THE BASES OF PRIMITIVE NON-POWERFUL COMPLETE SIGNED GRAPHS

Byung Chul Song and Byeong Moon Kim*

Abstract

The base of a signed digraph S is the minimum number k such that for any vertices u, v of S, there is a pair of walks of length k from u to v with different signs. Let K be a signed complete graph of order n, which is a signed digraph obtained by assigning +1 or -1 to each arc of the n-th order complete graph K_{n} considered as a digraph. In this paper we show that for $n \geq 3$ the base of a primitive non-powerful signed complete graph K of order n is 2,3 or 4 .

1. Introduction

A sign pattern matrix M is a square matrix with entries in $\{1,0,-1\}$. In multiplying two sign pattern matrices, we use the operating rules of entries that continues to hold the signs of the usual addition and multiplication, that is
$1+1=1 ;(-1)+(-1)=-1 ; 1+0=0+1=1 ;(-1)+0=0+(-1)=-1 ;$ $0 \cdot a=a \cdot 0=0 ; 1 \cdot 1=(-1) \cdot(-1)=1 ; 1 \cdot(-1)=(-1) \cdot 1=-1$ for any $a \in$ $\{1,0,-1\}$.

[^0]In this case we contact the ambiguous situations $1+(-1)$ and $(-1)+1$, which we will use the notation " \sharp " as in [2]. Define the addition and multiplication which involving the symbol "\#" as follows: For any $a \in$ $\Gamma=\{1,0,-1, \notin\}$,

$$
\begin{gathered}
(-1)+1=1+(-1)=\sharp ; \quad a+\sharp=\sharp+a=\sharp \\
0 \cdot \sharp=\sharp \cdot 0=0 ; \quad a \cdot \sharp=\sharp \cdot a=\sharp(\text { when } a \neq 0) .
\end{gathered}
$$

Matrices with entries in Γ are called generalized sign pattern matrices. The addition and multiplication of the entries of generalized sign pattern matrices are defined in the usual way such that they coincide with the operations in sign pattern matrices.

Definition 1. A square generalized sign pattern matrix M is powerful if each power of M contains no \sharp entry. A square generalized sign pattern matrix M is called non-powerful if it is not powerful.

Definition 2. Let M be a square generalized sign pattern matrix of order n. The smallest number l such that $M^{l}=M^{l+p}$ for some p is called the (generalized) base of M and denoted by $l(M)$. The least positive integer p such that $M^{l}=M^{l+p}$ for $l=l(M)$ is called to be the (generalized) period of M and denote it by $p(M)$.

We introduce some graph theoretic concepts of generalized sign pattern matrices.

A signed digraph $S=(V, A, f)$ is a digraph with vertex set V, arc set A and a sign function f defined on A with its value $1,-1$. For $v, w \in V$ we say $f(v w)$ the sign of an arc $v w$, and we denote it by $\operatorname{sgn}(v w)$. The sign of a (directed) walk W in S, denoted by $\operatorname{sgn}(W)$ or $f(W)$, is the product of signs of all arcs in W. For example if $W=v_{1} v_{2} v_{3} v_{4}$, then $\operatorname{sign}(W)=f(W)=f\left(v_{1} v_{2}\right) f\left(v_{2} v_{3}\right) f\left(v_{3} v_{4}\right)$. If two walks W_{1} and W_{2} have the same initial points, the same terminal points, the same lengths and different signs, then we say that W_{1} and W_{2} are a pair of SSSD walks.

A (signed) digraph S is primitive if there is a positive integer k such that for all vertices v, w of S there is a walk of length k from v to w. A signed digraph S is powerful if S contains no pair of SSSD walks. Also S is non-powerful if it is not powerful. Hence every non-powerful primitive signed digraph contains a pair of SSSD walks. Let $M=M(S)=\left[a_{i j}\right]$ be the adjacency matrix of a signed digraph S, that is, the arc (i, j) has $\operatorname{sign} \operatorname{sgn}(i, j)=\alpha$ if and only if $a_{i j}=\alpha$ with $\alpha=1$, or -1 . Hence
the adjacency (signed) matrix M of a signed digraph S is a sign pattern matrix which satisfies that the (i, j)-entry of M^{k} is 0 if and only if S contains no walk of length k from i to j. Also (i, j)-entry of M^{k} is 1 (or -1) if and only if all walks of length k from i to j in S are of $\operatorname{sign} 1($ or, -1$)$. The (i, j)-entry of M^{k} is \sharp if and only if S contains a pair of SSSD walks of length k from i to j. We see from the above relations between matrices and digraphs that each power of a signed digraph S contains no pair of SSSD walks if and only if the adjacency matrix M is powerful. Henceforth we may also say that a signed digraph S is powerful or non-powerful if its adjacency sign pattern matrix M is powerful or non-powerful respectively.

