
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(Multipoint-flux MFEM): Find (σh, uh) ∈ BDM1 × W0 such
that

(4)

{
(a−1σh, τ h)h,Ω − (div τ h, uh)Ω = 〈g, τ h · n〉∂Ω ∀τ h ∈ BDM1

(divσh, vh)Ω = (f, vh)Ω ∀vh ∈ W0.

Here (·, ·)Ω (resp. 〈·, ·〉∂Ω) denotes the standard L2 inner product over
Ω (resp. ∂Ω). We refer to [15] for more details on the multipoint-flux
MFEM, where the bilinear form (a−1σh, τ h)h,Ω is defined by applying the
3-point trapezoidal rule to the local integral (a−1σh, τ h)K and summing
the results over all K ∈ Th. An important observation is that

(5) (a−1ξh, τ h)h,Ω = (a−1ξh, τ h)Ω ∀ξh ∈ RT0

if a and τ h is piecewise constant over Th. Both of the mixed finite
element methods defined above have the lowest order of convergence (cf.
[3, 15])

(6) ‖σ − σh‖0,Ω ≤ Ch‖σ‖1,Ω

and satisfy the local conservation law

divσh = f,

where f represents the L2 projection of f onto W0.
Finally, we recall the following integration-by-parts formula for a do-

main T ⊂ R2

(rot τ , v)T − (τ , curl v)T = 〈τ · tT , v〉∂T
which will be frequently used throughout the paper. Here tT is the unit
tangent vector on ∂T oriented in the counterclockwise orientation and
the differential operators are defined as

rot τ =
∂τ2

∂x1

− ∂τ1

∂x2

, curl v =

(
∂v

∂x2

,− ∂v

∂x1

)
for a vector-valued function τ = (τ1, τ2) and a scalar-valued function v.

3. Hierarchical Error Estimators

In this section we present two a posteriori error estimators of the
hierarchical type for the vector error ‖a−1/2(σ − σh)‖0,Ω of the mixed
finite element methods (3) and (4).
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The first estimator is closely related to the global minimization prob-
lem

(7) min
ϕh∈P 0

2

‖a−1/2(σh + curlϕh − σ)‖0,Ω,

where the trial function space is defined by

P 0
2 := {ϕ ∈ H1(Ω) : ϕ|K ∈ P2(K) for all K ∈ Th and

ϕ vanishes at vertices of Th}.
This problem was motivated in [9] by the desire to find a vector function
σh + curlϕh ∈ BDM1 which is more accurate than σh and may be
regarded as based on the hierarchical splitting

BDM1 = RT0 + curlP 0
2 .

By the standard argument the minimization problem (7) is reduced
to the problem of finding ψh ∈ P 0

2 such that

(a−1 curlψh, curlϕh)Ω = −(a−1(σh − σ), curlϕh)Ω ∀ϕh ∈ P 0
2 .

By virtue of the equality a−1σ = −∇u and the integration by parts, this
equation becomes

(a−1 curlψh, curlϕh)Ω =− (a−1σh, curlϕh)Ω

+ 〈g, curlϕh · n〉∂Ω ∀ϕh ∈ P 0
2 ,

(8)

which is exactly the global defect problem based on the above splitting of
BDM1. The matrix system arising from (8) is symmetric and positive
definite, and moreover, is known to be well-conditioned with respect to
the mesh size h. Hence it can be efficiently solved, e.g., by applying the
conjugate gradient method (even without any preconditioning when a is
smooth).

Now the error estimator is defined as

ηHG := ‖a−1/2 curlψh‖0,Ω,

where ψh ∈ P 0
2 is the solution of the global defect problem (8).

The locally computable error estimator is constructed by means of the
well-known localization technique for the hierarchical surplus space P 0

2 .
Let θe ∈ P 0

2 be the nodal basis function associated with the midpoint
me of the edge e ∈ Eh (that is, θe(me′) = δe,e′) and let ωe := supp θe.
Then we define the error estimator

ηHL :=

(∑
e∈Eh

‖a−1/2 curlψe‖2
0,ωe

)1/2

,
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where ψe ∈ span{θe} is the solution of the local defect problem
(9)

(a−1 curlψe, curlϕe)ωe = −(a−1σh, curlϕe)ωe + 〈g, curlϕe · n〉∂Ω∩ωe

for all ϕe ∈ span{θe}.

