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AT LEAST TWO SOLUTIONS FOR THE SEMILINEAR

BIHARMONIC BOUNDARY VALUE PROBLEM

Tacksun Jung∗ and Q-Heung Choi†

Abstract. We get one theorem that there exists a unique solu-
tion for the fourth order semilinear elliptic Dirichlet boundary value
problem when the number 0 and the coefficient of the semilinear part
belong to the same open interval made by two successive eigenvalues
of the fourth order elliptic eigenvalue problem. We prove this result
by the contraction mapping principle. We also get another theorem
that there exist at least two solutions when there exist n eigenvalues
of the fourth order elliptic eigenvalue problem between the coeffi-
cient of the semilinear part and the number 0. We prove this result
by the critical point theory and the variation of linking method.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let
b ∈ R be a constant. Let λk(k = 1, 2, · · · ) denote the eigenvalues and
φk(k = 1, 2, · · · ) the corresponding eigenfunctions, suitably normalized
with respect to L2(Ω) inner product, of the eigenvalue problem ∆u+λu =
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0 in Ω with u = 0 on ∂Ω,where each eigenvalue λk is repeated as often
as its multiplicity. We recall that λ1 < λ2 ≤ λ3 . . . → +∞, and that
φ1(x) > 0 for x ∈ Ω. In this paper we investigate the existence and
the multiplicity of the solutions for the following fourth order semilinear
elliptic equation with Dirichlet boundary condition

∆2u+ c∆u = g(u), in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω,

where c ∈ R. Let us set

g(u) = b((u+ 1)+ − 1),

where u+ = max{u, 0} and b ∈ R. Tarantello [10] studied problem (1.1)
when c < λ1 and b ≥ λ1(λ1 − c). She showed that (1.1) has at least
two solutions, one of which is a negative solution. She obtained this
result by the degree theory. Micheletti and Pistoia [8] also proved that
if c < λ1 and b ≥ λ2(λ2 − c), then (1.1) has at least three solutions by
the Leray-Schauder degree theory. Choi and Jung [3] showed that the
problem

∆2u+ c∆u = bu+ + s in Ω, (1.2)

u = 0, ∆u = 0 on ∂Ω

has at least two nontrivial solutions when c < λ1, λ1(λ1 − c) < b <
λ2(λ2−c) and, s < 0 or when λ1 < c < λ2, b < λ1(λ1−c) and s > 0. The
authors obtained these results by using the variational reduction method.
The authors [5] also proved that when c < λ1, λ1(λ1−c) < b < λ2(λ2−c)
and s < 0, (1.2) has at least three nontrivial solutions by using degree
theory.

The eigenvalue problem ∆2u+c∆u = µu in Ω with u = 0, ∆u = 0
on ∂Ω has also infinitely many eigenvalues µk = λk(λk − c), k ≥ 1 and
corresponding eigenfunctions φk, k ≥ 1. We note that λ1(λ1 − c) <
λ2(λ2 − c) ≤ λ3(λ3 − c) < · · · .

Our main results are as follows:

Theorem 1.1. Let λk < c < λk+1 and λk(λk−c) < 0, b < λk+1(λk+1−
c). Then (1.1) has a unique solution.

Theorem 1.2. Let λk < c < λk+1 and λk(λk − c) < 0 < λk+1(λk+1 −
c) < · · · < λk+n(λk+n− c) < b < λk+n+1(λk+n+1− c), k ≥ 1, n ≥ 1. Then
(1.1) has at least two nontrivial solutions.
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Under the assumptions of Theorem 1.1 and Theorem 1.2, we cannot
use the Leray-Schauder degree theory to prove main results because we
cannot show the existence of a positive solution or a negative solution
and because we can not find the unsolvabe condition of the problem

∆2u+ c∆u = b((u+ 1)+ − 1) + sφ1(x), in Ω,

u = 0, ∆u = 0 on ∂Ω.