From now on we assume that $S=(V, A, f)$ is a primitive non-powerful signed digraph of order n. For each pair of vertices u, v of S, we define the local base $l_{S}(u, v)$ from u to v to be the smallest integer l such that for each $k \geq l$, there is a pair of SSSD walks of length k from u to v in S. The base $l(S)$ of S is defined to be $\max \left\{l_{S}(u, v) \mid u, v \in V(S)\right\}$. It follows directly from the definitions that $l(S)=l(M)$ where M is the adjacency matrix of S.

The upper bounds for the bases of primitive nonpowerful sign pattern matrices are found by You et al. [5]. They also characterized extremal cases completely. Gao et al.[1], Shao and Gao[4] and Li and Liu [3] studied the base and the local base of a primitive non-powerful signed symmetric digraphs with loops.

Let us assume that K is a complete non-powerful signed digraph of order n which is the n-th order complete graph (considered as a digraph) by assigning signs to each arc such that it becomes a non-powerful signed digraph. In this paper we prove that the base of K is less than or equals to 4 . As a consequence if all the entries of a non-powerful sign pattern matrix A are nonzero except diagonals, then the all entries of A^{4} are \sharp. We also provide the examples when the base of K is 2,3 and 4 respectively.

2. Main theorems

Let $K=(V, A, f)$ be a complete non-powerful signed digraph of order n. That is, K is the n-th order digraph which has unique arc for each ordered pair of vertices of K and signs are assigned to each arc such that K becomes a non-powerful signed digraph. Let $v_{1}, v_{2}, \cdots, v_{r}$
be vertices of K. If C is a directed walk from v_{1} to v_{r} which goes through $v_{2}, v_{3}, \cdots v_{r-1}$, then we denote C by $v_{1} v_{2} \cdots v_{r-1} v_{r}$ and the $\operatorname{sign} f\left(v_{1} v_{2}\right) f\left(v_{2}, v_{3}\right) \cdots f\left(v_{r-1} v_{r}\right)$ of C by $f(C)=f\left(v_{1} v_{2} \cdots v_{r-1} v_{r}\right)=$ $\operatorname{sgn}(C)=\operatorname{sgn}\left(v_{1} v_{2} \cdots v_{r-1} v_{r}\right)$. Throughout this paper we use the notation $u \xrightarrow{k} v$ if there is a walk of length k from a vertex u to another vertex v. The sum $W_{1}+W_{2}$ of two walks $W_{1}=v_{1} v_{2} \cdots v_{n}$ and $W_{2}=w_{1} w_{2} \cdots w_{m}$ such that $v_{n}=w_{1}$ and the inverse $-W_{1}$ of W_{1} are defiened by $W_{1}+W_{2}=v_{1} v_{2} \cdots v_{n} w_{2} w_{3} \cdots w_{m}$ and $-W_{1}=v_{n} v_{n-1} \cdots v_{1}$.

Theorem 1. The base $l(K)$ of the complete non-powerful signed digraph K of order $n \geq 4$ is less than or equals to 4 .

Proof. It suffices to show that there is a pair of SSSD walks of common length 4 from u to v. Let u, v be vertices of K. Since $n \geq 4$, we can choose a vertex w of K different from u and v. Let σ be the sign of the walk $u w u$. If there is a vertex x of K such that $x \neq u$ and the sign of the walk $u x u$ is $-\sigma$, then uwuwv and uxuwv are a pair of SSSD walks of length 4 from u to v.

If the sign of the walk $u x u$ is σ for any vertex x of K and there are distinct vertices y, z of K such that $z \neq u$ and the sign of the walk $y z y$ is $-\sigma$, then both y and z are different from u. If $y \neq v$, then uwuyv and uyzyv are a pair of SSSD walks with common length 4 from u to v. If $y=v$, then since $z \neq v, u w u z v$ and $u z y z v$ are desired pair of SSSD walks with common length 4 from u to v.

