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NONLINEAR BIHARMONIC EQUATION WITH

POLYNOMIAL GROWTH NONLINEAR TERM

Tacksun Jung∗ and Q-Heung Choi

Abstract. We investigate the existence of solutions of the nonlin-
ear biharmonic equation with variable coefficient polynomial growth
nonlinear term and Dirichlet boundary condition. We get a theo-
rem which shows that there exists a bounded solution and a large
norm solution depending on the variable coefficient. We obtain this
result by variational method, generalized mountain pass geometry
and critical point theory.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let ∆
be the elliptic operator and ∆2 be the biharmonic operator. Choi and
Jung [3] showed that the problem

∆2u+ c∆u = bu+ + s in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω

has at least two nontrivial solutions when (c < λ1, λ1(λ1 − c) < b <
λ2(λ2 − c) and s < 0) or (λ1 < c < λ2, b < λ1(λ1 − c) and s > 0).
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We obtained these results by using variational reduction method. Jung
and Choi [5] also proved that when c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c)
and s < 0, (1.1) has at least three nontrivial solutions by using degree
theory. Tarantello [10] also studied

∆2u+ c∆u = b((u+ 1)+ − 1), (1.2)

u = 0, ∆u = 0 on ∂Ω.

She showed that if c < λ1 and b ≥ λ1(λ1 − c), then (1.4) has a negative
solution. She obtained this result by degree theory. Micheletti and
Pistoia [8] also proved that if c < λ1 and b ≥ λ2(λ2−c) then (1.2) has at
least four solutions by variational linking theorem and Leray-Schauder
degree theory.

In this paper we consider the following nonlinear biharmonic equation
with Dirichlet boundary condition

∆2u+ c∆u = a(x)g(u) in Ω, (1.3)

u = 0, ∆u = 0 on ∂Ω,

where we assume that c ∈ R is not an eigenvalue of −∆ and that a :
Ω→ R is a continuous function which changes sign in Ω.

We assume that g satisfies the following conditions:
(g1) g ∈ C(R,R),
(g2) there are constants a1, a2 ≥ 0 such that

|g(u)| ≤ a1 + a2|u|µ−1,

where 2 < µ < 2n
n−2

if n ≥ 3.
(g3) there exists a constant r0 ≥ 0 such that

0 < µG(ξ) = µ

∫ ξ

0

g(t)dt ≤ ξg(ξ) for |ξ| ≥ r0.

(g4) g(u) = o(|u|) as u→ 0.
We note that (g3) implies the existence of the positive constants a3, a4,
a5 such that

1

µ
(ξg(ξ) + a3) ≥ G(ξ) + a4 ≥ a5|ξ|µ for ξ ∈ R. (1.4)

Khanfir and Lassoued [6] showed the existence of at least one solution
for the nonlinear elliptic boundary problem when g is locally Hölder
continuous on R+.



Nonlinear biharmonic equation with polynomial growth nonlinear term 381

We are trying to find the weak solutions of (1.3), that is,∫
Ω

((∆2u+ c∆u− a(x)g(u))vdx = 0 for v ∈ H,

where the space H is introduced in section 2. Let us set

Ω+ = {x ∈ Ω|a(x) > 0}, Ω− = {x ∈ Ω| a(x) < 0}
and let

a+ = a · χΩ+ , a− = −a · χΩ− .

Since a(x) changes sign, the open subsets Ω+ and Ω− are nonempty.
Now we can write a = a+ − a−. Our main results are as follows:

Theorem A . Assume that λk < c < λk+1, g satisfies (g1)-(g4)
and g(u)u − µG(u) is bounded. Then (1.3) has at least one bounded
solution.

Theorem B. Assume that λk < c < λk+1, g satisfies (g1)-(g4),
g(u)u− µG(u) is not bounded and there exists a small ε > 0 such that∫

Ω−
a−(x) < ε. Then (1.3) has at least two solutions, (i) one of which is

bounded and (ii) the other solution of which is large norm such that

maxx∈Ω|u(x)| > M for some M > 0.

In Section 2, we prove that I(u) is continuous and Fréchet differen-
tiable and satisfies the (P.S.) condition. In Section 3, we prove Theorem
A . In Section 4, we prove Theorem B by variational method, general-
ized mountain pass geometry and critical point theory.