By these reasons we use the critical point theory and variation of linking
method for the proof of Theorem 1.2. In section 2, we introduce the
Hilbert space and prove Theorem 1.1. In section 3, we prove Theorem
1.2.

2. Proof of Theorem 1.1

Let H be a subspace of L2(Ω) defined by

H = {u ∈ L2(Ω)|
∑
|λk(λk − c)|h2

k <∞},

where u =
∑
hkφk ∈ L2(Ω) with

∑
h2
k < ∞. Then this is a complete

normed space with a norm

‖u‖ = [
∑
|λk(λk − c)|h2

k]
1
2 .

Since λk(λk − c)→ +∞ and c is fixed, we have
(i) ∆2u+ c∆u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0.
For the proof of the above results we refer [2].

Lemma 2.1. Assume that c is not an eigenvalue of −∆, b 6= λk(λk−c)
and bounded. Then all solutions in L2(Ω) of

∆2u+ c∆u = b((u+ 1)+ − 1) in L2(Ω)

belong to H.

Proof. Let us write b((u+ 1)+ − 1) =
∑
hkφk ∈ L2(Ω).

(∆2 + c∆)−1b((u+ 1)+ − 1) =
∑ 1

λk(λk − c)
hkφk ∈ L2(Ω).

‖(∆2 + c∆)−1b((u+ 1)+ − 1)‖ =
∑
|λk(λk − c)| 1

(λk(λk−c))2h
2
k

≤ C
∑
h2
k = C‖u‖2

L2(ω) <∞
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for some C > 0. Thus (∆2 + c∆)−1(b((u+ 1)+ − 1)) ∈ H.

With the aid of Lemma 2.1 it is enough that we investigate the exis-
tence of the solutions of (1.1) in the subspace H of L2(Ω).

Proof of Theorem 1.1.
Assume that λk < c < λk+1 and λk(λk − c) < 0, b < λk+1(λk+1− c). Let
r = 1

2
{λk(λk − c) + λk+1(λk+1 − c)}. We can rewrite (1.1) as

(∆2 + c∆− r)u = b(u+ 1)+− r(u+ 1)+ + r(u+ 1)+− ru− b, in L2(Ω),
(2.1)

u = 0, ∆u = 0 on ∂Ω.

or

u = (∆2+c∆−r)−1[b(u+1)+−r(u+1)++r(u+1)+−ru−b], in L2(Ω),
(2.2)

u = 0, ∆u = 0 on ∂Ω.

We note that the operator (∆2 +c∆−r)−1 is a compact, self-adjoint and
linear map from L2(Ω) into L2(Ω) with norm 2

λk+1(λk+1−c)−λk(λk−c)
, and

‖(b− r){(u2 + 1)+ − (u1 + 1)+}+ r{(u2 + 1)+ − (u1 + 1)+} − r(u2 − u1)‖
≤ max{|b− r|, |r|}‖u2 − u1‖

<
1

2
{λk+1(λk+1 − c)− λk(λk − c)}‖u2 − u1‖.

Thus the right hand side of (2.2) defines a Lipschitz mapping from L2(Ω)
into L2(Ω) with Lipschitz constant < 1. By the contraction mapping
principle, there exists a unique solution u ∈ L2(Ω) of (2.2). By Lemma
2.1, the solution u ∈ H. We complete the proof.

3. Proof of Theorem 1.2

Throughout this section we assume that λk < c < λk+1 and λk+n(λk+n

−c) < b < λk+n+1(λk+n+1− c). We shall prove Theorem 1.2 by applying
the variational linking method (cf. Theorem 4.2 of [8]). Now, we recall
a variation of linking theorem of the existence of critical levels for a
functional.
Let X be a subspace of H, ρ > 0 and e ∈ H\X, e 6= 0. Let us set

Bρ(X) = {x ∈ X| ‖x‖ ≤ ρ},
Sρ(X) = {x ∈ X| ‖x‖ = ρ},
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∆ρ(e,X) = {σe+ v| σ ≥ 0, v ∈ X, ‖σe+ v‖ ≤ ρ},
Σρ(e,X) = {σe+ v| σ ≥ 0, v ∈ X, ‖σe+ v‖ = ρ} ∪ {v| v ∈ X, ‖v‖ ≤ ρ}.

