NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

Tacksun Jung* and Q-Heung Choi

Abstract

We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.

1. Introduction

Let Ω be a bounded domain in R^{n} with smooth boundary $\partial \Omega$. Let Δ be the elliptic operator and Δ^{2} be the biharmonic operator. Choi and Jung [3] showed that the problem

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=b u^{+}+s \quad \text { in } \Omega, \tag{1.1}\\
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

has at least two nontrivial solutions when $\left(c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\right.$ $\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0$) or ($\lambda_{1}<c<\lambda_{2}, b<\lambda_{1}\left(\lambda_{1}-c\right)$ and $\left.s>0\right)$.

Received July 12, 2015. Revised September 1, 2015. Accepted September 2, 2015.
2010 Mathematics Subject Classification: 35J35, 35J40.
Key words and phrases: Biharmonic boundary value problem, polynomial growth, variational method, generalized mountain pass geometry, critical point theory, (P.S.) condition.

* Corresponding author.
* This work was financially supported by the Kunsan National University's research program for faculty member in the year 2014.
(c) The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

We obtained these results by using variational reduction method. Jung and Choi [5] also proved that when $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0$, (1.1) has at least three nontrivial solutions by using degree theory. Tarantello [10] also studied

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=b\left((u+1)^{+}-1\right), \tag{1.2}\\
& u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega .
\end{align*}
$$

She showed that if $c<\lambda_{1}$ and $b \geq \lambda_{1}\left(\lambda_{1}-c\right)$, then (1.4) has a negative solution. She obtained this result by degree theory. Micheletti and Pistoia [8] also proved that if $c<\lambda_{1}$ and $b \geq \lambda_{2}\left(\lambda_{2}-c\right)$ then (1.2) has at least four solutions by variational linking theorem and Leray-Schauder degree theory.

In this paper we consider the following nonlinear biharmonic equation with Dirichlet boundary condition

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=a(x) g(u) \quad \text { in } \Omega, \tag{1.3}\\
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega,
\end{gather*}
$$

where we assume that $c \in R$ is not an eigenvalue of $-\Delta$ and that a : $\bar{\Omega} \rightarrow R$ is a continuous function which changes sign in Ω.

We assume that g satisfies the following conditions:
(g1) $g \in C(R, R)$,
(g2) there are constants $a_{1}, a_{2} \geq 0$ such that

$$
|g(u)| \leq a_{1}+a_{2}|u|^{\mu-1}
$$

where $2<\mu<\frac{2 n}{n-2}$ if $n \geq 3$.
(g3) there exists a constant $r_{0} \geq 0$ such that

$$
0<\mu G(\xi)=\mu \int_{0}^{\xi} g(t) d t \leq \xi g(\xi) \quad \text { for }|\xi| \geq r_{0}
$$

$(g 4) g(u)=o(|u|)$ as $u \rightarrow 0$.
We note that $(g 3)$ implies the existence of the positive constants a_{3}, a_{4}, a_{5} such that

$$
\begin{equation*}
\frac{1}{\mu}\left(\xi g(\xi)+a_{3}\right) \geq G(\xi)+a_{4} \geq a_{5}|\xi|^{\mu} \quad \text { for } \quad \xi \in R \tag{1.4}
\end{equation*}
$$

Khanfir and Lassoued [6] showed the existence of at least one solution for the nonlinear elliptic boundary problem when g is locally Hölder continuous on R_{+}.

We are trying to find the weak solutions of (1.3), that is,

$$
\int_{\Omega}\left(\left(\Delta^{2} u+c \Delta u-a(x) g(u)\right) v d x=0 \quad \text { for } v \in H\right.
$$

where the space H is introduced in section 2. Let us set

$$
\Omega^{+}=\{x \in \Omega \mid a(x)>0\}, \quad \Omega^{-}=\{x \in \Omega \mid a(x)<0\}
$$

and let

$$
a^{+}=a \cdot \chi_{\Omega^{+}}, a^{-}=-a \cdot \chi_{\Omega^{-}} .
$$

Since $a(x)$ changes sign, the open subsets Ω^{+}and Ω^{-}are nonempty. Now we can write $a=a^{+}-a^{-}$. Our main results are as follows:

Theorem A. Assume that $\lambda_{k}<c<\lambda_{k+1}, g$ satisfies ($g 1$)-($g 4$) and $g(u) u-\mu G(u)$ is bounded. Then (1.3) has at least one bounded solution.

