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LIPSCHITZ AND ASYMPTOTIC STABILITY OF

NONLINEAR SYSTEMS OF PERTURBED

DIFFERENTIAL EQUATIONS

Sang Il Choi and Yoon Hoe Goo∗

Abstract. In this paper, we investigate Lipschitz and asymptotic
stability for perturbed nonlinear differential systems.

1. Introduction

The notion of uniformly Lipschitz stability (ULS) was introduced by
Dannan and Elaydi [9]. This notion of ULS lies somewhere between
uniformly stability on one side and the notions of asmptotic stability in
variation of Brauer[2,4] and uniformly stability in variation of Brauer
and Strauss[3] on the other side. An important feature of ULS is that
for linear systems, the notion of uniformly Lipschitz stability and that of
uniformly stability are equivalent. However, for nonlinear systems, the
two notions are quite distinct. Furthermore, uniform Lipshitz stability
neither implies asymptotic stability nor is it implied by it. Also, Elaydi
and Farran[10] introduced the notion of exponential asymptotic stabil-
ity(EAS) which is a stronger notion than that of ULS. They investigated
some analytic criteria for an autonomous differential system and its per-
turbed systems to be EAS. Pachpatte[15] investigated the stability and

Received January 26, 2015. Revised March 16, 2015. Accepted March 16, 2015.
2010 Mathematics Subject Classification: 34D10, 34D20.
Key words and phrases: uniformly Lipschitz stability, uniformly Lipschitz stabil-

ity in variation, exponentially asymptotic stability, exponentially asymptotic stability
in variation.
∗Corresponding aurthor.
c© The Kangwon-Kyungki Mathematical Society, 2015.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



182 S.Choi and Y. H. Goo

asymptotic behavior of solutions of the functional differential equation.
Gonzalez and Pinto[11] proved theorems which relate the asymptotic
behavior and boundedness of the solutions of nonlinear differential sys-
tems. Choi et al.[6,7,8] examined Lipschitz and exponential asymptotic
stability for nonlinear functional systems. Also, Goo et al.[5,12,13] in-
vestigated Lipschitz and asymptotic stability for perturbed differential
systems.

In this paper we will obtain some results on ULS and EAS for nonlin-
ear perturbed differential systems. We will employ the theory of integral
inequalities to study Lipschitz and asymptotic stability for solutions of
the nonlinear differential systems. The method incorporating integral
inequalities takes an important place among the methods developed for
the qualitative analysis of solutions to linear and nonlinear system of
differential equations.

2. Preliminaries

We consider the nonautonomous nonlinear differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+×Rn and f(t, 0) = 0. Also, we consider the perturbed
differential system of (2.1)

(2.2) y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds, y(t0) = y0,

where g ∈ C(R+ × Rn,Rn) , g(t, 0) = 0. For x ∈ Rn, let |x| =
(
∑n

j=1 x
2
j)

1/2. For an n × n matrix A, define the norm |A| of A by

|A| = sup|x|≤1 |Ax|.
Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) =

x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and
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z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
Before giving further details, we give some of the main definitions

that we need in the sequel[8].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called
(S)stable if for any ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such
that if |x0| < δ , then |x(t)| < ε for all t ≥ t0 ≥ 0,
(US)uniformly stable if the δ in (S) is independent of the time t0,
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such
that |x(t)| ≤M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and
δ > 0 such that |Φ(t, t0, x0) ≤M for |x0| ≤ δ and t ≥ t0 ≥ 0,
(EAS) exponentially asymptotically stable if there exist constants K > 0
, c > 0, and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t,

provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t,

provided that |x0| <∞.

Remark 2.2. [11] The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

We give some related properties that we need in the sequel.
We need Alekseev formula to compare between the solutions of (2.1)

and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.5)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.5) passing through the point (t0, y0) in R+ × Rn.