Theorem 3.1. (“A Variation of Linking”) Let H be an Hilbert space,
which is topological direct sum of the subspaces H1 and H2. Let F ∈
C1(H,R). Moreover assume:
(a) dimH1 < +∞;
(b) there exist ρ > 0, R > 0 and e ∈ H1, e 6= 0 such that ρ < R and

sup
Sρ(H1)

F < inf
ΣR(e,H2)

F ;

(c) −∞ < a = inf∆R(e,H2) F ;
(d) (P.S.)c holds for any c ∈ [a, b], where b = supBρ(H1) F.
Then there exist at least two critical levels c1 and c2 for the functional
F such that :

inf
∆R(e,H2)

F ≤ c1 ≤ sup
Sρ(H1)

F < inf
ΣR(e,H2)

F ≤ c2 ≤ sup
Bρ(H1)

F.

With the aid of Lemma 2.1 it is enough that we investigate the exis-
tence of the solutions of (1.1) in the subspace H of L2(Ω)

Let us define the functional

F (u) =

ˆ
Ω

1

2
|∆u|2 − c

2
|∇u|2 − b

2
|u+ 1|+ − bu. (3.1)

By the assumption of Theorem 1.2, F (u) is well defined. By the follow-
ing lemma, F (u) ∈ C1. Thus the critical points of the functional F (u)
coincide with the weak solutions of (1.1).

Lemma 3.1. Assume that λk < c < λk+1 and λk+n(λk+n − c) < b <
λk+n+1(λk+n+1−c). Then the functional F (u) is continuous and Frechét
differentiable in H and

DF (u)(h) =

ˆ
Ω

[∆u ·∆h− c∇u · ∇h− b(u+ 1)+h− bh]dx (3.2)

for h ∈ H.

Proof. First we shall prove that F (u) is continuous at u. Let u ∈ H.

F (u+v)−F (u) =

ˆ
Ω

[
1

2
|∆(u+v)|2− c

2
|∇(u+v)|2− b

2
|(u+v+1)+|2−b(u+v)]dx

−
ˆ

Ω

[
1

2
|∆u|2 − c

2
|∇u|2 − b

2
|(u+ 1)+|2 − bu]dx
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=

ˆ
Ω

[u·(∆2v+c∆v)+
1

2
v·(∆2v+c∆v)−(

b

2
|(u+v+1)+|2− b

2
|(u+1)+|2−bv)]dx.

Let u =
∑
hkφk, v =

∑
h̃kφk. Then we have

|
ˆ

Ω

u · (∆2v + c∆v)dx| = |
∑ ˆ

Ω

λk(λk − c)hkh̃k| ≤ ‖u‖‖v‖

|
ˆ

Ω

v · (∆2v + c∆v)dx| = |
∑

λk(λk − c)h̃2
k| ≤ ‖v‖2.

On the other hand, by Mean Value Theorem, we have

‖ b
2
|(u+ v + 1)+|2 − b

2
|(u+ 1)+|2‖ ≤ b‖v‖.

Thus we have

‖ b
2
|(u+ v + 1)+|2 − b

2
|(u+ 1)+|2 − bv‖ ≤ 2b‖v‖ = O(‖v‖).

Thus F (u) is continuous at u. Next we shall prove that F (u) is Fréchet
differentiable at u ∈ H. We consider

|F (u+ v)− F (u)−DF (u)v| = |
ˆ

Ω

1

2
v(∆2v + c∆v)

−(
b

2
|(u+ v + 1)+|2 − b

2
|(u+ 1)+|2 + b(u+ 1)+v)|

≤ 1

2
‖v‖2 + b‖v‖+ b(‖u‖+ 1)‖v‖

= ‖v‖(1

2
‖v‖+ b+ b(‖u‖+ 1)) = O(‖v‖).