Theorem B. Assume that $\lambda_{k}<c<\lambda_{k+1}, g$ satisfies ($g 1$)-($g 4$), $g(u) u-\mu G(u)$ is not bounded and there exists a small $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x)<\epsilon$. Then (1.3) has at least two solutions, (i) one of which is bounded and (ii) the other solution of which is large norm such that

$$
\max _{x \in \Omega}|u(x)|>M \quad \text { for some } \quad M>0
$$

In Section 2, we prove that $I(u)$ is continuous and Fréchet differentiable and satisfies the (P.S.) condition. In Section 3, we prove Theorem A. In Section 4, we prove Theorem B by variational method, generalized mountain pass geometry and critical point theory.

2. Eigenspaces and Palais-Smale condition

The eigenvalue problem with Dirichlet boundary condition

$$
\begin{array}{cc}
\Delta u+\lambda u=0 \quad \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega
\end{array}
$$

has infinitely many eigenvalues $\lambda_{k}, k \geq 1$ and corresponding eigenfunctions $\phi_{k}, k \geq 1$, the suitably normalized with respect to $L^{2}(\Omega)$ inner product, where each eigenvalue λ_{k} is repeated as often as its multiplicity. The eigenvalue problem

$$
\begin{aligned}
\Delta^{2} u+c \Delta u=\Lambda u & \text { in } \Omega, \\
u=0, \quad \Delta u=0 & \text { on } \partial \Omega
\end{aligned}
$$

has also infinitely many eigenvalues $\lambda_{k}\left(\lambda_{k}-c\right), k \geq 1$ and corresponding eigenfunctions $\phi_{k}, k \geq 1$. We note that $\lambda_{1}\left(\lambda_{1}-c\right) \leq \lambda_{2}\left(\lambda_{2}-c\right) \leq \ldots \rightarrow$ $+\infty$, and that $\phi_{1}(x)>0$ for $x \in \Omega$.

Let $L^{2}(\Omega)$ be a square integrable function space defined on Ω. Any element u in $L^{2}(\Omega)$ can be written as

$$
u=\sum h_{k} \phi_{k} \quad \text { with } \quad \sum h_{k}^{2}<\infty .
$$

We define a subspace H of $L^{2}(\Omega)$ as follows

$$
H=\left\{u \in L^{2}(\Omega)\left|\sum\right| \lambda_{k}\left(\lambda_{k}-c\right) \mid<\infty\right\} .
$$

Then this is a complete normed space with a norm

$$
\|u\|=\left[\sum\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}\right]^{\frac{1}{2}} .
$$

Since $\lambda_{k} \rightarrow+\infty$ and c is fixed, we have
(i) $\Delta^{2} u+c \Delta u \in H$ implies $u \in H$.
(ii) $\|u\| \geq C\|u\|_{L^{2}(\Omega)}$, for some $C>0$.
(iii) $\|u\|_{L^{2}(\Omega)}=0$ if and only if $\|u\|=0$,
which is proved in [2].
Let

$$
\begin{aligned}
& H_{+}=\left\{u \in H \mid h_{k}=0 \text { if } \lambda_{k}\left(\lambda_{k}-c\right)<0\right\}, \\
& H_{-}=\left\{u \in H \mid h_{k}=0 \text { if } \lambda_{k}\left(\lambda_{k}-c\right)>0\right\} .
\end{aligned}
$$

Then $H=H_{-} \oplus H_{+}$, for $u \in H, u=u^{-}+u^{+} \in H_{-} \oplus H_{+}$. Let P_{+}be the orthogonal projection on H_{+}and P_{-}be the orthogonal projection on H_{-}. We can wtite $P_{+} u=u^{+}, P_{-} u=u^{-}$, for $u \in H$.