184 S.Choi and Y. H. Goo

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.3. Let x(t, t0, y0) and y(t, t0, y0) be a solution of (2.1) and
(2.5), respectively. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.4. [12] Let u, p, q, w ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u. Suppose that for some c ≥ 0,

u(t) ≤ c+

∫ t

t0

p(s)

∫ s

t0

q(τ)w(u(τ))dτds, t ≥ t0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

p(s)

∫ s

t0

q(τ)dτds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s)

, u ≥ u0 ≥ 0, W−1(u) is the inverse of W (u), and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

p(s)

∫ s

t0

q(τ)dτds ∈ domW−1
}
.

Lemma 2.5. [8](Bihari-type inequality) Let u, λ ∈ C(R+),
w ∈ C((0,∞)) and w(u) be nondecreasing in u. Suppose that for some
c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.4 and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 2.6. [5] Let u, λ1, λ2, λ3, w ∈ C(R+), w(u) be nondecreasing
in u and u ≤ w(u). If , for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)

∫ s

t0

λ3(τ)w(u(τ))dτds, t ≥ t0 ≥ 0,
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then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.4, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}
.

Lemma 2.7. [5] Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c +

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ)ds
]
,

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ)ds ∈ domW−1
}
.

We obtain the following corollary from Lemma 2.7.

Corollary 2.8. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
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and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)

∫ s

t0

λ3(τ)u(s)ds

+

∫ t

t0

λ4(s)

∫ s

t0

λ5(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ + λ4(s)

∫ s

t0

λ5(τ)dτ)ds
]
,

t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0
λ3(τ)dτ

+λ4(s)
∫ s
t0
λ5(τ)dτ)ds ∈ domW−1

}
.

3. Main Results

In this section, we investigate Lipschitz and asymptotic stability for
solutions of the nonlinear perturbed differential systems.

Theorem 3.1. For the perturbed (2.2), we assume that

|g(t, y)| ≤ a(t)w(|y(t)|),

where a ∈ C(R+), a, w ∈ L1(R+), w ∈ C((0,∞)), w(u) is nondecreasing
in u, and 1

v
w(u) ≤ w(u

v
) for some v > 0,

(3.1) M(t0) = W−1
[
W (M) +M

∫ ∞
t0

∫ s

t0

a(τ)dτds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1)
and (2.2), respectively. Since x = 0 of (2.1) is ULSV, it is ULS([9],Theorem
3.3). Using the nonlinear variation of constants formula and the ULSV
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condition of x = 0 of (2.1), we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤M |y0|+
∫ t

t0

M |y0|
∫ s

t0

a(τ)w(
|y(τ)|
|y0|

)dτds.

Set u(t) = |y(t)||y0|−1. Then, an application of Lemma 2.4 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

∫ s

t0

a(τ)dτds
]
.

Thus, by (3.1), we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ, and so the proof is complete.

Letting w(y(t)) = y(t) in Theorem 3.1, we obtain the following corollary.

Corollary 3.2. For the perturbed (2.2), we assume that

|g(t, y)| ≤ a(t)|y(t)|,

where a ∈ C(R+) and a ∈ L1(R+),

M(t0) = exp(M

∫ ∞
t0

∫ s

t0

a(τ)dτds),

where M(t0) <∞. Then the zero solution of (2.2) is ULS whenever the
zero solution of (2.1) is ULSV.

Theorem 3.3. For the perturbed (2.2), we assume that∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t)|),

where a ∈ C(R+), a, w ∈ L1(R+) , w ∈ C((0,∞)), and w(u) is nonde-
creasing in u, and 1

v
w(u) ≤ w(u

v
) for some v > 0,

(3.2) M(t0) = W−1
[
W (M) +M

∫ ∞
t0

a(s)ds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS
whenever the zero solution of (2.1) is ULSV.
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since x = 0 of (2.1) is ULSV, it is ULS.
Applying Lemma 2.3, we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤M |y0|+
∫ t

t0

M |y0|a(s)w(
|y(s)|
|y0|

)ds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.5 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

a(s)ds
]
.

Hence, by (3.2), we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ. This completes the proof.

Letting w(y(t)) = y(t) in Theorem 3.3, we obtain the following corollary.