Assume that the sign of the walk $y z y$ is σ for all distinct vertices y, z. If $\sigma=-1$, then

$$
\begin{gathered}
\operatorname{sgn}(u v w u v) \operatorname{sgn}(u w v u v)=f(u v) f(v w) f(w u) f(u v) f(u w) f(w v) f(v u) f(u v) \\
=(f(u v) f(v w))(f(v w) f(w v))(f(u w) f(w u))(f(u v))^{2} \\
=\operatorname{sgn}(u v u) \operatorname{sgn}(v w v) \operatorname{sgn}(u w u)=\sigma^{3}=-1 .
\end{gathered}
$$

Hernce uvwuv and uwvuv are a pair of SSSD walks with common length 4 from u to v.

If $\sigma=1$, then since K is non-powerful, there is an even cycle of sign -1 , or there are two odd cycles with different signs. Assume that there is an even cycle $x_{1} x_{2} \cdots x_{k} x_{1}$ with sign -1 . If $x_{i} \neq u$ for all $i=1,2, \cdots, k$,
then since

$$
\begin{aligned}
\operatorname{sgn}\left(u x_{1} x_{2} u\right) & \operatorname{sgn}\left(u x_{2} x_{3} u\right) \cdots \operatorname{sgn}\left(u x_{k-1} x_{k} u\right) \operatorname{sgn}\left(u x_{k} x_{1} u\right) \\
& =\left(f\left(u x_{1}\right) f\left(x_{1} x_{2}\right) f\left(x_{2} u\right)\right)\left(f\left(u x_{2}\right) f\left(x_{2} x_{3}\right) f\left(x_{3} u\right)\right) \\
& \cdots\left(f\left(u x_{k-1}\right) f\left(x_{k-1} x_{k}\right) f\left(x_{k} u\right)\right)\left(f\left(u x_{k}\right) f\left(x_{k} x_{1}\right) f\left(x_{1} u\right)\right) \\
& =f\left(x_{1} x_{2}\right) f\left(x_{2} x_{3}\right) \cdots f\left(x_{k-1} x_{k}\right) f\left(x_{k} x_{1}\right) \\
& =\operatorname{sgn}\left(x_{1} x_{2} \cdots x_{k} x_{1}\right)=-1
\end{aligned}
$$

among the walks $u x_{1} x_{2} u, u x_{2} x_{3} u, \cdots, u x_{k-1} x_{k} u, u x_{k} x_{1} u$, there are two walks C_{1}, C_{2} with different signs. Thus $C_{1}+u v$ and $C_{2}+u v$ are a pair of SSSD walks SSSD walks of common length 4 from u to v.

Let $x_{i}=u$ for some i. Similarly among the walks

$$
u x_{1} x_{2} u, u x_{2} x_{3} u, \cdots u x_{i-2} x_{i-1} u, u x_{i+1} x_{i+2} u, u x_{i+2} x_{i+3} u, \cdots, u x_{k-1} x_{k} u,
$$

we can find a pair, say C_{1}^{\prime} and C_{2}^{\prime}, of SSSD walks. As a consequence, we nave a pair $C_{1}^{\prime}+u v$ and $C_{2}^{\prime}+u v$ of SSSD walks of common length 4 from u to v.

Let us assume that there are two odd cycles $y_{1} y_{2} \cdots y_{l} y_{1}$ and $z_{1} z_{2} \cdots z_{m} z_{1}$ with signs 1 and -1 respectively. We want to show that there is a walk $C_{3}=u y_{t} y_{t+1} u$ (or $C_{3}=u y_{l} y_{1} u$) of sign +1 . If $u \neq y_{i}$ for all $i=1,2, \cdots, l$, then since
$\operatorname{sgn}\left(u y_{1} y_{2} u\right) \operatorname{sgn}\left(u y_{2} y_{3} u\right) \cdots \operatorname{sgn}\left(u y_{l-1} y_{l} u\right) \operatorname{sgn}\left(u y_{l} y_{1} u\right)=\operatorname{sgn}\left(y_{1} y_{2} \cdots y_{l} y_{1}\right)=1$,
among the walks $u y_{1} y_{2} u, u y_{2} y_{3} u, \cdots, u y_{l-1} y_{l} u, u y_{l} y_{1} u$, there is a walk C_{3} with sign +1 . If $u=y_{i}$ for some i, then since