We are looking for the weak solutions of (1.1). The weak solutions of (1.1) coincide with the critical points of the associated functional

$$
\begin{align*}
& I(u) \in C^{1}(H, R), \\
& I(u)=\int_{\Omega}\left[\frac{1}{2}|\Delta u|^{2}-\frac{c}{2}|\nabla u|^{2}\right] d x-\int_{\Omega} a(x) G(u) d x \tag{2.1}\\
&=\frac{1}{2}\left(\left\|P_{+} u\right\|^{2}-\left\|P_{-} u\right\|^{2}\right)-\int_{\Omega} a(x) G(u) d x .
\end{align*}
$$

By $(g 1)$ and $(g 2), I$ is well defined. By the following Proposition 2.1, $I \in C^{1}(H, R)$ and I is Fréchet differentiable in H :

Proposition 2.1. Assume that $\lambda_{k}<c<\lambda_{k+1}, k \geq 1$, and g satisfies $(g 1)-(g 4)$. Then $I(u)$ is continuous and Fréchet differentiable in H with Fréchet derivative

$$
\begin{equation*}
\nabla I(u) h=\int_{\Omega}[\Delta u \cdot \Delta h-c \nabla u \cdot \nabla h-a(x) g(u) h] d x \tag{2.2}
\end{equation*}
$$

If we set

$$
K(u)=\int_{\Omega} a(x) G(u) d x
$$

then $K^{\prime}(u)$ is continuous with respect to weak convergence, $K^{\prime}(u)$ is compact, and

$$
K^{\prime}(u) h=\int_{\Omega} a(x) g(u) h d x \quad \text { for all } h \in H .
$$

This implies that $I \in C^{1}(H, R)$ and $K(u)$ is weakly continuous.
The proof of Proposition 2.1 has the same process as that of the proof in Appendix B in [9].

Proposition 2.2. (Palais-Smale condition)
Assume that $\lambda_{k}<c<\lambda_{k+1}, k \geq 1, g$ satisfies (g1) - (g4) and $f \in$ $L^{2}(\Omega)$. We also assume that $g(u) u-\mu G(u)$ is bounded or there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x) d x<\epsilon$. Then $I(u)$ satisfies the Palais-Smale condition.

Proof. We assume that $g(u) u-\mu G(u)$ is bounded or there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x) d x<\epsilon$. Suppose that $\left(u_{m}\right)$ is a sequence with $I\left(u_{m}\right) \leq M$ and $I^{\prime}\left(u_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$. Then by (g2), (g3), and Hölder inequality and Sobolev Embedding Theorem, for large m and $\mu>2$ with
$u=u_{m}$, we have

$$
\begin{aligned}
M+\frac{1}{2}\|u\| \geq & I(u)-\frac{1}{2} I^{\prime}(u) u=\int_{\Omega}\left[\frac{1}{2} a(x) g(u) u-a(x) G(u)\right] d x \\
= & \int_{\Omega} a^{+}(x)\left[\frac{1}{2} g(u) u-G(u)\right] d x-\int_{\Omega} a^{-}(x)\left[\frac{1}{2} g(u) u-G(u)\right] d x \\
\geq & \left(\frac{1}{2}-\frac{1}{\mu}\right) \mu \int_{\Omega} a^{+}(x) \cdot G(u) d x \\
& -\max _{\Omega}\left|\frac{1}{2} g(u) u-G(u)\right| \int_{\Omega^{-}} a^{-}(x) d x \\
\geq & \left(\frac{1}{2}-\frac{1}{\mu}\right) \mu \int_{\Omega} a^{+}(x) \cdot\left(a_{3}|u|^{\mu}-a_{4}\right) d x \\
& -\max _{\Omega}\left|\frac{1}{2} g(u) u-G(u)\right| \int_{\Omega^{-}} a^{-}(x) d x .
\end{aligned}
$$

Thus if $\frac{1}{2} g(u) u-G(u)$ is bounded or there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x)<\epsilon$, then we have

$$
\begin{equation*}
1+\|u\| \geq M_{1} \int_{\Omega}|u|^{\mu} \geq M_{2}\left(\int_{\Omega}|u|^{2} d x\right)^{\frac{1}{2} \cdot \mu} \tag{2.3}
\end{equation*}
$$