Thus F (u) is Fréchet differentiable at u ∈ H.

Let H+ be the subspace of H spanned by the eigenfunctions corre-
sponding to the eigenvalues λ(λ − c) > 0 and H− the subspace of H
spanned by the eigenfunctions corresponding to the eigenvalues λ(λ −
c) < 0. Then H = H+⊕H−. Let Hk+n be the subspace of H spanned by
φ1, · · · , φk+n whose eigenvalues are λ1(λ1 − c), · · · , λk+n(λk+n − c). Let
H⊥k+n be the orthogonal complement of Hk+n in H. Then

H = Hk+n ⊕H⊥k+n.

Let L : H → H be the linear continuous operator such that

(Lu)v =

ˆ
Ω

(∆2u+ c∆u) · vdx− r
ˆ

Ω

uvdx. (3.3)
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Then L is an isomorphism and Hk+n, H⊥k+n are the negative space and
the positive space of L. Thus we have

∀u ∈ Hk+n : (Lu)u ≤ (λk+n(λk+n − c)− r)‖u‖2,

∀u ∈ H⊥k+n : (Lu)u ≥ (λk+n+1(λk+n+1 − c)− r)‖u‖2.

Thus there exists ν > 0 such that

(Lu)u ≤ −ν‖u‖2, (3.4)

(Lu)u ≥ ν‖u‖2. (3.5)

We can write

F (u) =
1

2
(Lu)u− ψ(u),

where

ψ(u) =

ˆ
Ω

[
b

2
|(u+ 1)+|2 − bu− 1

2
ru2]dx.

Since H is compactly embedded in L2, the map Dψ : H → H is compact.

Lemma 3.2. Let λk < c < λk+1 and λk+n(λk+n−c) < b < λk+n+1(λk+n+1

−c). Then F (u) satisfies the (P.S.)γ condition for any γ ∈ R.

Proof. Let (un) be a sequence in H with DF (un)→ 0 and F (un)→ γ.
Since L is an isomorphism and Dψ is compact, it is sufficient to show
that (un) is bounded in H. We argue by contradiction. we suppose that
‖un‖ → +∞. Let vn = un

‖un‖ . Up to a subsequence, we have vn → v in

H. Since DF (un)→ 0, we get

DF (un)un
‖un‖2

= (Lvn)vn −
ˆ

Ω

[b(vn +
1

‖un‖
)+vn − b

vn
‖un‖

− rv2
n]dx −→ 0.

(3.6)
Let P+ : H → H⊥k+n and P− : H → Hk+n denote the orthogonal
projections. Since P+vn − P−vn is bounded in H, we have

(LP+vn)P+vn − (LP−vn)P−vn −
ˆ

Ω

[b(vn +
1

‖un‖
)+(P+vn − P−vn)

−bP
+vn − P−vn
‖un‖

− rvn(P+vn − P−vn)]dx −→ 0. (3.7)

Since P+vn − P−vn → P+v − P−v in H, from (3.4) and (3.5) we get

0 < ν‖v‖2 ≤
ˆ

Ω

[(bv+ − rv)(P+v − P−v)]dx.
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Hence v 6= 0. On the other hand, from (3.7), we get

(LP+v)P+v − (LP−v)P−v −
ˆ

Ω

[bv+(P+v − P−v)

−r(P+v + P−v)(P+v − P−v)]dx = 0. (3.8)

Let us choose v ∈ H+. Then from (3.8), we have

0 = (LP+v)P+v − (LP−v)P−v −
ˆ

Ω

[bv+(P+v − P−v)

− r(P+v + P−v)(P+v − P−v)]dx

≥ (LP+v)P+v − (LP−v)P−v −
ˆ

Ω

[bv(P+v − P−v)