$$
\begin{aligned}
& \operatorname{sgn}\left(u y_{1} y_{2} u\right) \operatorname{sgn}\left(u y_{2} y_{3} u\right) \cdots \operatorname{sgn}\left(u y_{i-2} y_{i-1} u\right) \\
& \operatorname{sgn}\left(u y_{i+1} y_{i+2} u\right) \cdots \operatorname{sgn}\left(u y_{l-1} y_{l} u\right) \operatorname{sgn}\left(u y_{l} y_{1} u\right) \\
& =\operatorname{sgn}\left(y_{1} y_{2} \cdots y_{l} y_{1}\right)=1,
\end{aligned}
$$

we have a walk from u to v of length 3 with sign 1 .
Similarly among the walks $u z_{1} z_{2} u, u z_{2} z_{3} u, \cdots, u z_{m-1} z_{m} u, u z_{m} z_{1} u$, there is a walk C_{4} of sign -1 . Thus $C_{3}+u v$ and $C_{4}+u v$ are a pair of SSSD walks with common length 4 from u to v. As a consequence, we have $l(K) \leq 4$.

We will show the upper bound 4 in Theorem 1 is extremal by constructing a complete nonpowerful signed digraph of base at least 4 .

Theorem 2. Let $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, A=\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i, j \leq n, i \neq\right.$ $j\}$ and $f: A \longrightarrow\{-1,1\}$ such that

$$
f\left(v_{i}, v_{j}\right)= \begin{cases}-1, & \text { if } j=3 \text { and } i \neq 1, \text { or }(i, j)=(3,2) \\ 1, & \text { otherwise } .\end{cases}
$$

The signed digraph $G=(V, A, f)$ is primitive non-powerful and $l(G) \geq$ 4.

Proof. Let W be a walk of length 3 from v_{1} to v_{2}. Then $W=$ $v_{1} v_{i} v_{j} v_{2}$ for some i, j. If $i=2$, then for all $j \neq 2$ since $f\left(v_{2} v_{j} v_{2}\right)=$ $f\left(v_{2} v_{j}\right) f\left(v_{j} v_{2}\right)=1$, we have $\operatorname{sgn}\left(v_{1} v_{2} v_{j} v_{2}\right)=1$. If $i=3$, then $j \neq 3$. Hence $f\left(v_{1} v_{3} v_{j} v_{2}\right)=f\left(v_{1} v_{3}\right) f\left(v_{3} v_{j}\right) f\left(v_{j} v_{2}\right)=1$. If $i \geq 4$ and $j=3$, then $\operatorname{sgn}\left(v_{1} v_{i} v_{3} v_{2}\right)=f\left(v_{1} v_{i}\right) f\left(v_{i} v_{3}\right) f\left(v_{3} v_{2}\right)=1(-1)(-1)=1$. If $i \geq 4$ and $j \neq 3$, then $\operatorname{sgn}\left(v_{1} v_{i} v_{j} v_{2}\right)=f\left(v_{1} v_{i}\right) f\left(v_{i} v_{j}\right) f\left(v_{j} v_{2}\right)=1$. Hence the sign of a walk of length 3 from v_{1} and v_{2} is always 1 . We have $l\left(v_{1}, v_{2}\right) \geq 4$, and hence $l(G) \geq 4$. By Theorem 1, we conclude that $l(G)=4$.

We can easily see that the base of a primitive non-powerful digraph is at least 2. In the following examples we provide two complete signed graphs of order $n \geq 4$ with base 2 and 3 respectively. As a result, the possible base of a complete signed graph of order $n \geq 4$ is 2,3 and 4 .

Example 1. Let $n \geq 4, V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, A=\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i, j \leq\right.$ $n, i \neq j\}$ and $f: A \longrightarrow\{-1,1\}$ such that

$$
f\left(v_{i} v_{j}\right)= \begin{cases}-1, & \text { if } j=3 \text { and } i \neq 1,(i, j)=(3,2), \text { or }(i, j)=(1,2), \\ 1, & \text { otherwise }\end{cases}
$$

We find a pair of SSSD walks of length 2 from v_{i} to v_{j} as follows for each i and j.