2. Eigenspaces and Palais-Smale condition

The eigenvalue problem with Dirichlet boundary condition

∆u+ λu = 0 in Ω,

u = 0 on ∂Ω

has infinitely many eigenvalues λk, k ≥ 1 and corresponding eigenfunc-
tions φk, k ≥ 1, the suitably normalized with respect to L2(Ω) inner
product, where each eigenvalue λk is repeated as often as its multiplic-
ity. The eigenvalue problem

∆2u+ c∆u = Λu in Ω,

u = 0, ∆u = 0 on ∂Ω
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has also infinitely many eigenvalues λk(λk− c), k ≥ 1 and corresponding
eigenfunctions φk, k ≥ 1. We note that λ1(λ1− c) ≤ λ2(λ2− c) ≤ . . .→
+∞, and that φ1(x) > 0 for x ∈ Ω.

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkφk with
∑

h2
k <∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑
|λk(λk − c)| <∞}.

Then this is a complete normed space with a norm

‖u‖ = [
∑
|λk(λk − c)|h2

k]
1
2 .

Since λk → +∞ and c is fixed, we have
(i) ∆2u+ c∆u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0,
which is proved in [2].
Let

H+ = {u ∈ H| hk = 0 if λk(λk − c) < 0},

H− = {u ∈ H| hk = 0 if λk(λk − c) > 0}.
Then H = H− ⊕H+, for u ∈ H, u = u− + u+ ∈ H− ⊕H+. Let P+ be
the orthogonal projection on H+ and P− be the orthogonal projection
on H−. We can wtite P+u = u+, P−u = u−, for u ∈ H.

We are looking for the weak solutions of (1.1). The weak solutions of
(1.1) coincide with the critical points of the associated functional

I(u) ∈ C1(H,R),

I(u) =

∫
Ω

[
1

2
|∆u|2 − c

2
|∇u|2]dx−

∫
Ω

a(x)G(u)dx (2.1)

=
1

2
(‖P+u‖2 − ‖P−u‖2)−

∫
Ω

a(x)G(u)dx.

By (g1) and (g2), I is well defined. By the following Proposition 2.1,
I ∈ C1(H,R) and I is Fréchet differentiable in H:
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Proposition 2.1. Assume that λk < c < λk+1, k ≥ 1, and g
satisfies (g1)− (g4). Then I(u) is continuous and Fréchet differentiable
in H with Fréchet derivative

∇I(u)h =

∫
Ω

[∆u ·∆h− c∇u · ∇h− a(x)g(u)h]dx. (2.2)

If we set

K(u) =

∫
Ω

a(x)G(u)dx,

then K ′(u) is continuous with respect to weak convergence, K ′(u) is
compact, and

K ′(u)h =

∫
Ω

a(x)g(u)hdx for all h ∈ H.

This implies that I ∈ C1(H,R) and K(u) is weakly continuous.

The proof of Proposition 2.1 has the same process as that of the proof
in Appendix B in [9].

Proposition 2.2. (Palais-Smale condition)
Assume that λk < c < λk+1, k ≥ 1, g satisfies (g1) − (g4) and f ∈
L2(Ω). We also assume that g(u)u − µG(u) is bounded or there exists
an ε > 0 such that

∫
Ω−
a−(x)dx < ε. Then I(u) satisfies the Palais-Smale

condition.

Proof. We assume that g(u)u − µG(u) is bounded or there exists an
ε > 0 such that

∫
Ω−
a−(x)dx < ε. Suppose that (um) is a sequence with

I(um) ≤M and I ′(um)→ 0 as m→∞. Then by (g2), (g3), and Hölder
inequality and Sobolev Embedding Theorem, for large m and µ > 2 with
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u = um, we have

M +
1

2
‖u‖ ≥ I(u)− 1

2
I ′(u)u =

∫
Ω

[
1

2
a(x)g(u)u− a(x)G(u)]dx

=

∫
Ω

a+(x)[
1

2
g(u)u−G(u)]dx−

∫
Ω

a−(x)[
1

2
g(u)u−G(u)]dx

≥
(

1

2
− 1

µ

)
µ

∫
Ω

a+(x) ·G(u)dx

−max
Ω
|1
2
g(u)u−G(u)|

∫
Ω−
a−(x)dx

≥
(

1

2
− 1

µ

)
µ

∫
Ω

a+(x) · (a3|u|µ − a4) dx

−max
Ω
|1
2
g(u)u−G(u)|

∫
Ω−
a−(x)dx.