Corollary 3.4. For the perturbed (2.2), we assume that∫ t

t0

|g(s, y(s))|ds ≤ a(t)|y(t)|,

where a ∈ C(R+) and a ∈ L1(R+),

M(t0) = exp(

∫ ∞
t0

Ma(s)ds),

where M(t0) <∞. Then the zero solution of (2.2) is ULS whenever the
zero solution of (2.1) is ULSV.

Theorem 3.5. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbing term g(t, y) satisfies

(3.3) |g(t, y(t))| ≤ e−αta(t)w(|y(t)|),

where α > 0, a, w ∈ C(R+), a, w ∈ L1(R+), and w(u) is nondecreasing
in u. If

(3.4) M(t0) = W−1
[
W (c) +M

∫ ∞
t0

eαs
∫ s

t0

a(τ)dτds
]
<∞, t ≥ t0,

where c = |y0|Meαt0 , then all solutions of (2.2) approch zero as t→∞.
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV,
by remark 2.2, it is EVS. Using Lemma 2.3 and (3.3), we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
∫ s

t0

e−ατa(τ)w(|y(τ)|)dτds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
∫ s

t0

a(τ)w(|y(τ)|eατ )dτds.

Set u(t) = |y(t)|eαt. Then, an application of Lemma 2.4 and (3.4) obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

eαs
∫ s

t0

a(τ)dτds
]
≤ ce−αtM(t0), t ≥ t0,

where c = |y0|Meαt0 . Therefore, all solutions of (2.2) approch zero as
t→∞.

Letting w(y(t)) = y(t) in Theorem 3.5, we obtain the following corollary.

Corollary 3.6. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbing term g(t, y) satisfies

|g(t, y(t))| ≤ e−αta(t)|y(t)|,
where α > 0, a ∈ C(R+), and a ∈ L1(R+). If

M(t0) = exp

∫ ∞
t0

Meαs
∫ s

t0

a(τ)dτds <∞, t ≥ t0,

where c = |y0|Meαt0 , then all solutions of (2.2) approch zero as t→∞.

Theorem 3.7. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbing term g(t, y) satisfies

(3.5)

∫ t

t0

|g(s, y(s))|ds ≤ e−αta(t)w(|y(t)|),

where α > 0, a, w ∈ C(R+), a, w ∈ L1(R+), and w(u) is nondecreasing
in u. If

M(t0) = W−1
[
W (c) +M

∫ ∞
t0

a(s)ds
]
<∞, b1 =∞,

where c = M |y0|eαt0 , then all solutions of (2.2) approch zero as t→∞.
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV,
by remark 2.2, it is EVS. Using Lemma 2.3 and (3.5), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
a(s)

eαs
w(|y(s)|)ds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−αta(s)w(|y(s)|eαs)ds.

Set u(t) = |y(t)|eαt. Since w(u) is nondecreasing, an application of
Lemma 2.5 obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

a(s)ds
]
,

where c = M |y0|eαt0 . From the above estimation, we obtain the desired
result.

Letting w(y(t)) = y(t) in Theorem 3.7, we obtain the following corollary.

Corollary 3.8. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbing term g(t, y) satisfies∫ t

t0

|g(s, y(s))|ds ≤ e−αta(t)|y(t)|,

where α > 0, a ∈ C(R+), and a ∈ L1(R+). If

M(t0) = exp(

∫ ∞
t0

Ma(s)ds) <∞,

where c = M |y0|eαt0 , then all solutions of (2.2) approch zero as t→∞.

Let us consider the functional differential system

(3.6) y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds+ h(t, y(t), T y(t)), y(t0) = y0,

where g ∈ C(R+ × Rn,Rn), h ∈ C(R+ × Rn × Rn,Rn) , g(t, 0) = 0,
h(t, 0, 0) = 0, and T : C(R+,Rn)→ C(R+,Rn) is a continuous operator
.

