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STRONG CONVERGENCE OF AN ITERATIVE

ALGORITHM FOR A MODIFIED SYSTEM OF

VARIATIONAL INEQUALITIES AND A FINITE FAMILY

OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

Jae Ug Jeong

Abstract. In this paper, a new iterative scheme based on the
extra-gradient-like method for finding a common element of the set
of fixed points of a finite family of nonexpansive mappings and the
set of solutions of modified variational inequalities in Banach spaces.
A strong convergence theorem for this iterative scheme in Banach
spaces is established. Our results extend recent results announced
by many others.

1. Introduction

Let (E, ‖ · ‖) be a Banach space and C be a nonempty closed convex
subset of E. Recall that a mapping T : C → C is said to be nonexpansive
if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

We denote by F (T ) the set of fixed points of T .
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Let A,B : C → E be two nonlinear mappings, I be the idnetity
mapping. We consider the modified system of nonlinear variational in-
equalities for finding (x∗, y∗) ∈ C × C such that{

〈x∗ − (I − λ1A)(ax∗ + (1− a)y∗), j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈y∗ − (I − λ2B)x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C,

(1.1)

where λ1, λ2 > 0 and a ∈ [0, 1], J is the normalized duality mapping,
j ∈ J .

In the case a = 0, problem (1.1) reduces to the following general
system of nonlinear variational inequalities for finding (x∗, y∗) ∈ C × C
such that {

〈λ1Ay∗ + x∗ − y∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈λ2Bx∗ + y∗ − x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C,

(1.2)

which was considered by Wang and Yang [12], Yao et al. [13].

In particular, if A = B, then problem (1.2) reduces to the following
system of variational inequalities for finding (x∗, y∗) ∈ C × C such that{

〈λ1Ay∗ + x∗ − y∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈λ2Ax∗ + y∗ − x∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,

(1.3)

which was studied by Qin et al. [6].

If x∗ = y∗ in (1.3), then (1.3) reduces to

〈Ax∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,(1.4)

which was considered by Aoyama et al. [1].

If E = H is a real Hilbert space and A,B : C → H are nonlinear
mappings, then (1.1) reduces to finding (x∗, y∗) ∈ C × C such that{

〈x∗ − (I − λ1A)(ax∗ + (1− a)y∗), x− x∗〉 ≥ 0, ∀x ∈ C,
〈y∗ − (I − λ2B)x∗, x− x∗〉 ≥ 0, ∀x ∈ C.

(1.5)

Aoyama et al. [1] proved that an element x∗ ∈ C is a solution of the
variational inequality (1.4) if and only if x∗ ∈ C is a fixed point of the
mapping QC(I − λA), where λ > 0 is a constant and QC is a sunny
nonexpansive retraction from E onto C.
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Recently, Qin et al. [6] studied the problem of finding a common
element in fixed point set of a nonexpansive mapping and solution set of
a variational inequality for a inverse strongly accretive mapping. More
precisely, they proved the following theorem.

Theorem 1.1. Let E be a uniformly convex and 2-uniformly smooth
Banach space with the 2-uniformly smooth constantK, C be a nonempty
closed convex subset of E and QC be a sunny nonexpansive retraction
from E onto C. Let A : C → E be an α-inverse strongly accretive
mapping and S : C → C be a nonexpansive mapping with a fixed point.
Assume that F = F (S) ∩ F (D) 6= φ, where Dx = QC [QC(x − µAx) −
λAQC(x−µAx)] for all x ∈ C. Let {xn} be a sequence generated in the
following manner:


x1 = u ∈ C,
yn = QC(xn − µAxn),

xn+1 = αnu+ βnxn + γn[δSxn + (1− δ)QC(yn − λAyn)], n ≥ 1.

(1.6)

where δ ∈ (0, 1), λ, µ ∈ (0, α
K2 ) and {αn}, {βn} and {γn} are sequences

in [0, 1] such that
(a) αn + βn + γn = 1, ∀n ≥ 1;
(b) limn→∞ αn = 0,

∑∞
n=1 αn =∞;

(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then the sequence {xn} converges strongly to x = QFu and (x, y),

where y = QC(x− µAx), is a solution of the problem (1.3).