Thus if 1
2
g(u)u − G(u) is bounded or there exists an ε > 0 such that∫

Ω−
a−(x) < ε, then we have

1 + ‖u‖ ≥M1

∫
Ω

|u|µ ≥M2

(∫
Ω

|u|2dx
) 1

2
·µ

. (2.3)

Moreover since

|I ′(um)ϕ| ≤ ‖ϕ‖ (2.4)

for large m and all ϕ ∈ H, choosing ϕ = u+
m ∈ H+ gives

‖u+
m‖2 =

∫
Ω

(
∆2um + c∆um

)
· u+

m

=

∫
Ω

a(x)g(um)u+
m

≤
∫

Ω

|a(x)||g(um)||um|

≤ ‖a‖∞
∫

Ω

(a1|um|µ + a2|um|)

≤ C1

∫
Ω

|um|µ + C2‖um‖L2(Ω)

≤ C1

∫
Ω

|um|µ + C ′2‖um‖.
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Taking ϕ = −u−m in (2.4) yields

‖u−m‖2 =

∫
Ω

(
∆2um + c∆um

)
· (−u−m)

=

∫
Ω

a(x)g(um) · (−u−m)

≤
∫

Ω

|a(x)||g(um)||um|

≤ ‖a‖∞
∫

Ω

(a1|um|µ + a2|um|)

≤ C3

∫
Ω

|um|µ + C4‖um‖L2(Ω)

≤ C3

∫
Ω

|um|µ + C ′4‖um‖.

Thus, by (2.3), we have

‖um‖2 = ‖u+
m‖2 + ‖u−m‖2 ≤ M3

∫
Ω

|um|µ +M4‖um‖

≤ M5 (1 + ‖um‖) +M4‖um‖ ≤M6 (1 + ‖um‖) ,

from which the boundedness of (um) follows. Thus (um) converges
weakly in H. Since P±I

′(um) = ±P±um+P±P̃(um) with P̃ compact and
the weak convergence of P±um imply the strong convergence of P±um
and hence (PS) condition holds.

3. At least one bounded solution

We shall show that I(u) satisfies generalized mountain pass geomet-
rical assumptions.
We recall generalized mountain pass geometry:
Let H = V ⊕ X, where H is a real Banach space and V 6= {0} and is
finite dimensional. Suppose that I ∈ C1(H,R), satisfies (P.S.) condiion,
and
(i) there are constants ρ, α > 0 and a bounded neighborhood Bρ of 0
such that I|∂Bρ∩X ≥ α,
(ii) there is an e ∈ ∂B1∩X andR > ρ such that ifQ = (B̄R∩V )⊕{re| 0 <
r < R}, then I|∂Q ≤ 0.
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Then I possesses a critical value b ≥ α. Moreover b can be characterized
as

b = inf
γ∈Γ

max
u∈Q

I(γ(u)),

where

Γ = {γ ∈ C(Q̄,H)| γ = id on ∂Q}.
Let Hk = span{φ1, . . . , φk}. Then Hk is a subspace of H such that

H = ⊕k∈NHk and H = Hk ⊕H⊥k .

Let

Br = {u ∈ H| ‖u‖ ≤ r},

Q = (B̄R ∩Hk)⊕ {re| 0 < r < R}.
We have the following generalized mountain pass geometrical assump-

tions:

Lemma 3.1. Assume that λk < c < λk+1 and g satisfies (g1)−(g4).
Then
(i) there are constants ρ > 0, α > 0 and a bounded neighborhood Bρ of
0 such that I|∂Bρ∩H⊥k ≥ α, and

(ii) there is an e ∈ ∂B1 ∩H⊥k and R > ρ such that if Q = (B̄R ∩Hk)⊕
{re| 0 < r < R}, then I|∂Q ≤ 0, and
(iii) there exists u0 ∈ H such that ‖u0‖ > ρ and I(u0) ≤ 0.

Proof. (i) Let u ∈ H⊥k . We note that

if u ∈ H⊥k ,
∫

Ω

(∆2u+ c∆u)udx ≥ λk+1(λk+1 − c)‖u‖2
L2(Ω) > 0.

Thus by (g3), (1.2) and the Hölder inequality, we have

I(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 −

∫
Ω

a(x)G(u)

≥ 1

2
‖P+u‖2 − ‖a‖∞

∫
Ω

C1|u|µ

≥ 1

2
‖P+u‖2 − ‖a‖∞C ′1‖u‖µ

for C1, C
′
1 > 0. Since µ > 2, there exist ρ > 0 and α > 0 such that if

u ∈ ∂Bρ, then I(u) ≥ α.
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(ii) Let u ∈ (B̄r ∩ Hk) ⊕ {re| 0 < r}. Then u = v + w, v ∈ Br ∩ Hk,
w = re. We note that

if v ∈ Hk,

∫
Ω

(∆2v + c∆v)vdx ≤ λk(λk − c)‖v‖2
L2(Ω) < 0.