We need the lemma to prove the following theorem.
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Lemma 3.9. Let k, u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)), u ≤
w(u) and w(u) be nondecreasing in u. Suppose that for some c ≥ 0,
(3.7)

u(t)≤ c+

∫ t

t0

λ1(s)
[ ∫ s

t0

[λ2(τ)u(τ)+λ3(τ)

∫ τ

t0

k(r)w(u(r))dr]dτ+λ4(s)u(s)
]
ds,

for t ≥ t0 ≥ 0 and for some c ≥ 0. Then
(3.8)

u(t) ≤ W−1
[
W (c)+

∫ t

t0

λ1(s)(

∫ s

t0

(λ2(τ)+λ3(τ)

∫ τ

t0

k(r)dr)dτ+λ4(s))ds
]
,

for t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0
λ1(s)(

∫ s
t0

(λ2(τ) + λ3(τ)
∫ τ
t0
k(r)dr)dτ

+λ4(s))ds ∈ domW−1
}
.

Proof. Define a function v(t) by the right member of (3.7). Then

v′(t) = λ1(t)
[ ∫ t

t0

(λ2(s)u(s) + λ3(s)

∫ s

t0

k(τ)w(u(τ))dτ)ds+ λ4(t)u(t)
]
,

which implies

v′(t) ≤ λ1(t)
[ ∫ t

t0

(λ2(s) + λ3(s)

∫ s

t0

k(τ)dτ)ds+ λ4(t)
]
w(v(t)),

since v and w are nondecreasing, u ≤ w(u), and u(t) ≤ v(t) . Now, by
integrating the above inequality on [t0, t] and v(t0) = c, we have
(3.9)

v(t) ≤ c+

∫ t

t0

λ1(s)
[ ∫ s

t0

(λ2(τ) + λ3(τ)

∫ τ

t0

k(r)dr)dτ + λ4(s)
]
w(v(s))ds.

Then, by the well-known Bihari-type inequality, (3.9) yields the estimate
(3.8).

Theorem 3.10. For the perturbed (3.6), we assume that

(3.10) |g(t, y)| ≤ a(t)|y(t)|+ b(t)

∫ t

t0

k(s)w(|y(s)|)ds

and

(3.11) |h(t, y(t), T y(t))| ≤ c(t)|y(t)|,
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where a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+), w ∈ C((0,∞)), u ≤ w(u),
w(u) is nondecreasing in u, and 1

v
w(u) ≤ w(u

v
) for some v > 0,

(3.12)

M(t0) = W−1
[
W (M)+M

∫ ∞
t0

(

∫ s

t0

(a(τ)+ b(τ)

∫ τ

t0

k(r)dr)dτ + c(s))ds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (3.6) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (3.6), respectively. Since x = 0 of (2.1) is ULSV, it is ULS by
([9],Theorem 3.3) . Using the nonlinear variation of constants formula ,
(3.10), and (3.11), we have

|y(t)|≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤M |y0|+
∫ t

t0

M |y0|
[ ∫ s

t0

[a(τ)
|y(τ)|
|y0|

+ b(τ)

∫ τ

t0

k(r)w(
|y(r)|
|y0|

)dr]dτ

+c(s)
|y(s)|
|y0|

]
ds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 3.9 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ + c(s))ds
]
,

Thus, by (3.12), we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ, and so the proof is complete.

Remark 3.11. Letting c(t) = 0 in Theorem 3.10, we obtain the same
result as that of Corollary 3.2.

Theorem 3.12. For the perturbed (3.6), we assume that

(3.13)

∫ t

t0

|g(s, y(s))|ds ≤ a(t)|y(t)|+ b(t)

∫ t

t0

k(s)w(|y(s)|)ds,

and

(3.14) |h(t, y(t), T y(t))| ≤ c(t)|y(t)|,
where a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+), w ∈ C((0,∞)), u ≤ w(u),
w(u) is nondecreasing in u, and 1

v
w(u) ≤ w(u

v
) for some v > 0,

(3.15) M(t0) = W−1
[
W (M)+M

∫ ∞
t0

(a(s)+c(s)+b(s)

∫ s

t0

k(τ)dτ)ds
]
,
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where M(t0) < ∞ and b1 = ∞. Then the zero solution of (3.6) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (3.6), respectively. Since x = 0 of (2.1) is ULSV, it is ULS by
([9],Theorem 3.3). Using the nonlinear variation of constants formula ,
(3.13), and (3.14), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤M |y0|+
∫ t

t0

M |y0|
[
(a(s) + c(s))

|y(s)|
|y0|

+ b(s)

∫ s

t0

k(τ)w(
|y(τ)|
|y0|

)dτ
]
ds

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.6 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
,

Thus, by (3.15), we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ, and so the proof is complete.

Remark 3.13. Letting b(t) = c(t) = 0 in Theorem 3.12, we obtain
the same result as that of Corollary 3.4.

Theorem 3.14. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbed term g(t, y) satisfies

(3.16)

∫ t

t0

|g(s, y(s))|ds ≤ e−αt
(
a(t)|y(t)|+ b(t)

∫ t

t0

k(s)w(|y(s)|)ds
)
,

and

(3.17) |h(t, y(t), T y(t))| ≤ e−αtc(t)|y(t)|,

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+) and w(u) is
nondecreasing in u, u ≤ w(u), and 1

v
w(u) ≤ w(u

v
) for some v > 0. If

(3.18)

M(t0) = W−1
[
W (c)+M

∫ ∞
t0

(a(s)+c(s)+b(s)

∫ s

t0

k(τ)dτ)ds
]
<∞, b1 =∞,

where c = M |y0|eαt0 , then all solutions of (3.6) approch zero as t→∞.
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (3.6), respectively. Since the solution x = 0 of (2.1) is EASV,
it is EAS. Using Lemma 2.3, (3.16), and (3.17), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)[e−αsa(s)|y(s)|

+e−αsb(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ + e−αsc(s)|y(s)|]ds.

≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−αt(a(s) + c(s))|y(s)|eαsds

+

∫ t

t0

Me−αtb(s)

∫ s

t0

k(τ)w(|y(τ)|eατ )dτds.

Set u(t) = |y(t)|eαt. Since w(u) is nondecreasing, it follows from Lemma
2.6 and (3.18) that

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]

≤ e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 . From the above estimation, we obtain the desired
result.

Remark 3.15. Letting b(t) = c(t) = 0 in Theorem 3.14, we obtain
the same result as that of Corollary 3.8.

Theorem 3.16. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbed term g(t, y) satisfies

(3.19) |g(t, y(t))| ≤ e−αt
(
a(t)|y(t)|+ b(t)

∫ t

t0

k(s)w(|y(s)|)ds
)
,

and

(3.20) |h(t, y(t), T y(t))| ≤ e−αtc(t)|y(t)|,
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where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+) and w(u) is
nondecreasing in u, u ≤ w(u), and 1

v
w(u) ≤ w(u

v
) for some v > 0. If

(3.21)

M(t0) = W−1
[
W (c)+M

∫ ∞
t0

(c(s)++

∫ s

t0

a(τ)dτ+b(s)

∫ s

t0

k(τ)dτ)ds
]
<∞,

b1 =∞ ,where c = M |y0|eαt0 , then all solutions of (3.6) approch zero as
t→∞.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (3.6), respectively. Since the solution x = 0 of (2.1) is EASV,
it is EAS. Using Lemma 2.3, (3.19), and (3.20), we have

|y(t)|≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)[

∫ s

t0

(e−ατa(τ)|y(τ)|

+e−ατb(τ)

∫ τ

t0

k(r)w(|y(r)|)dr)dτ + e−αsc(s)|y(s)|]ds.

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−αt(c(s)|y(s)|eαsds+

∫ s

t0

a(τ)|y(τ)|eατdτ)

+

∫ t

t0

Me−αtb(s)

∫ s

t0

k(τ)w(|y(τ)|eατ )dτds.

Set u(t) = |y(t)|eαt. Since w(u) is nondecreasing, it follows from Corol-
lary 2.8 and (3.21) that

|y(t)|≤e−αtW−1
[
W (c) +M

∫ t

t0

(c(s) +

∫ s

t0

a(τ)dτ + b(s)

∫ s

t0

k(τ)dτ)ds
]

≤e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 . From the above estimation, we obtain the desired
result.

Remark 3.17. Letting b(t) = c(t) = 0 in Theorem 3.16, we obtain
the same result as that of Corollary 3.6.
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