− r(P+v + P−v)(P+v − P−v)]dx

= (LP+v)P+v − (LP−v)P−v −
ˆ

Ω

[b(P+v + P−v)(P+v − P−v)

− r(P+v + P−v)(P+v − P−v)]dx

≥ {(λk+n+1(λk+n+1 − c)− r)− (b− r)}ˆ
Ω

(P+v)2 − {(λk+n(λk+n − c))− r)− (b− r)}
ˆ

Ω

(P−v)2

≥ 0 (3.9)

Since (λk+n+1(λk+n+1 − c) − r) − (b − r) > 0 and −(λk+n(λk+n − c)) −
r)− (b− r)) > 0, the left hand side of (3.9) is positive or equal to 0, so
the only possibility to hold (3.9) is that P+v = 0 and P−v = 0. Thus
v = 0. This is a contradiction. We complete the proof.

Lemma 3.3. Let λk < c < λk+1 and λk+n(λk+n−c) < b < λk+n+1(λk+n+1

−c). Then
(i) there exists Rk+n > 0 such that the functional F (u) is bounded from
below on H⊥k+n;

inf
u∈H⊥

k+n
‖u‖=Rk+n

F (u) > 0 and inf
u∈H⊥

k+n
‖u‖<Rk+n

F (u) > −∞. (3.10)

(ii) there exists ρk+n > 0 such that

sup
u∈Hk+n
‖u‖=ρk+n

F (u) < 0 and sup
u∈Hk+n
‖u‖≤ρk+n

F (u) <∞. (3.11)
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Proof. (i) Let u ∈ H⊥k+n. Then we have

lim
u∈H⊥

k+n
‖u‖→+∞

F (u) ≥ lim
u∈H⊥

k+n
‖u‖→∞

1

2
(1− r

λk+n+1(λk+n+1 − c)
)‖u‖2

− lim
u∈H⊥

k+n
‖u‖→+∞

ˆ
Ω

[
b

2
|(u+ 1)+|2 − bu− r

2
u2]dx

≥ lim
u∈H⊥

k+n
‖u‖→∞

1

2
(1− r

λk+n+1(λk+n+1 − c)
)‖u‖2− lim

u∈H⊥
k+n

‖u‖→+ infty

ˆ
Ω

[
b

2
(u2+1)−r

2
u2]dx

≥ lim
u∈H⊥

k+n
‖u‖→+∞

1

2
(1− r

λk+n+1(λk+n+1 − c)
)‖u‖2− lim

u∈H⊥
k+n

‖u‖→+∞

1

2
(b− r)

ˆ
Ω

u2− b

2
|Ω|

−→ +∞,
since b − r < λk+n+1(λk+n+1 − c) − r = λk+n+1(λk+n+1−c)−λk+n(λk+n−c)

2
.

Thus there exists Rk+n > 0 such that inf u∈H⊥
k+n

‖u‖=Rk+n

F (u) > 0. Moreover if

u ∈ H⊥k+n with ‖u‖ < Rk+n, then we have

F (u) ≥ 1

2
(λk+n+1(λk+n+1 − c))‖u‖2

L2(Ω) −
ˆ

Ω

[
b

2
(u+ 1)2 − bu]dx

>
1

2
{(λk+n+1(λk+n+1 − c))− b}‖u‖2

L2(Ω) −
ˆ

Ω

[
b

2
]dx > −∞.

Thus we have inf u∈H⊥
k+n

‖u‖<Rk+n

F (u) > −∞.

(ii) Let u ∈ Hk+n, Then

(Lu)u ≤ (λk+n(λk+n − c)− r)
ˆ

Ω

u2dx

≤ λk+n(λk+n − c)− λk+n+1(λk+n+1 − c)
2

ˆ
Ω

u+2
,

ˆ
Ω

[
1

2
b|(u+ 1)+|2 − bu− ru2]dx ≥

ˆ
Ω

[
1

2
b|u+|2 − bu− ru+2

]dx,

so that
F (u)

≤ 1

2

λk+n(λk+n − c)− λk+n+1(λk+n+1 − c)
2

ˆ
Ω

u+2−b− r
2

ˆ
Ω

u+2
+

ˆ
Ω

budx
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≤ 1

2
{λk+n(λk+n − c)− λk+n+1(λk+n+1 − c)

2
−(b−r)}‖u+‖2

L2(Ω)+b‖u‖L2(Ω).