$$
\begin{array}{ll}
v_{1} v_{2} v_{1} \text { and } v_{1} v_{3} v_{1} & \text { if } i=1 \text { and } j=2, \\
v_{1} v_{3} v_{2} \text { and } v_{1} v_{4} v_{2} & \text { if } i=1 \text { and } j=2, \\
v_{1} v_{2} v_{3} \text { and } v_{1} v_{4} v_{3} & \text { if } i=1 \text { and } j=3, \\
v_{1} v_{2} v_{j} \text { and } v_{1} v_{3} v_{j} & \text { if } i=1 \text { and } j \geq 4, \\
v_{2} v_{3} v_{1} \text { and } v_{2} v_{4} v_{1} & \text { if } i=2 \text { and } j=1, \\
v_{2} v_{1} v_{2} \text { and } v_{2} v_{3} v_{2} & \text { if } i=1 \text { and } j=2, \\
v_{2} v_{1} v_{3} \text { and } v_{2} v_{4} v_{3} & \text { if } i=2 \text { and } j=3, \\
v_{2} v_{1} v_{j} \text { and } v_{2} v_{3} v_{j} & \text { if } i=2 \text { and } j \geq 4,
\end{array}
$$

$$
\begin{array}{cl}
v_{3} v_{2} v_{1} \text { and } v_{3} v_{4} v_{1} & \text { if } i=3 \text { and } j=1, \\
v_{3} v_{1} v_{2} \text { and } v_{3} v_{4} v_{2} & \text { if } i=1 \text { and } j=2, \\
v_{3} v_{1} v_{3} \text { and } v_{3} v_{4} v_{3} & \text { if } i=3 \text { and } j=2, \\
v_{3} v_{1} v_{j} \text { nd } v_{3} v_{2} v_{j} & \text { if } i=3 \text { and } j \geq 4, \\
v_{i} v_{2} v_{1} \text { and } v_{i} v_{3} v_{1} & \text { if } i=1 \text { and } j=1, \\
v_{i} v_{1} v_{2} \text { and } v_{i} v_{3} v_{2} & \text { if } i \geq 4 \text { and } j=2, \\
v_{i} v_{1} v_{3} \text { and } v_{i} v_{2} v_{3} & \text { if } i \geq 4 \text { and } j=3, \\
v_{i} v_{1} v_{j} \text { and } v_{i} v_{3} v_{j} & \text { if } i \geq 4 \text { and } j \geq 4 .
\end{array}
$$

As a consequence, the signed digraph $G=(V, A, f)$ is primitive nonpowerful and $l(G)=2$.

Example 2. Let $n \geq 4, V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, A=\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i, j \leq\right.$ $n, i \neq j\}$ and $f: A \longrightarrow\{-1,1\}$ such that

$$
f\left(v_{i} v_{j}\right)= \begin{cases}-1, & \text { if }(i, j)=(1,2) \\ 1, & \text { otherwise }\end{cases}
$$

We can see for each walk of length 2 from v_{1} to v_{2} is of $\operatorname{sign}+1$. Thus $l(G) \geq 3$. By the same method used in above example, there are a pair of SSSD walks of length 3 from v_{i} to v_{j} as follows for each i and j It follows that the signed digraph $G=(V, A, f)$ is primitive non-powerful and $l(G)=3$.

A consequence of the above theorems and examples is that the base of a sign pattern matrix such that every diagonal entry is zero and every non diagonal entries is of sign 1 or -1 is 2,3 and 4 . Also we can consider the sign pattern matrix without zero entries. The corresponding digraph is a complete graph with loops on each vertices. In this case we have the following theorem.

Theorem 3. If $n \geq 3$ and K is a non-powerful signed digraph over n-th order complete graph with loops on each vertices, then $l(K) \leq 3$.

Proof. Suppose that $l(K) \geq 4$. There are $v, w \in V$ and $\sigma \in\{+1,-1\}$ such that the sign of every walk from v to w of length 3 is always σ. Let τ be the sign of the loop incident on v. For all $x \in V$, since $\operatorname{sgn}(v v x w)=$ $\operatorname{sgn}(v v) \operatorname{sgn}(v x w)=\tau \operatorname{sgn}(v x w)=\sigma$, we have $\operatorname{sgn}(x x w)=\sigma$. Since $\operatorname{sgn}(v x x w)=f(v x) f(x x) f(x w)=f(x x) \operatorname{sgn}(v x w)=f(x x) \sigma \tau=\sigma$, we have $f(x x)=\tau$.