Thus we have

I(u) =
1

2
r2 − 1

2
‖P−v‖2 −

∫
Ω

a(x)G(v + re)

≤ 1

2
r2 +

1

2
(λk(λk − c))‖v‖2

L2(Ω) −
∫

Ω+

a(x)(a5|v + re|µ − a4)

Since µ > 2, there exists R > 0 such that if u ∈ Q = (B̄R∩Hk)⊕{re| 0 <
r < R}, then I(u) < 0
(iii) If we choose ψ ∈ H such that ‖ψ‖ = 1, ψ ≥ 0 in Ω and supp(ψ) ⊂
Ω+, then we have

I(tψ) ≤ 1

2
‖P+(tψ)‖2 − 1

2
‖P−(tψ)‖2 −

∫
Ω+

a(x) (a3t
µψµ − a4)

≤ 1

2
‖tψ‖2 −

∫
Ω+

a(x) (a3t
µψµ − a4)

=
1

2
t2 −

∫
Ω+

a(x) (a3t
µψµ − a4)

for all t > 0. Since µ > 2, for t0 great enough, u0 = t0ψ is such that
‖u0‖ > ρ and I(u0) ≤ 0.

Theorem A . Assume that λk < c < λk+1, g satisfies (g1)-(g4)
and g(u)u − µG(u) is bounded. Then (1.3) has at least one bounded
solution.

Proof. By Proposition 2.1 and Proposition 2.2, I(u) ∈ C1(H,R) and
satisfies the Palais-Smale condition. By Lemma 3.1, there are constants
ρ > 0, α > 0 and a bounded neighborhood Bρ of 0 such that I|∂Bρ∩H⊥m ≥
α, and there is an e ∈ ∂B1 ∩ H⊥k and R > ρ such that if Q = (B̄R ∩
Hk)⊕{re| 0 < r < R}, then I|∂Q ≤ 0, and there exists u0 ∈ H such that
‖u0‖ > ρ and I(u0) ≤ 0. By the generalized mountain pass theorem,
I(u) has a critical value b ≥ α. Moreover b can be characterized as

b = inf
γ∈Γ

max
u∈Q

I(γ(u)),

where
Γ = {γ ∈ C(Q̄,H)| γ = id on ∂Q}.
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We denote by ũ a critical point of I such that I(ũ) = b. We claim that
there exists a constant C > 0 such that

‖a+(x)
1
µ ũ‖L2(Ω) ≤ C

(
1 + L

∫
Ω−
a−(x)dx

) 1
µ

,

where L = max
Ω
|1
2
g(ũ)ũ−G(ũ)|.

In fact, we have

b ≤ max I(tu0), 0 ≤ t ≤ 1,

and

I(tu0) = t2
(

1

2
‖P+u0‖2 − 1

2
‖P−u0‖2

)
−
∫

Ω

a(x)G(tu0)dx

≤ t2‖u0‖2 −
∫

Ω

a+(x)G(tu0)dx+

∫
Ω

a−(x)G(tu0)dx

≤ t2‖u0‖2 − a3t
µ

∫
Ω

a+(x)uµ0 + a4

∫
Ω

a+(x) + a5t
µ

∫
Ω

a−(x)uµ0

= Ct2 − Ctµ + C + C ′tµ.

Since 0 ≤ t ≤ 1, b is bounded: b < C̃.
We can write

b = I(ũ)− 1

2
I ′(ũ)ũ

=

∫
Ω

a(x)

(
1

2
g(ũ)ũ−G(ũ)

)
dx

=

∫
Ω

a+(x)

(
1

2
g(ũ)ũ−G(ũ)

)
dx−

∫
Ω

a−(x)

(
1

2
g(ũ)ũ−G(ũ)