Since λk+n(λk+n−c)−λk+n+1(λk+n+1−c)
2

−(b−r) < 0, there exists ρk+n > 0 such
that if u ∈ Hk+n and ‖u‖ = ρk+n, then supF (u) < 0. Moreover, if u ∈
Hk+n and ‖u‖ ≤ ρk+n, then we have F (u) ≤ 1

2
{λk+n(λk+n−c)−λk+n+1(λk+n+1−c)

2

−(b− r)}‖u+‖2
L2(Ω) + b‖u‖L2(Ω) ≤ b‖u‖L2(Ω) <∞.

Lemma 3.4. Let λk < c < λk+1, λk+n(λk+n−c) < b < λk+n+1(λk+n+1−
c) and let e1 ∈ span{φk+1, · · · , φk+n} with ‖e1‖ = 1. Then there exists

¯Rk+n such that ¯Rk+n > ρk+n,

inf
u∈Σ ¯Rk+n

(e1,H⊥k+n)
F (u) ≥ 0 and inf

u∈∆ ¯Rk+n
(e1,H⊥k+n)

F (u) ≥ −∞.

Proof. Let us chose u ∈ H⊥k+n and σ ≥ 0 and e1 ∈ span{φk+1, · · · , φk+n}
with ‖e1‖ = 1. Then we get

F (u+ σe1) ≥ 1

2
λk+n+1(λk+n+1 − c)‖u‖2

L2(Ω) +
σ2

2
‖e1‖2

−
ˆ

Ω

[
b

2
(u+ σe1 + 1)2 − b(u+ σe1)]dx

=
1

2
{λk+n+1(λk+n+1 − c)− b}‖u‖2

L2(Ω) +
σ2

2
(Λ− b))‖e1‖2

L2(Ω)

− bσ2‖u‖L2(Ω)‖e1‖L2(Ω) −
b

2
|Ω|,

where λk+1(λk+1 − c) ≤ Λ ≤ λk+n(λk+n − c). Choose σ > 0 so mall
that σ

2
‖e1‖2 is small. We can choose a number ¯Rk+n > 0 such that

¯Rk+n > σ, ¯Rk+n > ρk+n, and inf u∈H⊥
k+n

,σ≥0

‖u+σe1‖= ¯Rk+n

F (u+ σe1) ≥ 0. Moreover if

u ∈ H⊥k+n, σ ≥ 0 ‖u + σe1‖ ≤ ¯Rk+n, then F (u) ≥ σ2

2
(Λ − b)‖e1‖2

L2(Ω) −
bσ‖u‖L2(Ω)‖e1‖L2(Ω) − b

2
|Ω| ≥ −∞. Thus we prove the lemma.

Proof of Theorem 1.2.
By Lemma 3.1, F (u) is continuous and Frechét differentiable in H. By
Lemma 3.2. F (u) satisfies the (P.S.)γ condition for any γ ∈ R. We note
that the subspace Sρk+n

∩Hk+n and the subspace Σ ¯Rk+n
(e1, H

⊥
k+n link at

the subspace {e1}. By Lemma 3.3 and Lemma 3.4, we have

sup
u∈Sρk+n

∩Hk+n

F (u) < inf
u∈Σ ¯Rk+n

(e1,H⊥k+n

F (u).
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By Lemma 3.4, we also have infu∈Delta ¯Rk+n
(e1,H⊥k+n) F (u) > −∞. Thus by

the variation of linking Theorem 3.1, there exists at least two nontrivial
solutions of (1.1). Thus we complete the Theorem 1.2.
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