Let $C=x_{1} x_{2} \cdots x_{k} x_{1}$ be a cycle of length k in K. We have

$$
\begin{aligned}
\sigma^{k}= & \operatorname{sgn}\left(v x_{1} x_{2} w\right) \operatorname{sgn}\left(v x_{2} x_{3} w\right) \cdots \operatorname{sgn}\left(v x_{k} x_{1} w\right) \\
= & \left(f\left(v x_{1}\right) f\left(x_{1} x_{2}\right) f\left(x_{2} w\right)\right)\left(f\left(v x_{2}\right) f\left(x_{2} x_{3}\right) f\left(x_{3} w\right)\right) \\
& \quad \cdots\left(f\left(v x_{k}\right) f\left(x_{k} x_{1}\right) f\left(x_{1} w\right)\right) \\
= & \left(f\left(v x_{1}\right) f\left(x_{1} w\right)\right)\left(f\left(v x_{2}\right) f\left(x_{2} w\right)\right) \cdots\left(f\left(v x_{k}\right) f\left(x_{k} w\right)\right) f\left(x_{1} x_{2}\right) f\left(x_{2} x_{3}\right) \\
& \quad \cdots f\left(x_{k} x_{1}\right) \\
= & (\sigma \tau)^{k} \operatorname{sgn}\left(x_{1} x_{2} \cdots x_{k} x_{1}\right) \\
= & \sigma^{k} \tau^{k} f(C) .
\end{aligned}
$$

Thus the signs of all even and odd cycles are 1 and τ respectively. Therefore K is powerful. This is a contradiction. Hence $l(K) \leq 3$.

Remark 1. Let $n=3, V=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $A=\left\{\left(v_{i}, v_{j}\right) \mid i \neq j\right\}$. Since $v_{1} v_{3} v_{2}$ is the only $v_{1} \xrightarrow{2} v_{2}$ walk in K, we have $l(K) \geq 3$. If $\operatorname{sgn}\left(v_{1} v_{2} v_{1}\right)=\operatorname{sgn}\left(v_{2} v_{3} v_{2}\right)=\operatorname{sgn}\left(v_{3} v_{1} v_{3}\right)=1$, then every 2 -cycle in G is of sign 1 . Since

$$
\begin{aligned}
& \operatorname{sgn}\left(v_{1} v_{2} v_{3} v_{1}\right) \operatorname{sgn}\left(v_{1} v_{3} v_{2} v_{1}\right) \\
& =f\left(v_{1} v_{2}\right) f\left(v_{2} v_{3}\right) f\left(v_{3} v_{1}\right) f\left(v_{1} v_{3}\right) f\left(v_{3} v_{2}\right) f\left(v_{2} v_{3}\right) f\left(v_{3} v_{1}\right) \\
& =\left(f\left(v_{1} v_{2}\right) f\left(v_{2} v_{1}\right)\right)\left(f\left(v_{2} v_{3}\right) f\left(v_{3} v_{2}\right)\right)\left(f\left(v_{3} v_{1}\right) f\left(v_{1} v_{3}\right)\right) \\
& =\operatorname{sgn}\left(v_{1} v_{2} v_{1}\right) \operatorname{sgn}\left(v_{2} v_{3} v_{2}\right) \operatorname{sgn}\left(v_{3} v_{1} v_{3}\right)=1
\end{aligned}
$$

all 3 -cycles in K are of the same sign. It follows that K is powerful.
If $\operatorname{sgn}\left(v_{1} v_{2} v_{1}\right)=\operatorname{sgn}\left(v_{2} v_{3} v_{2}\right)=\operatorname{sgn}\left(v_{3} v_{1} v_{3}\right)=-1$ for all $v_{i}, v_{j} \in V$, then there is a $v_{i} \xrightarrow{2} v_{j}$ walk W in K. Since

$$
\operatorname{sgn}\left(v_{1} v_{2} v_{3} v_{1}\right) \operatorname{sgn}\left(v_{1} v_{3} v_{2} v_{1}\right)=f\left(v_{1} v_{2} v_{1}\right) f\left(v_{2} v_{3} v_{2}\right) f\left(v_{3} v_{1} v_{3}\right)=-1,
$$