)
dx

≥
(

1

2
− 1

µ

)∫
Ω

a+(x)g(ũ)ũ−max
Ω
|1
2
g(ũ)ũ−G(ũ)|

∫
Ω−
a−(x)dx

≥
(

1

2
− 1

µ

)
µ

∫
Ω

a+(x) (a3|ũ|µ − a4)− L
∫

Ω−
a−(x)dx,

where L = max
Ω
|1
2
g(ũ)ũ−G(ũ)|. Thus we have

C

(
1 + L

∫
Ω−
a−(x)dx

)
≥
∫

Ω

a+(x)|ũ|µ

≥
[ ∫

Ω

(
a+(x)

1
µ |ũ|

)2
]µ

2

, (3.1)
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from which we can conclude that ũ is bounded. In fact, suppose that ũ
is not bounded. Then for any R > 0, |ũ| ≥ R. Thus we have∫

Ω

a+(x)|ũ|µ ≥ Rµ

∫
Ω

a+(x)dx

for any R, which contradicts to the fact (3.1) and the proof of theorem
is complete.

4. At least two solutions

Theorem B. Assume that λk < c < λk+1, g satisfies (g1)-(g4),
g(u)u− µG(u) is not bounded and there exists a small ε > 0 such that∫

Ω−
a−(x) < ε. Then (1.3) has at least two solutions, (i) one of which is

bounded and (ii) the other solution of which is large norm such that

maxx∈Ω|u(x)| > M for some M > 0.

Proof. Assume that 1
2
g(u)u − G(u) is not bounded and there exists

an ε > 0 such that
∫

Ω−
a−(x, t) < ε. By Proposition 2.1 and Proposition

2.2, I ∈ C1(H,R) and satisfies the Palais-Smale condition. By Lemma
3.1 and generalized mountain pass theorem, I(u) has a critical value b
with critical point ũ such that I(ũ) = b. If

∫
Ω−
a−(x)dx is sufficiently

small, by (3.1), we have ∫
Ω

a+(x)|ũ|µ ≤ C

for C > 0, from which we can conclude that ũ is bounded and the proof
of (i) is complete.

Next we shall prove (ii). We may assume that Rn < Rn+1 for all
n ∈ N . Let us set Dn = BRn ∩Hn, ∂Dn = ∂BRn ∩Hn.

Lemma 4.1. Assume that g satisfies (g1)-(g4). Then there exists
an Rn > 0 such that

I(u) ≤ 0 for u ∈ Hn\BRn , (4.1)

where BRn = {u ∈ H| ‖u‖ ≤ Rn}.
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Proof. Let us choose ψ ∈ H such that ‖ψ‖ = 1, ψ ≥ 0 in Ω and
supp(ψ) ⊂ Ω+. Then, by (g3), (1.2) and the Hölder inequality, we have

I(tψ) =
1

2
‖P+tψ‖2 − 1

2
‖P−tψ‖2 −

∫
Ω

a(x)G(tψ)

≤ 1

2
t2 − ‖a‖∞

∫
Ω

C1t
µψµ + ‖a‖∞a1t

≤ 1

2
t2 − tµ‖a‖∞C ′1ψµ + ‖a‖∞a1t

for C1, C
′
1 > 0. Since µ > 2, there exist tn great enough for each n and

an Rn > 0 such that un = tnψ and I(un) < 0 if un ∈ Hn\BRn and
‖un‖ > Rn, so the lemma is proved

Let us set

Γn = {γ ∈ C([0, 1], H)| γ(0) = 0 and γ(1) = un}

and

bn = inf
γ∈Γn

max
[0,1]

I(γ(u)) n ∈ N.

Proof of Theorem B (ii).

We assume that g(u)u − µG(u) is not bounded and there exists an
ε > 0 such that

∫
Ω−
a−(x)dx < ε. By Proposition 2.1 and Proposition

2.2, I ∈ C1(H,R) and satisfies the Palais-Smale condition. By Lemma
4.1,there exists an Rn > 0 such that I(um) ≤ 0 for un ∈ Hn\BRn .
We note that I(0) = 0. By Lemma 4.1 and the generalized mountain
pass theorem, for n large enough bn > 0 is a critical value of I and
limn→∞ bn = +∞. Let ũn be a critical point of I such that I(ũn) =
bn. Then for each real number M , maxΩ|ũn(x)| ≥ M . In fact, by
contradiction , ∆2u+ c∆u = a(x)g(u) and maxΩ|ũn(x)| ≤ K imply that

I(ũn) ≤ max|ũn|≤K(
1

2
g(ũn)ũn −G(ũn))

∫
Ω

|a(x)|,

which means that bn is bounded. This is absurd to the fact that

limn→∞ bn = +∞. Thus we complete the proof.
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