Moreover since

$$
\begin{equation*}
\left|I^{\prime}\left(u_{m}\right) \varphi\right| \leq\|\varphi\| \tag{2.4}
\end{equation*}
$$

for large m and all $\varphi \in H$, choosing $\varphi=u_{m}^{+} \in H_{+}$gives

$$
\begin{aligned}
\left\|u_{m}^{+}\right\|^{2} & =\int_{\Omega}\left(\Delta^{2} u_{m}+c \Delta u_{m}\right) \cdot u_{m}^{+} \\
& =\int_{\Omega} a(x) g\left(u_{m}\right) u_{m}^{+} \\
& \leq \int_{\Omega}\left|a(x)\left\|g\left(u_{m}\right)\right\| u_{m}\right| \\
& \leq\|a\|_{\infty} \int_{\Omega}\left(a_{1}\left|u_{m}\right|^{\mu}+a_{2}\left|u_{m}\right|\right) \\
& \leq C_{1} \int_{\Omega}\left|u_{m}\right|^{\mu}+C_{2}\left\|u_{m}\right\|_{L^{2}(\Omega)} \\
& \leq C_{1} \int_{\Omega}\left|u_{m}\right|^{\mu}+C_{2}^{\prime}\left\|u_{m}\right\|
\end{aligned}
$$

Taking $\varphi=-u_{m}^{-}$in (2.4) yields

$$
\begin{aligned}
\left\|u_{m}^{-}\right\|^{2} & =\int_{\Omega}\left(\Delta^{2} u_{m}+c \Delta u_{m}\right) \cdot\left(-u_{m}^{-}\right) \\
& =\int_{\Omega} a(x) g\left(u_{m}\right) \cdot\left(-u_{m}^{-}\right) \\
& \leq \int_{\Omega}\left|a(x)\left\|g\left(u_{m}\right)\right\| u_{m}\right| \\
& \leq\|a\|_{\infty} \int_{\Omega}\left(a_{1}\left|u_{m}\right|^{\mu}+a_{2}\left|u_{m}\right|\right) \\
& \leq C_{3} \int_{\Omega}\left|u_{m}\right|^{\mu}+C_{4}\left\|u_{m}\right\|_{L^{2}(\Omega)} \\
& \leq C_{3} \int_{\Omega}\left|u_{m}\right|^{\mu}+C_{4}^{\prime}\left\|u_{m}\right\| .
\end{aligned}
$$

Thus, by (2.3), we have

$$
\begin{aligned}
\left\|u_{m}\right\|^{2}=\left\|u_{m}^{+}\right\|^{2}+\left\|u_{m}^{-}\right\|^{2} & \leq M_{3} \int_{\Omega}\left|u_{m}\right|^{\mu}+M_{4}\left\|u_{m}\right\| \\
& \leq M_{5}\left(1+\left\|u_{m}\right\|\right)+M_{4}\left\|u_{m}\right\| \leq M_{6}\left(1+\left\|u_{m}\right\|\right)
\end{aligned}
$$

from which the boundedness of $\left(u_{m}\right)$ follows. Thus $\left(u_{m}\right)$ converges weakly in H. Since $P_{ \pm} I^{\prime}\left(u_{m}\right)= \pm P_{ \pm} u_{m}+P_{ \pm} \tilde{\mathcal{P}}\left(u_{m}\right)$ with $\tilde{\mathcal{P}}$ compact and the weak convergence of $P_{ \pm} u_{m}$ imply the strong convergence of $P_{ \pm} u_{m}$ and hence $(P S)$ condition holds.

3. At least one bounded solution

We shall show that $I(u)$ satisfies generalized mountain pass geometrical assumptions.
We recall generalized mountain pass geometry:
Let $H=V \oplus X$, where H is a real Banach space and $V \neq\{0\}$ and is finite dimensional. Suppose that $I \in C^{1}(H, R)$, satisfies (P.S.) condiion, and
(i) there are constants $\rho, \alpha>0$ and a bounded neighborhood B_{ρ} of 0 such that $\left.I\right|_{\partial B_{\rho} \cap X} \geq \alpha$,
(ii) there is an $e \in \partial B_{1} \cap X$ and $R>\rho$ such that if $Q=\left(\overline{B_{R}} \cap V\right) \oplus\{r e \mid 0<$ $r<R\}$, then $\left.I\right|_{\partial Q} \leq 0$.