Motivated and inspired by the research work going on this field, in this
paper, we consider the problem of convergence of an iterative algorithm
for a modified system of nonlinear variational inequalities and a finite
family of nonexpansive mappings. We prove the strong convergence
of the purposed iterative scheme in uniformly convex and 2-uniformly
smooth Banach spaces.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E with
its dual space E∗. Let 〈·, ·〉 denote the dual pair between E and E∗. Let
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2E denote the family of all the nonempty subsets of E. For q > 1,the
generalized duality mapping Jq : E → 2E

∗
is defined by

Jq(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖q, ‖f ∗‖ = ‖x‖q−1}, ∀x ∈ E.

In particular, J = J2 is the normalized duality mapping. It is known
that Jq(x) = ‖x‖q−2J(x) for all x ∈ E and Jq is single-valued if E∗ is
strictly convex or E is uniformly smooth. If E = H is a Hilbert space,
J = I, the identity mapping.

Let B = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be
uniformly convex if, for any ε ∈ (0, 2], there exists δ > 0 such that, for
any x, y ∈ B,

‖x− y‖ ≥ ε implies ‖x+ y

2
‖ ≤ 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly
convex. E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ B. The modulus of smoothness of E is the function
ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

A Banach space E is called uniformly smooth if limt→0
ρE(t)
t

= 0. E is
called q-uniformly smooth if there exists a constant c > 0 such that

ρE(t) ≤ ctq, q > 1.

If E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth.

Definition 2.1. Let A : C → E be a mapping. A is said to be
(i) accretive if there exists j(x− y) ∈ J(x− y) such that

〈Ax− Ay, j(x− y)〉 ≥ 0

for all x, y ∈ C.
(ii) ζ-inverse strongly accretive if there exist j(x− y) ∈ J(x− y) and

a constant ζ > 0 such that

〈Ax− Ay, j(x− y)〉 ≥ ζ‖Ax− Ay‖2

for all x, y ∈ C.
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Definition 2.2. Let C be a nonempty convex subset of a real Banach
space. Let {Ti}Ni=1 be a finite family of nonexpansive mappings of C into
itself and let η1, · · · , ηN be real numbers such that 0 ≤ ηi ≤ 1 for every
i = 1, · · · , N . Define a mapping S : C → C as follows:

U1 = η1T1 + (1− η1)I,

U2 = η2T2U1 + (1− η2)U1,

U3 = η3T3U2 + (1− η3)U2,

...

UN−1 = ηN−1TN−1UN−2 + (1− ηN−1)UN−2,

S = UN = ηNTNUN−1 + (1− ηN)UN−1.

Such a mapping S is called the K-mapping generated by T1, · · · , TN and
η1, · · · , ηN .

Let D be a subset of C and Q be a mapping of C into D. Then Q is
said to be sunny if

Q[Q(x) + t(x−Q(x))] = Q(x),

whenever Q(x) + t(x−Q(x)) ∈ C for x ∈ C and t ≥ 0. A mapping Q of
C into itself is called a retraction if Q2 = Q. If a mapping Q of C into
itself is a retraction, then Q(z) = z for all z ∈ R(Q), where R(Q) is the
range of Q. A subset D of C is called a sunny nonexpansive retract of
C if there exists a sunny nonexpansive retraction from C onto D.

In order to prove our main results in the next section, we also need
the following lemmas.

Lemma 2.1. ([10]) Let E be a real 2-uniformly smooth Banach space.
Then

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ 2‖Ky‖2, ∀x, y ∈ E,
where K is the 2-uniformly smooth constant of E.

Lemma 2.2. ([5]) Let C be a closed convex subset of a strictly convex
Banach space E. Let {Tn : n ∈ N} be a sequence of nonexpansive
mappings of C into itself with ∩Ni=1F (Ti) 6= φ and let η1, · · · , ηN be real
numbers such that 0 < ηi < 1 for every i = 1, · · · , N−1 and 0 < ηN ≤ 1.
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Let S be the K-mapping generated by T1 · · · , TN and η1, · · · , ηN . Then
F (S) = ∩Ni=1F (Ti).