there are two $v_{i} \xrightarrow{3} v_{i}$ walks W_{1} and W_{2} in K with different signs. Thus we see that $W+W_{1}$ and $W+W_{2}$ are a pair of SSSD walks with length 5. We have $l(K) \leq 5$. Let $W=w_{0} w_{1} w_{2} w_{3} w_{4}$ be a $v_{1} \xrightarrow{4} v_{1}$ walk in K. Hence we have $w_{0}=w_{4}=v_{1}$. We may assume that $w_{1}=v_{2}$. If $w_{2}=v_{1}$, then $f(W)=f\left(v_{1} v_{2} v_{1}\right) f\left(v_{1} w_{4} v_{1}\right)=1$. If $w_{2}=v_{3}$, then since $w_{3}=v_{2}$, we have $f(W)=1$. Therefore there is no $v_{1} \xrightarrow{4} v_{1}$ walk in K with sign -1 . Thus $l(K)=5$.
If the signs of $f\left(v_{1} v_{2} v_{1}\right), f\left(v_{2} v_{3} v_{2}\right)$ and $f\left(v_{3} v_{1} v_{3}\right)$ are not equal, then we may assume that $f\left(v_{1} v_{2} v_{1}\right)=f\left(v_{2} v_{3} v_{2}\right)=-f\left(v_{3} v_{1} v_{3}\right)$. Let $v_{i}, v_{j} \in V$. Hence there is a $v_{i} \xrightarrow{2} v_{j}$ walk $W=v_{i} v_{k} v_{j}$ in K. If $i \neq 2$, then there
are two $v_{i} \xrightarrow{2} v_{i}$ walks W_{1} and W_{2} in K with different signs. It is clear that $W_{1}+W$ and $W_{2}+W$ are a pair of SSSD walks with length 4 . Similarly, we have a pair of SSSD walks with length 4 for the case $j \neq 2$. If $i=j=2$, then $k \neq 2$. Whence there are a pair of $v_{k} \xrightarrow{2} v_{k}$ walks X_{1} and X_{2} in K with different signs. Thus we see that $\left(v_{i} v_{k}\right)+X_{1}+\left(v_{k} v_{j}\right)$ and $\left(v_{i} v_{k}\right)+X_{2}+\left(v_{k} v_{j}\right)$ are a pair of SSSD walks with length 4 . Hence $l(K) \leq 4$.
Let $f_{1}, f_{2}: A \rightarrow\{1,-1\}$,

$$
f_{1}\left(v_{i} v_{j}\right)= \begin{cases}-1, & i=1 \text { and } j=2 \\ 1, & \text { otherwise }\end{cases}
$$

and

$$
f_{2}\left(v_{i} v_{j}\right)= \begin{cases}-1, & i=1 \text { and } j=2,3 \\ 1, & \text { otherwise } .\end{cases}
$$

Then $\left(V, A, f_{1}\right)$ and $\left(V, A, f_{2}\right)$ are examples of signed digraph over complete graphs with loops with bases 3 and 4 respectively. Hence the possible bases of signed digraph over complete graphs with loops on 3 vertices are 3,4 and 5 .
Note that if

$$
A=\left(\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

then

$$
A^{4}=\left(\begin{array}{ccc}
1 & \# & \# \\
\# & 1 & \# \\
\# & \# & 1
\end{array}\right) .
$$

References

[1] Y. Gao, Y. Huang and Y. Shao, Bases of primitive non-powerful signed symmetric digraphs with loops, Ars. Combinatoria 90 (2009), 383-388.
[2] B. Li, F. Hall and J. Stuart, Irreducible powerful ray pattern matrices, Linear Algebra and Its Appl., 342 (2002), 47-58.
[3] Q. Li and B. Liu, Bounds on the kth multi-g base index of nearly reducible sign pattern matrices, Discrete Math. 308 (2008), 4846-4860.
[4] Y. Shao and Y. Gao, The local bases of non-powerful signed symmetric digraphs with loops, Ars. Combinatoria 90 (2009), 357-369.
[5] L. You, J. Shao and H. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, Linear Algebra and Its Appl. 427 (2007), 285-300.

Byung Chul Song
Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail: bcsong@gwnu.ac.kr
Byeong Moon Kim
Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail: kbm@gwnu.ac.kr

[^0]: Received July 31, 2014. Revised September 19, 2014. Accepted September 19, 2014.

 2010 Mathematics Subject Classification: 05C20, 15B35.
 Key words and phrases: base, sign pattern matrix, complete graph.

 * Corresponding author.

 This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
 (c) The Kangwon-Kyungki Mathematical Society, 2014.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