Then I possesses a critical value $b \geq \alpha$. Moreover b can be characterized as

$$
b=\inf _{\gamma \in \Gamma} \max _{u \in Q} I(\gamma(u)),
$$

where

$$
\Gamma=\{\gamma \in C(\bar{Q}, H) \mid \gamma=i d \text { on } \partial Q\} .
$$

Let $H_{k}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{k}\right\}$. Then H_{k} is a subspace of H such that

$$
H=\oplus_{k \in N} H_{k} \quad \text { and } \quad H=H_{k} \oplus H_{k}^{\perp}
$$

Let

$$
\begin{gathered}
B_{r}=\{u \in H \mid\|u\| \leq r\} \\
Q=\left(\overline{B_{R}} \cap H_{k}\right) \oplus\{r e \mid 0<r<R\} .
\end{gathered}
$$

We have the following generalized mountain pass geometrical assumptions:

Lemma 3.1. Assume that $\lambda_{k}<c<\lambda_{k+1}$ and g satisfies $(g 1)-(g 4)$. Then
(i) there are constants $\rho>0, \alpha>0$ and a bounded neighborhood B_{ρ} of 0 such that $\left.I\right|_{\partial B_{\rho} \cap H_{k}^{\perp}} \geq \alpha$, and
(ii) there is an $e \in \partial B_{1} \cap H_{k}^{\perp}$ and $R>\rho$ such that if $Q=\left(\overline{B_{R}} \cap H_{k}\right) \oplus$ $\{r e \mid 0<r<R\}$, then $\left.I\right|_{\partial Q} \leq 0$, and
(iii) there exists $u_{0} \in H$ such that $\left\|u_{0}\right\|>\rho$ and $I\left(u_{0}\right) \leq 0$.

Proof. (i) Let $u \in H_{k}^{\perp}$. We note that

$$
\text { if } u \in H_{k}^{\perp}, \int_{\Omega}\left(\Delta^{2} u+c \Delta u\right) u d x \geq \lambda_{k+1}\left(\lambda_{k+1}-c\right)\|u\|_{L^{2}(\Omega)}^{2}>0 .
$$

Thus by ($g 3$), (1.2) and the Hölder inequality, we have

$$
\begin{aligned}
I(u) & =\frac{1}{2}\left\|P_{+} u\right\|^{2}-\frac{1}{2}\left\|P_{-} u\right\|^{2}-\int_{\Omega} a(x) G(u) \\
& \geq \frac{1}{2}\left\|P_{+} u\right\|^{2}-\|a\|_{\infty} \int_{\Omega} C_{1}|u|^{\mu} \\
& \geq \frac{1}{2}\left\|P_{+} u\right\|^{2}-\|a\|_{\infty} C_{1}^{\prime}\|u\|^{\mu}
\end{aligned}
$$

for $C_{1}, C_{1}^{\prime}>0$. Since $\mu>2$, there exist $\rho>0$ and $\alpha>0$ such that if $u \in \partial B_{\rho}$, then $I(u) \geq \alpha$.
(ii) Let $u \in\left(\bar{B}_{r} \cap H_{k}\right) \oplus\{r e \mid 0<r\}$. Then $u=v+w, v \in B_{r} \cap H_{k}$, $w=r e$. We note that

$$
\text { if } v \in H_{k}, \int_{\Omega}\left(\Delta^{2} v+c \Delta v\right) v d x \leq \lambda_{k}\left(\lambda_{k}-c\right)\|v\|_{L^{2}(\Omega)}^{2}<0
$$

Thus we have

$$
\begin{aligned}
I(u) & =\frac{1}{2} r^{2}-\frac{1}{2}\left\|P_{-} v\right\|^{2}-\int_{\Omega} a(x) G(v+r e) \\
& \leq \frac{1}{2} r^{2}+\frac{1}{2}\left(\lambda_{k}\left(\lambda_{k}-c\right)\right)\|v\|_{L^{2}(\Omega)}^{2}-\int_{\Omega^{+}} a(x)\left(a_{5}|v+r e|^{\mu}-a_{4}\right)
\end{aligned}
$$