Remark 2.1. It is easy to see that the K-mapping is a nonexpansive
mapping.

Lemma 2.3. ([9]) Let {xn} and {zn} be bounded sequences in a Ba-
nach space and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose that xn+1 = βnxn+(1−βn)zn for all integer
n ≥ 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖xn − zn‖ = 0.

Lemma 2.4. ([8]) Let E be a uniformly smooth Banach space, C be
a closed convex subset of E and D : C → C be a nonexpansive mapping
with F (D) 6= φ. For each fixed point u ∈ C and every t ∈ (0, 1),
the unique fixed point xt ∈ C of the contraction x 7→ tu + (1 − t)Dx
converges strongly as t→ 0 to a point of F (D). Define Q : C → F (D) by
Q(u) = limt→0 xt. Then Q is the unique sunny nonexpansive retraction
from C onto F (D), that is, Q satisfy the property:

〈u−Q(u), j(y −Q(u))〉 ≤ 0, ∀u ∈ C, y ∈ F (D).

Lemma 2.5. ([2]) Let C be a nonempty closed convex subset of a
strictly convex Banach space E. Let {Sk} be a sequence of nonexpansive
mappings of C into E and {βk} be a sequence of positive real numbers
such that

∑∞
k=1 βk = 1. If ∩∞k=1F (Sk) 6= φ, then the mapping S =∑∞

k=1 βkSk is nonexpansive and F (S) = ∩∞k=1F (Sk).

Lemma 2.6. ([11]) Assume that {an} is a sequence of nonnegative
real numbers such that

an+1 ≤ (1− αn)an + βn,

where {αn}, {βn} satisfy the conditions
(a) {αn} ⊂ [0, 1],

∑∞
n=1 αn =∞;

(b) lim supn→∞
βn
αn
≤ 0 or

∑∞
n=1 |βn| <∞.

Then limn→∞ an = 0.

Lemma 2.7. ([7]) Let C be a nonempty closed convex subset of a
smooth Banach space E and let QC be a retraction from E onto C.
Then the following are equivalent:
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(i) QC is both sunny and nonexpansive;
(ii) 〈x−QC(x), j(y −QC(x))〉 ≤ 0 for all x ∈ E and y ∈ C.

Lemma 2.8. ([3]) In a Banach space E, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀x, y ∈ E,

where j(x+ y) ∈ J(x+ y).

Lemma 2.9. ([3]) Let C be a nonempty closed convex subset of a
smooth Banach space E. Let QC : E → C be a sunny nonexpansive
retraction, A,B : C → E be mappings. For every λ1, λ2 > 0 and
a ∈ [0, 1], the following statements are equivalent:

(a) (x∗, y∗) ∈ C × C is a solution of problem (1.1).
(b) x∗ is a fixed point of the mapping G : C → C defined by

G(x) = QC(I − λ1A)(ax+ (1− a)QC(I − λ2B)x),

where y∗ = QC(I − λ2B)x∗.

Proof. (a)⇒(b). Let (x∗, y∗) ∈ C × C be a solution of problem (1.1).
For every λ1, λ2 > 0 and a ∈ [0, 1], we have{

〈x∗ − (I − λ1A)(ax∗ + (1− a)y∗), j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈y∗ − (I − λ2B)x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C.

From Lemma 2.7, we have{
x∗ = QC(I − λ1A)(ax∗ + (1− a)y∗),

y∗ = QC(I − λ2B)x∗.

It implies that

x∗ = QC(I − λ1A)(ax∗ + (1− a)QC(I − λ2)x∗)
= G(x∗).

Hence, we have x∗ ∈ F (G), where y∗ = QC(I − λ2B)x∗.
(b)⇒(a). Let x∗ ∈ F (G) and y∗ = QC(I − λ2B)x∗. Then, we have

x∗ = G(x∗)

= QC(I − λ1A)(ax∗ + (1− a)QC(I − λ2B)x∗)

= QC(I − λ1A)(ax∗ + (1− a)y∗).
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From Lemma 2.7, we have{
〈x∗ − (I − λ1A)(ax∗ + (1− a)y∗), j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈y∗ − (I − λ2B)x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C.