Remark 1. Based on the hierarchical splitting of the first-order

Raviart–Thomas element

RT1 = RT0 + curlP 0
2 + R̂T

1

1, W1 = W0 + Ŵ1,

the hierarchical error estimator of [16] (designed to estimate σ − σh
in the H(div)-norm) has two contributions coming from curlP 0

2 and

R̂T
1

1 × Ŵ1. The global defect problem (8) was introduced in connection
with curlP 0

2 , but instead of considering ηHG, it was replaced by the
local defect problems (9) to obtain ηHL as the contribution coming from

curlP 0
2 . The contribution from R̂T

1

1 × Ŵ1 is locally computable by
solving 4×4 saddle-point problems. Because ηHG and ηHL are equivalent
to the residual estimator of [2] (up to higher order terms) as shown below,

we may exclude the contribution from R̂T
1

1 × Ŵ1 when estimating the
L2-norm of σ − σh, which implies that our error estimators have lower
computational costs.

The following equivalence of ηHG and ηHL can be established in a
standard manner and is valid for both the Raviart–Thomas MFEM (3)
and the multipoint-flux MFEM (4).

Theorem 1. There exist positive constants C1 and C2 such that

C1ηHL ≤ ηHG ≤ C2ηHL.

Proof. Taking ϕe = ψe in (9) and ϕh = ψe in (8), we find that

‖a−1/2 curlψe‖2
0,ωe

= (a−1 curlψh, curlψe)ωe

≤ ‖a−1/2 curlψh‖0,ωe‖a−1/2 curlψe‖0,ωe ,

from which the left inequality immediately follows.
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To derive the right inequality, let ψh =
∑

e∈Eh αeθe for αe ∈ R. Taking
ϕh = ψh in (8) and using (9), we obtain

‖a−1/2 curlψh‖2
0,Ω =

∑
e∈Eh

αe
{
− (a−1σh, curl θe)ωe + 〈g, curl θe · n〉∂Ω∩ωe

}
=
∑
e∈Eh

αe(a
−1 curlψe, curl θe)ωe

≤
∑
e∈Eh

αe‖a−1/2 curlψe‖0,ωe‖a−1/2 curl θe‖0,ωe

≤ ηHL

(∑
e∈Eh

α2
e‖a−1/2 curl θe‖2

0,ωe

)1/2

.

Now the right inequality is proved by invoking the well-known equiva-
lence

C3

∑
e∈Eh

α2
e‖a−1/2 curl θe‖2

0,ωe
≤ ‖a−1/2 curlψh‖2

0,Ω

≤ C4

∑
e∈Eh

α2
e‖a−1/2 curl θe‖2

0,ωe

with some positive constants C3 and C4. This completes the proof.

4. Reliability and Efficiency

4.1. Lower bounds. A global lower bound for ηHG can be directly
derived from (8):

‖a−1/2 curlψh‖2
0,Ω = −(a−1σh, curlψh)Ω − 〈u, curlψh · n〉∂Ω

= (a−1(σ − σh), curlψh)Ω

≤ ‖a−1/2(σ − σh)‖0,Ω‖a−1/2 curlψh‖0,Ω

Likewise a local lower bound for ηHL can be derived from (9):

‖a−1/2 curlψe‖2
0,ωe

= −(a−1σh, curlψe)ωe − 〈u, curlψe · n〉∂Ω∩ωe

= (a−1(σ − σh), curlψe)ωe

≤ ‖a−1/2(σ − σh)‖0,ωe‖a−1/2 curlψe‖0,ωe
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Note that ηHG and ηHL provide guaranteed lower bounds for the global
error ‖a−1/2(σ−σh)‖0,Ω and the local error ‖a−1/2(σ−σh)‖0,ωe , respec-
tively. We remark that guaranteed upper bounds for the global error
‖a−1/2(σ − σh)‖0,Ω were studied in [1, 8, 13].

4.2. Upper bound for Raviart–Thomas MFEM. To derive the
upper bounds for ηHG and ηHL, we will compare them with the residual
estimator of Alonso [2]. From now on it is assumed that the coefficient a
is piecewise constant over Th. Then we have rot(a−1σh)|K = 0 for every
K ∈ Th and the residual estimator for the Raviart–Thomas MFEM (3)
is given by

ηR :=

(∑
e∈EΩ

h

he‖[[a−1σh · t]]‖2
0,e +

∑
e∈E∂h

he‖a−1σh · t− dg
ds
‖2

0,e

+
∑
T∈Th

h2
T‖f − f‖2

0,T

)1/2

,

where he is the length of the edge e, t|e is a fixed unit tangent vector
on e, [[w]]|e is the jump of w across e ∈ EΩ

h , and dw
ds

∣∣
e

is the derivative
of w|e in the direction of t|e on e. The following local equivalence of
ηHL and ηR was established in [16] for the Poisson equation with the
homogeneous Dirichlet boundary data. It is straightforward to extend it
to the piecewise constant tensor coefficient a and the nonhomogeneous
Dirichlet boundary data g.

Theorem 2. Let ψe be the solution of (9). Then we have for every
e ∈ EΩ

h

C1‖a−1/2 curlψe‖2
0,ωe
≤ he‖[[a−1σh · t]]‖2

0,e

≤ C2

(
‖a−1/2 curlψe‖2

0,ωe
+ h3

e‖[[ f(tTa−1t)]]‖2
0,e

)
and for every e ∈ E∂h

C1‖a−1/2 curlψe‖2
0,ωe
≤ he‖a−1σh · t− dg

ds
‖2

0,e

≤ C2

(
‖a−1/2 curlψe‖2

0,ωe
+ h3

e‖ f(tTa−1t)‖2
0,e

+ h3
e‖

d2g
ds2
‖2

0,e

)
.

Proof. Integration by parts in (9) gives for e ∈ EΩ
h

(10) (a−1 curlψe, curlϕe)ωe = 〈[[a−1σh · t]], ϕe〉e.
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Taking ϕe = ψe and using the inequality ‖ψe‖0,e ≤ Ch
1/2
e ‖∇ψe‖0,ωe , we

obtain

‖a−1/2 curlψe‖2
0,ωe

= 〈[[a−1σh · t]], ψe〉e
≤ ‖[[a−1σh · t]]‖0,e · Ch1/2

e ‖a−1/2 curlψe‖0,ωe ,

which proves the left inequality for e ∈ EΩ
h . Similarly, we obtain for

e ∈ E∂h
(11) (a−1 curlψe, curlϕe)ωe = 〈a−1σh · t− dg

ds
, ϕe〉e,

and the same proof leads to the left inequality for e ∈ E∂h .
On the other hand, following the proof of [16, Theorem 7.1], we can

derive for e ∈ EΩ
h

he‖[[a−1σh · t]]‖2
0,e ≤ Ch2

e

∣∣[[a−1σh · t]]|e(me)
∣∣2 + Ch3

e‖[[ f(tTa−1t)]]‖2
0,e

and for e ∈ E∂h
he‖a−1σh · t− dg

ds
‖2

0,e ≤ Ch2
e

∣∣a−1σh · t(me)− 1
he

∫
e
dg
ds
ds
∣∣2

+ Ch3
e‖ f(tTa−1t)‖2

0,e + Che‖dgds −
1
he

∫
e
dg
ds
ds‖2

0,e.

Furthermore, Simpson’s rule and (10) yields for e ∈ EΩ
h

he
∣∣[[a−1σh · t]]|e(me)

∣∣ =
3

2

∣∣〈[[a−1σh · t]], θe〉e
∣∣

≤ 3

2
‖a−1/2 curlψe‖0,ωe‖a−1/2 curl θe‖0,ωe

≤ C‖a−1/2 curlψe‖0,ωe ,

and (11) yields for e ∈ E∂h

he
∣∣a−1σh · t(me)− 1

he

∫
e
dg
ds
ds
∣∣ =

3

2

∣∣〈a−1σh · t− dg
ds

+ dg
ds
− 1

he

∫
e
dg
ds
ds, θe〉e

∣∣
≤ C‖a−1/2 curlψe‖0,ωe + Ch1/2

e ‖
dg
ds
− 1

he

∫
e
dg
ds
ds‖0,e

≤ C‖a−1/2 curlψe‖0,ωe + Ch3/2
e ‖

d2g
ds2
‖0,e,

where we used the estimates ‖∇θe‖0,ωe ≤ C, ‖θe‖0,e ≤ Ch
1/2
e and then

the Poincaré inequality ‖w− 1
he

∫
e
w ds‖0,e ≤ Che‖dwds ‖0,e. Combining the

results above yields the right inequalities.

The extra terms on the right inequalities of Theorem 2 as well as(∑
T∈Th h

2
T‖f − f‖2

0,T

)1/2
are of higher order if f and g are piecewise

smooth and thus become negligible for sufficiently small h. As a corollary
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of Theorems 1–2, we also obtain the global equivalence of ηHG and ηR up
to higher order terms. Since ηR is reliable (and efficient) for estimating
‖a−1/2(σ − σh)‖0,Ω, this implies that ηHG and ηHL are reliable (and
efficient) for the same error up to higher order terms.

4.3. Upper bound for Multipoint-Flux MFEM. The argument of
the preceding subsection does not seem to apply to the multipoint-flux
MFEM (4). We are thus led to make the following saturation assump-
tion: there exists a positive constant γ < 1 independent of the mesh size
h such that

(12) ‖a−1/2(σ − σ2)‖0,Ω ≤ γ‖a−1/2(σ − σh)‖0,Ω,

where σ2 is the vector solution of the lowest-order Brezzi–Douglas–
Marini MFEM given by

(BDM-MFEM): Find (σ2, u2) ∈ BDM1 ×W0 such that

(13)

{
(a−1σ2, τ h)Ω − (div τ h, u2)Ω = 〈g, τ h · n〉∂Ω ∀τ h ∈ BDM1

(divσ2, vh)Ω = (f, vh)Ω ∀vh ∈ W0.

This assumption seems to be reasonable in view of the a priori error
estimates (6) and

‖σ − σ2‖0,Ω ≤ Ch2‖σ‖2,Ω,

and was also made in [2] for the error estimator of the Bank–Weiser
type.

Theorem 3. Under the saturation assumption (12), there exists a
constant C > 0 such that

‖a−1/2(σ − σh)‖0,Ω ≤ CηHG.

The same result holds as well for ηHL.

Proof. Thanks to Theorem 1, it suffices to prove the result for ηHG.
Combining (12) with the triangle inequality

‖a−1/2(σ − σh)‖0,Ω ≤ ‖a−1/2(σ − σ2)‖0,Ω + ‖a−1/2(σ2 − σh)‖0,Ω,

we obtain

(14) ‖a−1/2(σ − σh)‖0,Ω ≤
1

1− γ
‖a−1/2(σ2 − σh)‖0,Ω.

Since divσ2 = divσh = f , there exists a continuous piecewise quadratic
function ϕh such that

σ2 − σh = curlϕh.
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Let I1ϕh be the continuous piecewise linear nodal interpolant of ϕh sat-
isfying

(15) ‖∇(I1ϕh)‖0,Ω ≤ C‖∇ϕh‖0,Ω.

Then we have curl(I1ϕh) ∈ RT0 and ϕh − I1ϕh ∈ P 0
2 , and it follows by

the first equations of (13) and (4), (5), (8) and (15) that

‖a−1/2(σ2 − σh)‖2
0,Ω = (a−1(σ2 − σh), curlϕh)Ω

= 〈g, curlϕh · n〉∂Ω − (a−1σh, curlϕh)Ω

= 〈g, curl(ϕh − I1ϕh) · n〉∂Ω − (a−1σh, curl(ϕh − I1ϕh))Ω

= (a−1 curlψh, curl(ϕh − I1ϕh))Ω

≤ C‖a−1/2 curlψh‖0,Ω‖∇(ϕh − I1ϕh)‖0,Ω

≤ C‖a−1/2 curlψh‖0,Ω‖ curlϕh‖0,Ω

≤ C‖a−1/2 curlψh‖0,Ω‖a−1/2(σ2 − σh)‖0,Ω,

which gives
‖a−1/2(σ2 − σh)‖0,Ω ≤ CηHG.

Now the proof is completed by combining the last result and (14).

Remark 2. The above proof may be used to derive the same upper
bound for the Raviart–Thomas MFEM (3) under the saturation assump-
tion (12). In particular, this removes the extra higher order terms of
Theorem 2 derived without the saturation assumption (12).

5. Asymptotic Exactness

In this section we show that the error estimator ηHG based on the
global defect problem (8) is asymptotically exact under suitable condi-
tions. For this purpose we need the Fortin projection Πh : (H1(Ω))2 →
RT0 defined by ∫

e

Πhτ · ne ds =

∫
e

τ · ne ds ∀e ∈ Eh,

where ne denotes a unit normal vector to e.

Theorem 4. Assume that σ ∈ (H1+ρ(Ω))2 and ‖a−1/2(σh−Πhσ)‖0,Ω =
O(h1+ρ) for some ρ > 0. Then we have

‖a−1/2(σ − σh)‖0,Ω = ηHG +O(h1+ρ).
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In addition, if the non-degeneracy condition ‖a−1/2(σ − σh)‖0,Ω ≥ Ch
holds for some constant C > 0, then∣∣∣∣ ηHG

‖a−1/2((σ − σh)‖0,Ω

− 1

∣∣∣∣ = O(hρ).

Proof. Let ψh ∈ P 0
2 be the solution of (8). Then the proof of [9,

Theorem 4.1] yields

‖a−1/2(σh + curlψh − σ)‖0,Ω = O(h1+ρ),

and consequently,∣∣‖a−1/2(σ − σh)‖0,Ω − ηHG
∣∣ =

∣∣‖a−1/2(σ − σh)‖0,Ω − ‖a−1/2 curlψh‖0,Ω

∣∣
≤ ‖a−1/2(σ − σh − curlψh)‖0,Ω

≤ Ch1+ρ,

which gives the first result. The second result is a direct consequence of
the first result.

Remark 3. It was proved in [5] that ‖σh−Πhσ‖0,Ω = O(h1+ρ) holds
for the Raviart–Thomas MFEM (3) with ρ = 1

2
under the restrictive

conditions that the triangulation Th is uniform and σ ∈ (H2(Ω))2. Nu-
merical experiments suggest that this condition may be relaxed with a
smaller value of ρ > 0. For the multi-point MFEM, this super-closeness
has not been rigorously derived but may be conjectured by numerical
results in [15].
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[13] M. Vohraĺık, A posteriori error estimates for lowest-order mixed finite element
discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal.
45 (2007), 1570–1599.
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