Since $\mu>2$, there exists $R>0$ such that if $u \in Q=\left(\overline{B_{R}} \cap H_{k}\right) \oplus\{r e \mid 0<$ $r<R\}$, then $I(u)<0$
(iii) If we choose $\psi \in H$ such that $\|\psi\|=1, \psi \geq 0$ in Ω and $\operatorname{supp}(\psi) \subset$ Ω^{+}, then we have

$$
\begin{aligned}
I(t \psi) & \leq \frac{1}{2}\left\|P_{+}(t \psi)\right\|^{2}-\frac{1}{2}\left\|P_{-}(t \psi)\right\|^{2}-\int_{\Omega^{+}} a(x)\left(a_{3} t^{\mu} \psi^{\mu}-a_{4}\right) \\
& \leq \frac{1}{2}\|t \psi\|^{2}-\int_{\Omega^{+}} a(x)\left(a_{3} t^{\mu} \psi^{\mu}-a_{4}\right) \\
& =\frac{1}{2} t^{2}-\int_{\Omega^{+}} a(x)\left(a_{3} t^{\mu} \psi^{\mu}-a_{4}\right)
\end{aligned}
$$

for all $t>0$. Since $\mu>2$, for t_{0} great enough, $u_{0}=t_{0} \psi$ is such that $\left\|u_{0}\right\|>\rho$ and $I\left(u_{0}\right) \leq 0$.

Theorem A . Assume that $\lambda_{k}<c<\lambda_{k+1}, g$ satisfies ($g 1$)-(g4) and $g(u) u-\mu G(u)$ is bounded. Then (1.3) has at least one bounded solution.

Proof. By Proposition 2.1 and Proposition 2.2, $I(u) \in C^{1}(H, \mathrm{R})$ and satisfies the Palais-Smale condition. By Lemma 3.1, there are constants $\rho>0, \alpha>0$ and a bounded neighborhood B_{ρ} of 0 such that $\left.I\right|_{\partial B_{\rho} \cap H_{m}^{\perp}} \geq$ α, and there is an $e \in \partial B_{1} \cap H_{k}^{\perp}$ and $R>\rho$ such that if $Q=\left(B_{R} \cap\right.$ $\left.H_{k}\right) \oplus\{r e \mid 0<r<R\}$, then $\left.I\right|_{\partial Q} \leq 0$, and there exists $u_{0} \in H$ such that $\left\|u_{0}\right\|>\rho$ and $I\left(u_{0}\right) \leq 0$. By the generalized mountain pass theorem, $I(u)$ has a critical value $b \geq \alpha$. Moreover b can be characterized as

$$
b=\inf _{\gamma \in \Gamma} \max _{u \in Q} I(\gamma(u)),
$$

where

$$
\Gamma=\{\gamma \in C(\bar{Q}, H) \mid \gamma=i d \text { on } \partial Q\} .
$$

We denote by \tilde{u} a critical point of I such that $I(\tilde{u})=b$. We claim that there exists a constant $C>0$ such that

$$
\left\|a^{+}(x)^{\frac{1}{\mu}} \tilde{u}\right\|_{L^{2}(\Omega)} \leq C\left(1+L \int_{\Omega^{-}} a^{-}(x) d x\right)^{\frac{1}{\mu}}
$$

where $L=\max _{\Omega}\left|\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right|$.
In fact, we have

$$
b \leq \max I\left(t u_{0}\right), \quad 0 \leq t \leq 1,
$$

and

$$
\begin{aligned}
I\left(t u_{0}\right) & =t^{2}\left(\frac{1}{2}\left\|P_{+} u_{0}\right\|^{2}-\frac{1}{2}\left\|P_{-} u_{0}\right\|^{2}\right)-\int_{\Omega} a(x) G\left(t u_{0}\right) d x \\
& \leq t^{2}\left\|u_{0}\right\|^{2}-\int_{\Omega} a^{+}(x) G\left(t u_{0}\right) d x+\int_{\Omega} a^{-}(x) G\left(t u_{0}\right) d x \\
& \leq t^{2}\left\|u_{0}\right\|^{2}-a_{3} t^{\mu} \int_{\Omega} a^{+}(x) u_{0}^{\mu}+a_{4} \int_{\Omega} a^{+}(x)+a_{5} t^{\mu} \int_{\Omega} a^{-}(x) u_{0}^{\mu} \\
& =C t^{2}-C t^{\mu}+C+C^{\prime} t^{\mu} .
\end{aligned}
$$