Hence, we have (x∗, y∗) ∈ C × C is a solution of (1.1).

3. Main results

Now we state and prove our main results.

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth
Banach space with the 2-uniformly smooth constantK, C be a nonempty
closed convex subset of E and QC be a sunny nonexpansive retraction
from E onto C. Let A,B : C → E be ζ1, ζ2-inverse strongly accretive
mappings, respectively. Define the mapping G : C → C by G(x) =
QC(I − λ1A)(ax + (1 − a)QC(I − λ2B)x) for all x ∈ C, λ1, λ2 > 0 and
a ∈ [0, 1). Let S : C → C be the K-mapping generated by T1, T2, · · · , TN
and η1, η2, · · · , ηN , where ηi ∈ (0, 1), for i = 1, 2, · · · , N − 1, and ηN ∈
(0, 1] with F = ∩Ni=1F (Ti)∩F (G) 6= φ. Suppose that {xn} is the sequence
generated by

x1, u ∈ C,
yn = QC(I − λ2B)xn,

xn+1 = αnu+ βnxn + γn[δSxn + (1− δ)QC(axn + (1− a)yn
−λ1A(axn + (1− a)yn))], ∀n ≥ 1,

(3.1)

where λ1 ∈ (0, ζ1
K2 ), λ2 ∈ (0, ζ2

K2 ) and {αn}, {βn}, {γn} are sequences in
[0, 1]. Assume that the following conditions hold:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then {xn} converges strongly to x0 = QFu and (x0, y0) is a solution

of (1.1), where y0 = QC(I − λ2B)x0.

Proof. First, we show that QC(I −λ1A) and QC(I −λ2B) are nonex-
pansive mappings for λ1 ∈ (0, ζ1

K2 ), λ2 ∈ (0, ζ2
K2 ). Let x, y ∈ C. Since A

is an ζ1-inverse strongly accretive mapping and λ1 <
ζ1
K2 , we have from
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Lemma 2.1 that

‖(I − λ1A)x− (I − λ2A)y‖2

≤ ‖x− y‖2 − 2λ1〈Ax− Ay, j(x− y)〉+ 2K2λ21‖Ax− Ay‖2

≤ ‖x− y‖2 − 2λ1ζ1‖Ax− Ay‖2 + 2K2λ21‖Ax− Ay‖2

= ‖x− y‖2 + 2λ1(λ1K
2 − ζ1)‖Ax− Ay‖2

≤ ‖x− y‖2.(3.2)

Thus (I − λ1A) is a nonexpansive mapping. So is (I − λ2B). Hence
QC(I − λ1A), QC(I − λ2B) are nonexpansive mappings. It is easy to
see that the mapping G is a nonexpansive mapping. This show from
Remark 2.1 that F = F (S) ∩ F (G) is closed and convex. Let x∗ ∈ F .
Then we have x∗ = Sx∗ and

x∗ = Gx∗

= Qc(I − λ1A)(ax∗ + (1− a)QC(I − λ2B)x∗).

Putting wn = QC(I − λ1A)(axn + (1− a)yn) and y∗ = QC(I − λ2B)x∗,
we can rewrite (3.1) by

xn+1 = αnu+ βnxn + γn(δSxn + (1− δ)wn)

and x∗ = QC(I−λ1A)(ax∗+ (1−a)y∗). Since QC(I−λ1A) and QC(I−
λ2B) are nonexpansive, we have

‖wn − x∗‖
(3.3)

= ‖Qc(I − λ1A)(axn + (1− a)yn)−QC(I − λ1A)(ax∗ + (1− a)y∗)‖
≤ ‖axn + (1− a)yn − (ax∗ + (1− a)y∗)‖
≤ a‖xn − x∗‖+ (1− a)‖yn − y∗‖
≤ a‖xn − x∗‖+ (1− a)‖xn − x∗‖
= ‖xn − x∗‖.
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It follows from the definition of xn and (3.3) that

‖xn+1 − x∗‖
= ‖αnu+ βnxn + γn(δSxn + (1− δ)wn)− x∗‖
≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn[δ‖Sxn − x∗‖+ (1− δ)‖wn − x∗‖]
≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn[δ‖xn − x∗‖+ (1− δ)‖xn − x∗‖]
= αn‖u− x∗‖+ (1− αn)‖xn − x∗‖
≤ max{‖u− x∗‖, ‖x1 − x∗‖}.

So, {xn} is bounded. Hence {yn}, {wn} and {Sxn} are also bounded.
And we have

‖wn+1 − wn‖
(3.4)

= ‖QC(I − λ1A)(axn+1 + (1− a)yn+1)−QC(I − λ1A)(axn + (1− a)yn)‖
≤ a‖xn+1 − xn‖+ (1− a)‖yn+1 − yn‖
≤ a‖xn+1 − xn‖+ (1− a)‖xn+1 − xn‖
= ‖xn+1 − xn‖.

Next, we will show that

lim
n→∞

‖xn+1 − xn‖ = 0.(3.5)

Let

xn+1 = (1− βn)zn + βnxn, ∀n ≥ 1,(3.6)
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where zn = xn+1−βnxn
1−βn for each n ≥ 1. Since xn+1 − βnxn = αnu +

γn[δSxn + (1− δ)wn] and (3.6), we have

zn+1 − zn

=
xn+2 − βn+1xn+1

1− βn+1

− xn+1 − βnxn
1− βn

=
αn+1u+ γn+1[δSxn+1 + (1− δ)wn+1]

1− βn+1

− αnu+ γn[δSxn + (1− δ)wn]

1− βn

− γn+1[δSxn + (1− δ)wn]

1− βn+1

+
γn+1[δSxn + (1− δ)wn]

1− βn+1

=

(
αn+1

1− βn+1

− αn
1− βn

)
u

+
γn+1

1− βn+1

[δ(Sxn+1 − Sxn) + (1− δ)(wn+1 − wn)]

+

(
γn+1

1− βn+1

− γn
1− βn

)
[δSxn + (1− δ)wn]

=

(
αn+1

1− βn+1

− αn
1− βn

)
u

+
γn+1

1− βn+1

[δ(Sxn+1 − Sxn) + (1− δ)(wn+1 − wn)]

+

(
αn

1− βn
− αn+1

1− βn+1

)
[δSxn + (1− δ)wn].

It follows from (3.4) that

‖zn+1 − zn‖

≤
∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣‖u‖
+

γn+1

1− βn+1

‖δ(Sxn+1 − Sxn) + (1− δ)(wn+1 − wn)‖

+

∣∣∣∣ αn
1− βn

− αn+1

1− βn+1

∣∣∣∣‖δSxn + (1− δ)wn‖
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≤
∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣[‖u‖+ ‖Sxn‖+ ‖wn‖]

+
γn+1

1− βn+1

[δ‖Sxn+1 − Sxn‖+ (1− δ)‖wn+1 − wn‖]

≤
∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣[‖u‖+ ‖Sxn‖+ ‖wn‖]

+
γn+1

1− βn+1

[δ‖xn+1 − xn‖+ (1− δ)‖xn+1 − xn‖]

=

∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣[‖u‖+ ‖Sxn‖+ ‖wn‖] +
γn+1

1− βn+1

‖xn+1 − xn‖

≤
∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣[‖u‖+ ‖Sxn‖+ ‖wn‖] + ‖xn+1 − xn‖.

From the conditions (ii) and (iii), we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

From Lemma 2.3 and (3.6), we have

lim
n→∞

‖zn − xn‖ = 0.

Since xn+1 − xn = (1− βn)(zn − xn), we obtain

lim
n→∞

‖xn+1 − xn‖ = 0.(3.7)

Next, we will show that

lim sup
n→∞

〈u− x0, j(xn − x0)〉 ≤ 0,

where x0 = QFu. To show this inequality, define a mapping D : C → C
by

Dx = δSx+ (1− δ)QC(I − λ1A)(ax+ (1− a)QC(I − λ2B)x)

= δSx+ (1− δ)Gx, ∀x ∈ C

From Lemma 2.2 and 2.5, we have D is a nonexpansive mapping with

F (D) = F (S) ∩ F (G)

= ∩Ni=1F (Ti) ∩ F (G)

= F .(3.8)
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From the nonexpansiveness of the mapping D and the definition of xn,
we have

‖xn −Dxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −Dxn‖
≤ ‖xn − xn+1‖+ αn‖u−Dxn‖+ βn‖xn −Dxn‖.

This implies that

(1− βn)‖xn −Dxn‖ ≤ ‖xn − xn+1‖+ αn‖u−Dxn‖.

From the conditions (ii), (iii) and (3.7), we have

lim
n→∞

‖xn −Dxn‖ = 0.(3.9)

Let xt be the fixed point of the contraction x 7→ tu + (1− t)Dx, where
t ∈ (0, 1). That is,

xt = tu+ (1− t)Dxt.

From the definition of xt, we have

‖xt − xn‖2 = ‖t(u− xn) + (1− t)(Dxt − xn)‖2

= (1− t)(〈Dxt −Dxn, j(xt − xn)〉+ 〈Dxn − xn, j(xt − xn)〉)
+ t〈u− xt, j(xt − xn)〉+ t〈xt − xn, j(xt − xn)〉
≤ (1− t)(‖xt − xn‖2 + ‖Dxn − xn‖‖xt − xn‖)

+ t〈u− xt, j(xt − xn)〉+ t‖xt − xn‖2

= ‖xt − xn‖2 + (1− t)‖Dxn − xn‖‖xt − xn‖
+ t〈u− xt, j(xt − xn)〉.(3.10)

(3.10) implies that

〈u− xt, j(xn − xt)〉 ≤
1− t
t
‖Dxn − xn‖‖xt − xn‖.(3.11)

From (3.9) and (3.11), we have

lim sup
n→∞

〈u− xt, j(xn − xt)〉 ≤ 0.(3.12)
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From Lemma 2.4 and (3.8), we see that QF (D)u = limt→0 xt and F (D) =
F . It follows that limt→0 xt = x0 = QF(u). Since

〈u− x0, j(xn − x0)〉
= 〈u− x0, j(xn − x0)〉 − 〈u− x0, j(xn − xt)〉

+ 〈u− x0, j(xn − xt)〉 − 〈u− xt, j(xn − xt)〉
+ 〈u− xt, j(xn − xt)〉

= 〈u− x0, j(xn − x0)− j(xn − xt)〉+ 〈xt − x0, j(xn − xt〉
+ 〈u− xt, j(xn − xt)〉

= ‖u− x0‖‖j(xn − x0)− j(xn − xt)‖+ ‖xt − x0‖xn − xt‖
+ 〈u− xt, j(xn − xt)〉,

it follows that

lim sup
n→∞

〈u− x0, j(xn − x0)〉 ≤ lim sup
n→∞

‖u− x0‖‖j(xn − x0)− j(xn − xt)‖

+ ‖xt − x0‖ lim sup
n→∞

‖xn − xt‖

+ lim sup
n→∞

〈u− xt, j(xn − xt)〉.(3.13)

Since j is norm-to-norm uniformly continuous on a bounded subset of
E, (3.12) and (3.13), we have

lim sup
n→∞

〈u− x0, j(xn − x0)〉 = lim sup
t→0

lim sup
n→∞

〈u− x0, j(xn − x0)〉

≤ 0.(3.14)

Finally, we will show that the sequence {xn} converges strongly to
x0 ∈ F . From the definition of xn and Lemma 2.8, we have

‖xn+1 − x0‖2

= ‖αn(u− x0) + βn(xn − x0) + γn(Dxn − x0)‖2

≤ ‖βn(xn − x0) + γn(Dxn − x0)‖2 + 2αn〈u− x0, j(xn+1 − x0)〉
≤ (βn‖xn − x0‖+ γn‖xn − x0‖)2 + 2αn〈u− x0, j(xn+1 − x0)〉
≤ (1− αn)‖xn − x0‖2 + 2αn〈u− x0, j(xn+1 − x0)〉.(3.15)

From the condition (ii), (3.14) and Lemma 2.6 to (3.15), we obtain that

lim
n→∞

‖xn − x0‖ = 0.

This completes the proof.
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Remark 3.1. (1) If we take a = 0, then the iterative scheme (3.1)
reduces to the following scheme:


x1, u ∈ C,
yn = QC(I − λ2B)xn,

xn+1 = αnu+ βnxn + γn[δSxn + (1− δ)QC(yn − λ1Ayn)], ∀n ≥ 1,

(3.16)

From Theorem 3.1, we obtain that the sequence {xn} generated by (3.16)
converges strongly to x0 = Q∩Ni=1F (Ti)∩F (G)u, where the mapping G : C →
C defined by G(x) = QC(I−λ1A)QC(I−λ2B)x for all x ∈ C and (x0, y0)
is a solution of (1.2), where y0 = QC(I − λ2B)x0.

(2) If we take x1 = u, A = B, N = 1, η1 = 1 and T1 = S : C → C
is a nonexpansive mapping, then the iterative scheme (3.16) reduces to
the following scheme:


x1 = u

yn = QC(I − λ2A)xn,

xn+1 = αnu+ βnxn + γn[δSxn + (1− δ)QC(yn − λ1Ayn)], ∀n ≥ 1,

(3.17)

which is (1.6). From Theorem 3.1, we obtain that the sequence {xn}
generated by (3.17) converges strongly to x0 = QF (S)∩F (G)u, where the
mapping G : C → C defined by G(x) = QC(I − λ1A)QC(I − λ2A)x for
all x ∈ C and (x0, y0) is a solution of (1.3), where y0 = QC(I − λ2A)x0.

Remark 3.2. (i) We note that all Hilbert spaces and Lp(p ≥ 2) spaces
are 2-uniformly smooth.

(ii) If E = H is a Hilbert space, then a sunny nonexpansive retraction
QC is coincident with the metric projection PC from H onto C.

(iii) It is well known that the 2-uniformly smooth constant K =
√
2
2

in Hilbert spaces.

From Theorem 3.1 and Remark 3.3, we can obtain the following result
immediately.

Corollary 3.1. Let C be a nonempty closed convex subset of a
real Hilbert space H and PC be the metric projection from H onto
C. Let A,B : C → H be ζ1, ζ2-inverse strongly monotone mappings,
respectively. Define the mapping G : C → C by

G(x) = PC(I − λ1A)(ax+ (1− a)PC(I − λ2B)x)



424 J. U. Jeong

for all x ∈ C, λ1, λ2 > 0 and a ∈ [0, 1). Let S : C → C be theK-mapping
generated by T1, T2, · · · , TN and η1, η2, · · · , ηN , where ηi ∈ (0, 1) for
i = 1, 2, · · · , N − 1 and ηN ∈ (0, 1] with F = ∩Ni=1F (Ti) ∩ F (G) 6= φ.
Suppose that {xn} is the sequence generated by
x1, u ∈ C,
yn = PC(I − λ2B)xn,

xn+1 = αnu+ βnxn + γn[δSxn
+(1− δ)PC(axn + (1− a)yn − λ1A(axn + (1− a)yn))], ∀n ≥ 1,

where λ1 ∈ (0, 2ζ1), λ2 ∈ (0, 2ζ2) and {αn}, {βn}, {γn} are sequences in
[0, 1]. Assume that the following conditions hold:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn =∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then {xn} converges strongly to x0 = PFu and (x0, y0) is a solution

of (1.5), where y0 = PC(I − λ2B)x0.

Remark 3.3. We can see easily that Aoyama et al. [1], Iiduka and
Takahashi [4], Yao and Yao [14], Qin et al. [6], Wang and Yang [12]’s
results are special cases of Theorem 3.1.
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