Since $0 \leq t \leq 1, b$ is bounded: $b<\tilde{C}$.
We can write

$$
\begin{aligned}
b & =I(\tilde{u})-\frac{1}{2} I^{\prime}(\tilde{u}) \tilde{u} \\
& =\int_{\Omega} a(x)\left(\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right) d x \\
& =\int_{\Omega} a^{+}(x)\left(\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right) d x-\int_{\Omega} a^{-}(x)\left(\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right) d x \\
& \geq\left(\frac{1}{2}-\frac{1}{\mu}\right) \int_{\Omega} a^{+}(x) g(\tilde{u}) \tilde{u}-\max _{\Omega}\left|\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right| \int_{\Omega^{-}} a^{-}(x) d x \\
& \geq\left(\frac{1}{2}-\frac{1}{\mu}\right) \mu \int_{\Omega} a^{+}(x)\left(a_{3}|\tilde{u}|^{\mu}-a_{4}\right)-L \int_{\Omega^{-}} a^{-}(x) d x
\end{aligned}
$$

where $L=\max _{\Omega}\left|\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right|$. Thus we have

$$
\begin{align*}
C(1+ & \left.L \int_{\Omega^{-}} a^{-}(x) d x\right) \geq \int_{\Omega} a^{+}(x)|\tilde{u}|^{\mu} \\
& \geq\left[\int_{\Omega}\left(a^{+}(x)^{\frac{1}{\mu}}|\tilde{u}|\right)^{2}\right]^{\frac{\mu}{2}} \tag{3.1}
\end{align*}
$$

from which we can conclude that \tilde{u} is bounded. In fact, suppose that \tilde{u} is not bounded. Then for any $R>0,|\tilde{u}| \geq R$. Thus we have

$$
\int_{\Omega} a^{+}(x)|\tilde{u}|^{\mu} \geq R^{\mu} \int_{\Omega} a^{+}(x) d x
$$

for any R, which contradicts to the fact (3.1) and the proof of theorem is complete.

4. At least two solutions

Theorem B. Assume that $\lambda_{k}<c<\lambda_{k+1}, g$ satisfies ($g 1$)-($g 4$), $g(u) u-\mu G(u)$ is not bounded and there exists a small $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x)<\epsilon$. Then (1.3) has at least two solutions, (i) one of which is bounded and (ii) the other solution of which is large norm such that

$$
\max _{x \in \Omega}|u(x)|>M \quad \text { for some } \quad M>0 .
$$

Proof. Assume that $\frac{1}{2} g(u) u-G(u)$ is not bounded and there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x, t)<\epsilon$. By Proposition 2.1 and Proposition 2.2, $I \in C^{1}(H, \mathrm{R})$ and satisfies the Palais-Smale condition. By Lemma 3.1 and generalized mountain pass theorem, $I(u)$ has a critical value b with critical point \tilde{u} such that $I(\tilde{u})=b$. If $\int_{\Omega^{-}} a^{-}(x) d x$ is sufficiently small, by (3.1), we have

$$
\int_{\Omega} a^{+}(x)|\tilde{u}|^{\mu} \leq C
$$

for $C>0$, from which we can conclude that \tilde{u} is bounded and the proof of (i) is complete.

Next we shall prove (ii). We may assume that $R_{n}<R_{n+1}$ for all $n \in N$. Let us set $D_{n}=B_{R_{n}} \cap H_{n}, \partial D_{n}=\partial B_{R_{n}} \cap H_{n}$.

Lemma 4.1. Assume that g satisfies ($g 1$)-(g4). Then there exists an $R_{n}>0$ such that

$$
\begin{equation*}
I(u) \leq 0 \quad \text { for } \quad u \in H_{n} \backslash B_{R_{n}}, \tag{4.1}
\end{equation*}
$$

where $B_{R_{n}}=\left\{u \in H \mid\|u\| \leq R_{n}\right\}$.

Proof. Let us choose $\psi \in H$ such that $\|\psi\|=1, \psi \geq 0$ in Ω and $\operatorname{supp}(\psi) \subset \Omega^{+}$. Then, by $(g 3),(1.2)$ and the Hölder inequality, we have

$$
\begin{aligned}
I(t \psi) & =\frac{1}{2}\left\|P_{+} t \psi\right\|^{2}-\frac{1}{2}\left\|P_{-} t \psi\right\|^{2}-\int_{\Omega} a(x) G(t \psi) \\
& \leq \frac{1}{2} t^{2}-\|a\|_{\infty} \int_{\Omega} C_{1} t^{\mu} \psi^{\mu}+\|a\|_{\infty} a_{1} t \\
& \leq \frac{1}{2} t^{2}-t^{\mu}\|a\|_{\infty} C_{1}^{\prime} \psi^{\mu}+\|a\|_{\infty} a_{1} t
\end{aligned}
$$

for $C_{1}, C_{1}^{\prime}>0$. Since $\mu>2$, there exist t_{n} great enough for each n and an $R_{n}>0$ such that $u_{n}=t_{n} \psi$ and $I\left(u_{n}\right)<0$ if $u_{n} \in H_{n} \backslash B_{R_{n}}$ and $\left\|u_{n}\right\|>R_{n}$, so the lemma is proved

Let us set

$$
\Gamma_{n}=\left\{\gamma \in C([0,1], H) \mid \gamma(0)=0 \text { and } \gamma(1)=u_{n}\right\}
$$

and

$$
b_{n}=\inf _{\gamma \in \Gamma_{n}} \max _{[0,1]} I(\gamma(u)) \quad n \in N .
$$

Proof of Theorem B (ii).
We assume that $g(u) u-\mu G(u)$ is not bounded and there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x) d x<\epsilon$. By Proposition 2.1 and Proposition 2.2, $I \in C^{1}(H, R)$ and satisfies the Palais-Smale condition. By Lemma 4.1,there exists an $R_{n}>0$ such that $I\left(u_{m}\right) \leq 0$ for $u_{n} \in H_{n} \backslash B_{R_{n}}$. We note that $I(0)=0$. By Lemma 4.1 and the generalized mountain pass theorem, for n large enough $b_{n}>0$ is a critical value of I and $\lim _{n \rightarrow \infty} b_{n}=+\infty$. Let $\tilde{u_{n}}$ be a critical point of I such that $I\left(\tilde{u_{n}}\right)=$ b_{n}. Then for each real number $M, \max _{\Omega}\left|\tilde{u_{n}}(x)\right| \geq M$. In fact, by contradiction, $\Delta^{2} u+c \Delta u=a(x) g(u)$ and $\max _{\Omega}\left|\tilde{u_{n}}(x)\right| \leq K$ imply that

$$
I\left(\tilde{u_{n}}\right) \leq \max _{\left|\tilde{u_{n}}\right| \leq K}\left(\frac{1}{2} g\left(\tilde{u_{n}}\right) \tilde{u_{n}}-G\left(\tilde{u_{n}}\right)\right) \int_{\Omega}|a(x)|,
$$

which means that b_{n} is bounded. This is absurd to the fact that $\lim _{n \rightarrow \infty} b_{n}=+\infty$. Thus we complete the proof.

References

[1] Chang, K. C., Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, (1993).
[2] Choi, Q. H. and Jung, T., Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation, Acta Mathematica Scientia 19 (4) (1999), 361374.
[3] Choi, Q. H. and Jung, T., Multiplicity results on nonlinear biharmonic operator, Rocky Mountain J. Math. 29 (1) (1999), 141-164.
[4] Choi, Q. H. and Jung, T., An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations 7 (1995), 390-410.
[5] Jung, T. S. and Choi, Q. H., Multiplicity results on a nonlinear biharmonic equation, Nonlinear Analysis, Theory, Methods and Applications, 30 (8) (1997), 5083-5092.
[6] Khanfir, S. and Lassoued, L., On the existence of positive solutions of a semilinear elliptic equation with change of sign, Nonlinear Analysis, TMA, 22, No.11, 1309-1314(1994).
[7] Lazer, A. C. and Mckenna, J. P., Multiplicity results for a class of semilinear elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985), 371-395.
[8] Micheletti, A. M. and Pistoia, A., Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Analysis, TMA, 31 (7) (1998), 895-908.
[9] Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, CBMS. Regional conf. Ser. Math. 65, Amer. Math. Soc., Providence, Rhode Island (1986).
[10] Tarantello, A note on a semilinear elliptic problem, Diff. Integ.Equat., 5 (3) (1992), 561-565.

Tacksun Jung
Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail: tsjung@kunsan.ac.kr
Q-Heung Choi
Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr

