STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR A MODIFIED SYSTEM OF VARIATIONAL INEQUALITIES AND A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

Jae Ug Jeong

Abstract

In this paper, a new iterative scheme based on the extra-gradient-like method for finding a common element of the set of fixed points of a finite family of nonexpansive mappings and the set of solutions of modified variational inequalities in Banach spaces. A strong convergence theorem for this iterative scheme in Banach spaces is established. Our results extend recent results announced by many others.

1. Introduction

Let $(E,\|\cdot\|)$ be a Banach space and C be a nonempty closed convex subset of E. Recall that a mapping $T: C \rightarrow C$ is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

We denote by $F(T)$ the set of fixed points of T.

Received June 29, 2015. Revised September 5, 2015. Accepted September 7, 2015. 2010 Mathematics Subject Classification: 49J30, 49J40, 47J25, 49H09.
Key words and phrases: Fixed point; inverse strongly accretive mapping; variational inequality; nonexpansive mapping.

This work was supported by Dong-eui University Grant (2015AA049).
(c) The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Let $A, B: C \rightarrow E$ be two nonlinear mappings, I be the idnetity mapping. We consider the modified system of nonlinear variational inequalities for finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\left\{\begin{array}{l}
\left\langle x^{*}-\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) y^{*}\right), j\left(x-x^{*}\right)\right\rangle \geq 0, \quad \forall x \in C, \tag{1.1}\\
\left\langle y^{*}-\left(I-\lambda_{2} B\right) x^{*}, j\left(x-y^{*}\right)\right\rangle \geq 0, \quad \forall x \in C,
\end{array}\right.
$$

where $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1], J$ is the normalized duality mapping, $j \in J$.

In the case $a=0$, problem (1.1) reduces to the following general system of nonlinear variational inequalities for finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle\lambda_{1} A y^{*}+x^{*}-y^{*}, j\left(x-x^{*}\right)\right\rangle \geq 0, & \forall x \in C, \tag{1.2}\\ \left\langle\lambda_{2} B x^{*}+y^{*}-x^{*}, j\left(x-y^{*}\right)\right\rangle \geq 0, & \forall x \in C,\end{cases}
$$

which was considered by Wang and Yang [12], Yao et al. [13].
In particular, if $A=B$, then problem (1.2) reduces to the following system of variational inequalities for finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle\lambda_{1} A y^{*}+x^{*}-y^{*}, j\left(x-x^{*}\right)\right\rangle \geq 0, & \forall x \in C \tag{1.3}\\ \left\langle\lambda_{2} A x^{*}+y^{*}-x^{*}, j\left(x-x^{*}\right)\right\rangle \geq 0, & \forall x \in C\end{cases}
$$

which was studied by Qin et al. [6].
If $x^{*}=y^{*}$ in (1.3), then (1.3) reduces to

$$
\begin{equation*}
\left\langle A x^{*}, j\left(x-x^{*}\right)\right\rangle \geq 0, \quad \forall x \in C, \tag{1.4}
\end{equation*}
$$

which was considered by Aoyama et al. [1].
If $E=H$ is a real Hilbert space and $A, B: C \rightarrow H$ are nonlinear mappings, then (1.1) reduces to finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\left\{\begin{array}{l}
\left\langle x^{*}-\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) y^{*}\right), x-x^{*}\right\rangle \geq 0, \quad \forall x \in C, \tag{1.5}\\
\left\langle y^{*}-\left(I-\lambda_{2} B\right) x^{*}, x-x^{*}\right\rangle \geq 0, \quad \forall x \in C .
\end{array}\right.
$$

Aoyama et al. [1] proved that an element $x^{*} \in C$ is a solution of the variational inequality (1.4) if and only if $x^{*} \in C$ is a fixed point of the mapping $Q_{C}(I-\lambda A)$, where $\lambda>0$ is a constant and Q_{C} is a sunny nonexpansive retraction from E onto C.

Recently, Qin et al. [6] studied the problem of finding a common element in fixed point set of a nonexpansive mapping and solution set of a variational inequality for a inverse strongly accretive mapping. More precisely, they proved the following theorem.

Theorem 1.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the 2-uniformly smooth constant K, C be a nonempty closed convex subset of E and Q_{C} be a sunny nonexpansive retraction from E onto C. Let $A: C \rightarrow E$ be an α-inverse strongly accretive mapping and $S: C \rightarrow C$ be a nonexpansive mapping with a fixed point. Assume that $\mathcal{F}=F(S) \cap F(D) \neq \phi$, where $D x=Q_{C}\left[Q_{C}(x-\mu A x)-\right.$ $\left.\lambda A Q_{C}(x-\mu A x)\right]$ for all $x \in C$. Let $\left\{x_{n}\right\}$ be a sequence generated in the following manner:

$$
\left\{\begin{array}{l}
x_{1}=u \in C \tag{1.6}\\
y_{n}=Q_{C}\left(x_{n}-\mu A x_{n}\right) \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left[\delta S x_{n}+(1-\delta) Q_{C}\left(y_{n}-\lambda A y_{n}\right)\right], \quad n \geq 1
\end{array}\right.
$$

where $\delta \in(0,1), \lambda, \mu \in\left(0, \frac{\alpha}{K^{2}}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ such that
(a) $\alpha_{n}+\beta_{n}+\gamma_{n}=1, \quad \forall n \geq 1$;
(b) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(c) $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\bar{x}=Q_{\mathcal{F}} u$ and (\bar{x}, \bar{y}), where $\bar{y}=Q_{C}(\bar{x}-\mu A \bar{x})$, is a solution of the problem (1.3).

Motivated and inspired by the research work going on this field, in this paper, we consider the problem of convergence of an iterative algorithm for a modified system of nonlinear variational inequalities and a finite family of nonexpansive mappings. We prove the strong convergence of the purposed iterative scheme in uniformly convex and 2-uniformly smooth Banach spaces.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E with its dual space E^{*}. Let $\langle\cdot, \cdot\rangle$ denote the dual pair between E and E^{*}. Let
2^{E} denote the family of all the nonempty subsets of E. For $q>1$, the generalized duality mapping $J_{q}: E \rightarrow 2^{E^{*}}$ is defined by

$$
J_{q}(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{q},\left\|f^{*}\right\|=\|x\|^{q-1}\right\}, \quad \forall x \in E .
$$

In particular, $J=J_{2}$ is the normalized duality mapping. It is known that $J_{q}(x)=\|x\|^{q-2} J(x)$ for all $x \in E$ and J_{q} is single-valued if E^{*} is strictly convex or E is uniformly smooth. If $E=H$ is a Hilbert space, $J=I$, the identity mapping.

Let $B=\{x \in E:\|x\|=1\}$. A Banach space E is said to be uniformly convex if, for any $\varepsilon \in(0,2]$, there exists $\delta>0$ such that, for any $x, y \in B$,

$$
\|x-y\| \geq \varepsilon \quad \text { implies } \quad\left\|\frac{x+y}{2}\right\| \leq 1-\delta
$$

It is known that a uniformly convex Banach space is reflexive and strictly convex. E is said to be smooth if the limit

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

exists for all $x, y \in B$. The modulus of smoothness of E is the function $\rho_{E}:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho_{E}(t)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1:\|x\| \leq 1,\|y\| \leq t\right\} .
$$

A Banach space E is called uniformly smooth if $\lim _{t \rightarrow 0} \frac{\rho_{E}(t)}{t}=0 . E$ is called q-uniformly smooth if there exists a constant $c>0$ such that

$$
\rho_{E}(t) \leq c t^{q}, \quad q>1
$$

If E is q-uniformly smooth, then $q \leq 2$ and E is uniformly smooth.
Definition 2.1. Let $A: C \rightarrow E$ be a mapping. A is said to be (i) accretive if there exists $j(x-y) \in J(x-y)$ such that

$$
\langle A x-A y, j(x-y)\rangle \geq 0
$$

for all $x, y \in C$.
(ii) ζ-inverse strongly accretive if there exist $j(x-y) \in J(x-y)$ and a constant $\zeta>0$ such that

$$
\langle A x-A y, j(x-y)\rangle \geq \zeta\|A x-A y\|^{2}
$$

for all $x, y \in C$.

Definition 2.2. Let C be a nonempty convex subset of a real Banach space. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonexpansive mappings of C into itself and let $\eta_{1}, \cdots, \eta_{N}$ be real numbers such that $0 \leq \eta_{i} \leq 1$ for every $i=1, \cdots, N$. Define a mapping $S: C \rightarrow C$ as follows:

$$
\begin{gathered}
U_{1}=\eta_{1} T_{1}+\left(1-\eta_{1}\right) I, \\
U_{2}=\eta_{2} T_{2} U_{1}+\left(1-\eta_{2}\right) U_{1}, \\
U_{3}=\eta_{3} T_{3} U_{2}+\left(1-\eta_{3}\right) U_{2}, \\
\vdots \\
U_{N-1}=\eta_{N-1} T_{N-1} U_{N-2}+\left(1-\eta_{N-1}\right) U_{N-2}, \\
S=U_{N}=\eta_{N} T_{N} U_{N-1}+\left(1-\eta_{N}\right) U_{N-1} .
\end{gathered}
$$

Such a mapping S is called the K-mapping generated by T_{1}, \cdots, T_{N} and $\eta_{1}, \cdots, \eta_{N}$.

Let D be a subset of C and Q be a mapping of C into D. Then Q is said to be sunny if

$$
Q[Q(x)+t(x-Q(x))]=Q(x),
$$

whenever $Q(x)+t(x-Q(x)) \in C$ for $x \in C$ and $t \geq 0$. A mapping Q of C into itself is called a retraction if $Q^{2}=Q$. If a mapping Q of C into itself is a retraction, then $Q(z)=z$ for all $z \in R(Q)$, where $R(Q)$ is the range of Q. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D.

In order to prove our main results in the next section, we also need the following lemmas.

Lemma 2.1. ([10]) Let E be a real 2-uniformly smooth Banach space. Then

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x)\rangle+2\|K y\|^{2}, \quad \forall x, y \in E
$$

where K is the 2-uniformly smooth constant of E.
Lemma 2.2. ([5]) Let C be a closed convex subset of a strictly convex Banach space E. Let $\left\{T_{n}: n \in \mathbb{N}\right\}$ be a sequence of nonexpansive mappings of C into itself with $\cap_{i=1}^{N} F\left(T_{i}\right) \neq \phi$ and let $\eta_{1}, \cdots, \eta_{N}$ be real numbers such that $0<\eta_{i}<1$ for every $i=1, \cdots, N-1$ and $0<\eta_{N} \leq 1$.

Let S be the K-mapping generated by $T_{1} \cdots, T_{N}$ and $\eta_{1}, \cdots, \eta_{N}$. Then $F(S)=\cap_{i=1}^{N} F\left(T_{i}\right)$.

Remark 2.1. It is easy to see that the K-mapping is a nonexpansive mapping.

Lemma 2.3. ([9]) Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be bounded sequences in a Banach space and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq$ $\lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Suppose that $x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) z_{n}$ for all integer $n \geq 0$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0$.
Lemma 2.4. ([8]) Let E be a uniformly smooth Banach space, C be a closed convex subset of E and $D: C \rightarrow C$ be a nonexpansive mapping with $F(D) \neq \phi$. For each fixed point $u \in C$ and every $t \in(0,1)$, the unique fixed point $x_{t} \in C$ of the contraction $x \mapsto t u+(1-t) D x$ converges strongly as $t \rightarrow 0$ to a point of $F(D)$. Define $Q: C \rightarrow F(D)$ by $Q(u)=\lim _{t \rightarrow 0} x_{t}$. Then Q is the unique sunny nonexpansive retraction from C onto $F(D)$, that is, Q satisfy the property:

$$
\langle u-Q(u), j(y-Q(u))\rangle \leq 0, \quad \forall u \in C, y \in F(D)
$$

Lemma 2.5. ([2]) Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let $\left\{S_{k}\right\}$ be a sequence of nonexpansive mappings of C into E and $\left\{\beta_{k}\right\}$ be a sequence of positive real numbers such that $\sum_{k=1}^{\infty} \beta_{k}=1$. If $\cap_{k=1}^{\infty} F\left(S_{k}\right) \neq \phi$, then the mapping $S=$ $\sum_{k=1}^{\infty} \beta_{k} S_{k}$ is nonexpansive and $F(S)=\cap_{k=1}^{\infty} F\left(S_{k}\right)$.

Lemma 2.6. ([11]) Assume that $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\beta_{n},
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy the conditions
(a) $\left\{\alpha_{n}\right\} \subset[0,1], \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(b) $\lim \sup _{n \rightarrow \infty} \frac{\beta_{n}}{\alpha_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\beta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.7. ([7]) Let C be a nonempty closed convex subset of a smooth Banach space E and let Q_{C} be a retraction from E onto C. Then the following are equivalent:
(i) Q_{C} is both sunny and nonexpansive;
(ii) $\left\langle x-Q_{C}(x), j\left(y-Q_{C}(x)\right)\right\rangle \leq 0$ for all $x \in E$ and $y \in C$.

Lemma 2.8. ([3]) In a Banach space E, the following inequality holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall x, y \in E,
$$

where $j(x+y) \in J(x+y)$.
Lemma 2.9. ([3]) Let C be a nonempty closed convex subset of a smooth Banach space E. Let $Q_{C}: E \rightarrow C$ be a sunny nonexpansive retraction, $A, B: C \rightarrow E$ be mappings. For every $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1]$, the following statements are equivalent:
(a) $\left(x^{*}, y^{*}\right) \in C \times C$ is a solution of problem (1.1).
(b) x^{*} is a fixed point of the mapping $G: C \rightarrow C$ defined by

$$
G(x)=Q_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) Q_{C}\left(I-\lambda_{2} B\right) x\right),
$$

where $y^{*}=Q_{C}\left(I-\lambda_{2} B\right) x^{*}$.
Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let $\left(x^{*}, y^{*}\right) \in C \times C$ be a solution of problem (1.1). For every $\lambda_{1}, \lambda_{2}>0$ and $a \in[0,1]$, we have

$$
\left\{\begin{array}{l}
\left\langle x^{*}-\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) y^{*}\right), j\left(x-x^{*}\right)\right\rangle \geq 0, \quad \forall x \in C, \\
\left\langle y^{*}-\left(I-\lambda_{2} B\right) x^{*}, j\left(x-y^{*}\right)\right\rangle \geq 0, \quad \forall x \in C .
\end{array}\right.
$$

From Lemma 2.7, we have

$$
\left\{\begin{array}{l}
x^{*}=Q_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) y^{*}\right), \\
y^{*}=Q_{C}\left(I-\lambda_{2} B\right) x^{*}
\end{array}\right.
$$

It implies that

$$
\begin{aligned}
x^{*} & =Q_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) Q_{C}\left(I-\lambda_{2}\right) x^{*}\right) \\
& =G\left(x^{*}\right) .
\end{aligned}
$$

Hence, we have $x^{*} \in F(G)$, where $y^{*}=Q_{C}\left(I-\lambda_{2} B\right) x^{*}$.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. Let $x^{*} \in F(G)$ and $y^{*}=Q_{C}\left(I-\lambda_{2} B\right) x^{*}$. Then, we have

$$
\begin{aligned}
x^{*} & =G\left(x^{*}\right) \\
& =Q_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) Q_{C}\left(I-\lambda_{2} B\right) x^{*}\right) \\
& =Q_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) y^{*}\right) .
\end{aligned}
$$

From Lemma 2.7, we have

$$
\left\{\begin{array}{l}
\left\langle x^{*}-\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) y^{*}\right), j\left(x-x^{*}\right)\right\rangle \geq 0, \quad \forall x \in C, \\
\left\langle y^{*}-\left(I-\lambda_{2} B\right) x^{*}, j\left(x-y^{*}\right)\right\rangle \geq 0, \quad \forall x \in C .
\end{array}\right.
$$

Hence, we have $\left(x^{*}, y^{*}\right) \in C \times C$ is a solution of (1.1).

3. Main results

Now we state and prove our main results.
Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the 2-uniformly smooth constant K, C be a nonempty closed convex subset of E and Q_{C} be a sunny nonexpansive retraction from E onto C. Let $A, B: C \rightarrow E$ be ζ_{1}, ζ_{2}-inverse strongly accretive mappings, respectively. Define the mapping $G: C \rightarrow C$ by $G(x)=$ $Q_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) Q_{C}\left(I-\lambda_{2} B\right) x\right)$ for all $x \in C, \lambda_{1}, \lambda_{2}>0$ and $a \in[0,1)$. Let $S: C \rightarrow C$ be the K-mapping generated by $T_{1}, T_{2}, \cdots, T_{N}$ and $\eta_{1}, \eta_{2}, \cdots, \eta_{N}$, where $\eta_{i} \in(0,1)$, for $i=1,2, \cdots, N-1$, and $\eta_{N} \in$ $(0,1]$ with $\mathcal{F}=\cap_{i=1}^{N} F\left(T_{i}\right) \cap F(G) \neq \phi$. Suppose that $\left\{x_{n}\right\}$ is the sequence generated by

$$
\left\{\begin{array}{l}
x_{1}, u \in C, \tag{3.1}\\
y_{n}=Q_{C}\left(I-\lambda_{2} B\right) x_{n}, \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left[\delta S x_{n}+(1-\delta) Q_{C}\left(a x_{n}+(1-a) y_{n}\right.\right. \\
\left.\left.\quad-\lambda_{1} A\left(a x_{n}+(1-a) y_{n}\right)\right)\right], \quad \forall n \geq 1,
\end{array}\right.
$$

where $\lambda_{1} \in\left(0, \frac{\zeta_{1}}{K^{2}}\right), \lambda_{2} \in\left(0, \frac{\zeta_{2}}{K^{2}}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Assume that the following conditions hold:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

Then $\left\{x_{n}\right\}$ converges strongly to $x_{0}=Q_{\mathcal{F}} u$ and $\left(x_{0}, y_{0}\right)$ is a solution of (1.1), where $y_{0}=Q_{C}\left(I-\lambda_{2} B\right) x_{0}$.

Proof. First, we show that $Q_{C}\left(I-\lambda_{1} A\right)$ and $Q_{C}\left(I-\lambda_{2} B\right)$ are nonexpansive mappings for $\lambda_{1} \in\left(0, \frac{\zeta_{1}}{K^{2}}\right), \lambda_{2} \in\left(0, \frac{\zeta_{2}}{K^{2}}\right)$. Let $x, y \in C$. Since A is an ζ_{1}-inverse strongly accretive mapping and $\lambda_{1}<\frac{\zeta_{1}}{K^{2}}$, we have from

Lemma 2.1 that

$$
\begin{align*}
& \left\|\left(I-\lambda_{1} A\right) x-\left(I-\lambda_{2} A\right) y\right\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda_{1}\langle A x-A y, j(x-y)\rangle+2 K^{2} \lambda_{1}^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda_{1} \zeta_{1}\|A x-A y\|^{2}+2 K^{2} \lambda_{1}^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+2 \lambda_{1}\left(\lambda_{1} K^{2}-\zeta_{1}\right)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2} . \tag{3.2}
\end{align*}
$$

Thus $\left(I-\lambda_{1} A\right)$ is a nonexpansive mapping. So is $\left(I-\lambda_{2} B\right)$. Hence $Q_{C}\left(I-\lambda_{1} A\right), Q_{C}\left(I-\lambda_{2} B\right)$ are nonexpansive mappings. It is easy to see that the mapping G is a nonexpansive mapping. This show from Remark 2.1 that $\mathcal{F}=F(S) \cap F(G)$ is closed and convex. Let $x^{*} \in \mathcal{F}$. Then we have $x^{*}=S x^{*}$ and

$$
\begin{aligned}
x^{*} & =G x^{*} \\
& =Q_{c}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) Q_{C}\left(I-\lambda_{2} B\right) x^{*}\right) .
\end{aligned}
$$

Putting $w_{n}=Q_{C}\left(I-\lambda_{1} A\right)\left(a x_{n}+(1-a) y_{n}\right)$ and $y^{*}=Q_{C}\left(I-\lambda_{2} B\right) x^{*}$, we can rewrite (3.1) by

$$
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left(\delta S x_{n}+(1-\delta) w_{n}\right)
$$

and $x^{*}=Q_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) y^{*}\right)$. Since $Q_{C}\left(I-\lambda_{1} A\right)$ and $Q_{C}(I-$ $\lambda_{2} B$) are nonexpansive, we have

$$
\begin{align*}
& \left\|w_{n}-x^{*}\right\| \tag{3.3}\\
& =\left\|Q_{c}\left(I-\lambda_{1} A\right)\left(a x_{n}+(1-a) y_{n}\right)-Q_{C}\left(I-\lambda_{1} A\right)\left(a x^{*}+(1-a) y^{*}\right)\right\| \\
& \leq\left\|a x_{n}+(1-a) y_{n}-\left(a x^{*}+(1-a) y^{*}\right)\right\| \\
& \leq a\left\|x_{n}-x^{*}\right\|+(1-a)\left\|y_{n}-y^{*}\right\| \\
& \leq a\left\|x_{n}-x^{*}\right\|+(1-a)\left\|x_{n}-x^{*}\right\| \\
& =\left\|x_{n}-x^{*}\right\|
\end{align*}
$$

It follows from the definition of x_{n} and (3.3) that

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\| \\
& =\left\|\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left(\delta S x_{n}+(1-\delta) w_{n}\right)-x^{*}\right\| \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left[\delta\left\|S x_{n}-x^{*}\right\|+(1-\delta)\left\|w_{n}-x^{*}\right\|\right] \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left[\delta\left\|x_{n}-x^{*}\right\|+(1-\delta)\left\|x_{n}-x^{*}\right\|\right] \\
& =\alpha_{n}\left\|u-x^{*}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\| \\
& \leq \max \left\{\left\|u-x^{*}\right\|,\left\|x_{1}-x^{*}\right\|\right\} .
\end{aligned}
$$

So, $\left\{x_{n}\right\}$ is bounded. Hence $\left\{y_{n}\right\},\left\{w_{n}\right\}$ and $\left\{S x_{n}\right\}$ are also bounded.
And we have

$$
\begin{align*}
& \left\|w_{n+1}-w_{n}\right\| \tag{3.4}\\
& =\left\|Q_{C}\left(I-\lambda_{1} A\right)\left(a x_{n+1}+(1-a) y_{n+1}\right)-Q_{C}\left(I-\lambda_{1} A\right)\left(a x_{n}+(1-a) y_{n}\right)\right\| \\
& \leq a\left\|x_{n+1}-x_{n}\right\|+(1-a)\left\|y_{n+1}-y_{n}\right\| \\
& \leq a\left\|x_{n+1}-x_{n}\right\|+(1-a)\left\|x_{n+1}-x_{n}\right\| \\
& =\left\|x_{n+1}-x_{n}\right\| .
\end{align*}
$$

Next, we will show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n}, \quad \forall n \geq 1, \tag{3.6}
\end{equation*}
$$

where $z_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}$ for each $n \geq 1$. Since $x_{n+1}-\beta_{n} x_{n}=\alpha_{n} u+$ $\gamma_{n}\left[\delta S x_{n}+(1-\delta) w_{n}\right]$ and (3.6), we have

$$
\begin{aligned}
& z_{n+1}-z_{n} \\
&= \frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}} \\
&= \frac{\alpha_{n+1} u+\gamma_{n+1}\left[\delta S x_{n+1}+(1-\delta) w_{n+1}\right]}{1-\beta_{n+1}}-\frac{\alpha_{n} u+\gamma_{n}\left[\delta S x_{n}+(1-\delta) w_{n}\right]}{1-\beta_{n}} \\
&-\frac{\gamma_{n+1}\left[\delta S x_{n}+(1-\delta) w_{n}\right]}{1-\beta_{n+1}}+\frac{\gamma_{n+1}\left[\delta S x_{n}+(1-\delta) w_{n}\right]}{1-\beta_{n+1}} \\
&=\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right) u \\
&+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left[\delta\left(S x_{n+1}-S x_{n}\right)+(1-\delta)\left(w_{n+1}-w_{n}\right)\right] \\
&+\left(\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right)\left[\delta S x_{n}+(1-\delta) w_{n}\right] \\
&=\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right) u \\
&+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left[\delta\left(S x_{n+1}-S x_{n}\right)+(1-\delta)\left(w_{n+1}-w_{n}\right)\right] \\
&+\left(\frac{\alpha_{n}}{1-\beta_{n}}-\frac{\alpha_{n+1}}{1-\beta_{n+1}}\right)\left[\delta S x_{n}+(1-\delta) w_{n}\right] .
\end{aligned}
$$

It follows from (3.4) that

$$
\begin{aligned}
& \left\|z_{n+1}-z_{n}\right\| \\
& \leq\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\|u\| \\
& \quad+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|\delta\left(S x_{n+1}-S x_{n}\right)+(1-\delta)\left(w_{n+1}-w_{n}\right)\right\| \\
& \quad+\left|\frac{\alpha_{n}}{1-\beta_{n}}-\frac{\alpha_{n+1}}{1-\beta_{n+1}}\right|\left\|\delta S x_{n}+(1-\delta) w_{n}\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left[\|u\|+\left\|S x_{n}\right\|+\left\|w_{n}\right\|\right] \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left[\delta\left\|S x_{n+1}-S x_{n}\right\|+(1-\delta)\left\|w_{n+1}-w_{n}\right\|\right] \\
\leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left[\|u\|+\left\|S x_{n}\right\|+\left\|w_{n}\right\|\right] \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left[\delta\left\|x_{n+1}-x_{n}\right\|+(1-\delta)\left\|x_{n+1}-x_{n}\right\|\right] \\
= & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left[\|u\|+\left\|S x_{n}\right\|+\left\|w_{n}\right\|\right]+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\| \\
\leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left[\|u\|+\left\|S x_{n}\right\|+\left\|w_{n}\right\|\right]+\left\|x_{n+1}-x_{n}\right\| .
\end{aligned}
$$

From the conditions (ii) and (iii), we have

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

From Lemma 2.3 and (3.6), we have

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0
$$

Since $x_{n+1}-x_{n}=\left(1-\beta_{n}\right)\left(z_{n}-x_{n}\right)$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Next, we will show that

$$
\limsup _{n \rightarrow \infty}\left\langle u-x_{0}, j\left(x_{n}-x_{0}\right)\right\rangle \leq 0
$$

where $x_{0}=Q_{\mathcal{F}} u$. To show this inequality, define a mapping $D: C \rightarrow C$ by

$$
\begin{aligned}
D x & =\delta S x+(1-\delta) Q_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) Q_{C}\left(I-\lambda_{2} B\right) x\right) \\
& =\delta S x+(1-\delta) G x, \quad \forall x \in C
\end{aligned}
$$

From Lemma 2.2 and 2.5 , we have D is a nonexpansive mapping with

$$
\begin{align*}
F(D) & =F(S) \cap F(G) \\
& =\cap_{i=1}^{N} F\left(T_{i}\right) \cap F(G) \\
& =\mathcal{F} . \tag{3.8}
\end{align*}
$$

From the nonexpansiveness of the mapping D and the definition of x_{n}, we have

$$
\begin{aligned}
\left\|x_{n}-D x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-D x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|u-D x_{n}\right\|+\beta_{n}\left\|x_{n}-D x_{n}\right\| .
\end{aligned}
$$

This implies that

$$
\left(1-\beta_{n}\right)\left\|x_{n}-D x_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|u-D x_{n}\right\| .
$$

From the conditions (ii), (iii) and (3.7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-D x_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Let x_{t} be the fixed point of the contraction $x \mapsto t u+(1-t) D x$, where $t \in(0,1)$. That is,

$$
x_{t}=t u+(1-t) D x_{t} .
$$

From the definition of x_{t}, we have

$$
\begin{aligned}
\left\|x_{t}-x_{n}\right\|^{2}= & \left\|t\left(u-x_{n}\right)+(1-t)\left(D x_{t}-x_{n}\right)\right\|^{2} \\
= & (1-t)\left(\left\langle D x_{t}-D x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle+\left\langle D x_{n}-x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle\right) \\
& +t\left\langle u-x_{t}, j\left(x_{t}-x_{n}\right)\right\rangle+t\left\langle x_{t}-x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle \\
\leq & (1-t)\left(\left\|x_{t}-x_{n}\right\|^{2}+\left\|D x_{n}-x_{n}\right\|\left\|x_{t}-x_{n}\right\|\right) \\
& +t\left\langle u-x_{t}, j\left(x_{t}-x_{n}\right)\right\rangle+t\left\|x_{t}-x_{n}\right\|^{2} \\
= & \left\|x_{t}-x_{n}\right\|^{2}+(1-t)\left\|D x_{n}-x_{n}\right\|\left\|x_{t}-x_{n}\right\| \\
& +t\left\langle u-x_{t}, j\left(x_{t}-x_{n}\right)\right\rangle .
\end{aligned}
$$

(3.10) implies that

$$
\begin{equation*}
\left\langle u-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \leq \frac{1-t}{t}\left\|D x_{n}-x_{n}\right\|\left\|x_{t}-x_{n}\right\| . \tag{3.11}
\end{equation*}
$$

From (3.9) and (3.11), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \leq 0 \tag{3.12}
\end{equation*}
$$

From Lemma 2.4 and (3.8), we see that $Q_{F(D)} u=\lim _{t \rightarrow 0} x_{t}$ and $F(D)=$ \mathcal{F}. It follows that $\lim _{t \rightarrow 0} x_{t}=x_{0}=Q_{\mathcal{F}}(u)$. Since

$$
\begin{aligned}
\langle u- & \left.x_{0}, j\left(x_{n}-x_{0}\right)\right\rangle \\
= & \left\langle u-x_{0}, j\left(x_{n}-x_{0}\right)\right\rangle-\left\langle u-x_{0}, j\left(x_{n}-x_{t}\right)\right\rangle \\
& +\left\langle u-x_{0}, j\left(x_{n}-x_{t}\right)\right\rangle-\left\langle u-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \\
& +\left\langle u-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \\
= & \left\langle u-x_{0}, j\left(x_{n}-x_{0}\right)-j\left(x_{n}-x_{t}\right)\right\rangle+\left\langle x_{t}-x_{0}, j\left(x_{n}-x_{t}\right\rangle\right. \\
& +\left\langle u-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \\
= & \left\|u-x_{0}\right\|\left\|j\left(x_{n}-x_{0}\right)-j\left(x_{n}-x_{t}\right)\right\|+\left\|x_{t}-x_{0}\right\| x_{n}-x_{t} \| \\
& +\left\langle u-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle,
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\langle u-x_{0}, j\left(x_{n}-x_{0}\right)\right\rangle \leq & \limsup _{n \rightarrow \infty}\left\|u-x_{0}\right\|\left\|j\left(x_{n}-x_{0}\right)-j\left(x_{n}-x_{t}\right)\right\| \\
& +\left\|x_{t}-x_{0}\right\| \limsup _{n \rightarrow \infty}\left\|x_{n}-x_{t}\right\| \\
& +\limsup _{n \rightarrow \infty}\left\langle u-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle .
\end{aligned}
$$

Since j is norm-to-norm uniformly continuous on a bounded subset of E, (3.12) and (3.13), we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle u-x_{0}, j\left(x_{n}-x_{0}\right)\right\rangle & =\underset{t \rightarrow 0}{\limsup } \limsup _{n \rightarrow \infty}\left\langle u-x_{0}, j\left(x_{n}-x_{0}\right)\right\rangle \\
& \leq 0 . \tag{3.14}
\end{align*}
$$

Finally, we will show that the sequence $\left\{x_{n}\right\}$ converges strongly to $x_{0} \in \mathcal{F}$. From the definition of x_{n} and Lemma 2.8, we have

$$
\begin{aligned}
& \left\|x_{n+1}-x_{0}\right\|^{2} \\
& =\left\|\alpha_{n}\left(u-x_{0}\right)+\beta_{n}\left(x_{n}-x_{0}\right)+\gamma_{n}\left(D x_{n}-x_{0}\right)\right\|^{2} \\
& \leq\left\|\beta_{n}\left(x_{n}-x_{0}\right)+\gamma_{n}\left(D x_{n}-x_{0}\right)\right\|^{2}+2 \alpha_{n}\left\langle u-x_{0}, j\left(x_{n+1}-x_{0}\right)\right\rangle \\
& \leq\left(\beta_{n}\left\|x_{n}-x_{0}\right\|+\gamma_{n}\left\|x_{n}-x_{0}\right\|\right)^{2}+2 \alpha_{n}\left\langle u-x_{0}, j\left(x_{n+1}-x_{0}\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x_{0}\right\|^{2}+2 \alpha_{n}\left\langle u-x_{0}, j\left(x_{n+1}-x_{0}\right)\right\rangle .
\end{aligned}
$$

From the condition (ii), (3.14) and Lemma 2.6 to (3.15), we obtain that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=0
$$

This completes the proof.

Remark 3.1. (1) If we take $a=0$, then the iterative scheme (3.1) reduces to the following scheme:
$\left\{\begin{array}{l}x_{1}, u \in C, \\ y_{n}=Q_{C}\left(I-\lambda_{2} B\right) x_{n}, \\ x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left[\delta S x_{n}+(1-\delta) Q_{C}\left(y_{n}-\lambda_{1} A y_{n}\right)\right], \quad \forall n \geq 1,\end{array}\right.$
From Theorem 3.1, we obtain that the sequence $\left\{x_{n}\right\}$ generated by (3.16) converges strongly to $x_{0}=Q_{\cap_{i=1}^{N} F\left(T_{i}\right) \cap F(G)} u$, where the mapping $G: C \rightarrow$ C defined by $G(x)=Q_{C}\left(I-\lambda_{1} A\right) Q_{C}\left(I-\lambda_{2} B\right) x$ for all $x \in C$ and $\left(x_{0}, y_{0}\right)$ is a solution of (1.2), where $y_{0}=Q_{C}\left(I-\lambda_{2} B\right) x_{0}$.
(2) If we take $x_{1}=u, A=B, N=1, \eta_{1}=1$ and $T_{1}=S: C \rightarrow C$ is a nonexpansive mapping, then the iterative scheme (3.16) reduces to the following scheme:
$\left\{\begin{array}{l}x_{1}=u \\ y_{n}=Q_{C}\left(I-\lambda_{2} A\right) x_{n}, \\ x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left[\delta S x_{n}+(1-\delta) Q_{C}\left(y_{n}-\lambda_{1} A y_{n}\right)\right], \quad \forall n \geq 1,\end{array}\right.$
which is (1.6). From Theorem 3.1, we obtain that the sequence $\left\{x_{n}\right\}$ generated by (3.17) converges strongly to $x_{0}=Q_{F(S) \cap F(G)} u$, where the mapping $G: C \rightarrow C$ defined by $G(x)=Q_{C}\left(I-\lambda_{1} A\right) Q_{C}\left(I-\lambda_{2} A\right) x$ for all $x \in C$ and $\left(x_{0}, y_{0}\right)$ is a solution of (1.3), where $y_{0}=Q_{C}\left(I-\lambda_{2} A\right) x_{0}$.

Remark 3.2. (i) We note that all Hilbert spaces and $L^{p}(p \geq 2)$ spaces are 2-uniformly smooth.
(ii) If $E=H$ is a Hilbert space, then a sunny nonexpansive retraction Q_{C} is coincident with the metric projection P_{C} from H onto C.
(iii) It is well known that the 2-uniformly smooth constant $K=\frac{\sqrt{2}}{2}$ in Hilbert spaces.

From Theorem 3.1 and Remark 3.3, we can obtain the following result immediately.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and P_{C} be the metric projection from H onto C. Let $A, B: C \rightarrow H$ be ζ_{1}, ζ_{2}-inverse strongly monotone mappings, respectively. Define the mapping $G: C \rightarrow C$ by

$$
G(x)=P_{C}\left(I-\lambda_{1} A\right)\left(a x+(1-a) P_{C}\left(I-\lambda_{2} B\right) x\right)
$$

for all $x \in C, \lambda_{1}, \lambda_{2}>0$ and $a \in[0,1)$. Let $S: C \rightarrow C$ be the K-mapping generated by $T_{1}, T_{2}, \cdots, T_{N}$ and $\eta_{1}, \eta_{2}, \cdots, \eta_{N}$, where $\eta_{i} \in(0,1)$ for $i=1,2, \cdots, N-1$ and $\eta_{N} \in(0,1]$ with $\mathcal{F}=\cap_{i=1}^{N} F\left(T_{i}\right) \cap F(G) \neq \phi$. Suppose that $\left\{x_{n}\right\}$ is the sequence generated by

$$
\left\{\begin{array}{l}
x_{1}, u \in C, \\
y_{n}=P_{C}\left(I-\lambda_{2} B\right) x_{n} \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left[\delta S x_{n}\right. \\
\left.\quad+(1-\delta) P_{C}\left(a x_{n}+(1-a) y_{n}-\lambda_{1} A\left(a x_{n}+(1-a) y_{n}\right)\right)\right], \quad \forall n \geq 1,
\end{array}\right.
$$

where $\lambda_{1} \in\left(0,2 \zeta_{1}\right), \lambda_{2} \in\left(0,2 \zeta_{2}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$. Assume that the following conditions hold:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$,
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

Then $\left\{x_{n}\right\}$ converges strongly to $x_{0}=P_{\mathcal{F}} u$ and $\left(x_{0}, y_{0}\right)$ is a solution of (1.5), where $y_{0}=P_{C}\left(I-\lambda_{2} B\right) x_{0}$.

Remark 3.3. We can see easily that Aoyama et al. [1], Iiduka and Takahashi [4], Yao and Yao [14], Qin et al. [6], Wang and Yang [12]'s results are special cases of Theorem 3.1.

Completing interests

The author declares that he has no competing interests.

References

[1] K. Aoyama, H. Iiduka and W. Takahashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory Appl. 2006 (2006), 35390.
[2] R. E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262.
[3] S. S. Chang, On Chidumes open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), 94-111.
[4] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
[5] A. Kangtunyakarn and S. Suantai, A new mapping for finding common solutions of equilibrium probelms and fixed point problems of finite family of nonexpansive mappings, Nonlinear Anal. 71 (2009), 4448-4460.
[6] X. Qin, S. Y. Cho and S. M. Kang, Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications, J. Compt. Appl. Math. 233 (2009), 231-240.
[7] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276.
[8] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.
[9] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), 227-239.
[10] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138.
[11] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), 240-256.
[12] Y. Wang and L. Yang, Modified relaxed extragradient method for a general system of variational inequalities and nonexpansive mappings in Banach spaces, Abstract and Applied Analysis, Volume 2012 (2012), Article ID 818970, 14 pages.
[13] Y. Yao, Y. C. Liou, S. M. Kang and Y. Yu, Algorithms with strong convergence for a system of nonlinear variational inequalities in Banach spaces, Nonlinear Anal. 74 (2011), 6024-6034.
[14] Y. Yao and J. C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007), 1551-1558.

Jae Ug Jeong
Department of Mathematics
Dongeui University
Busan 614-714, South Korea
E-mail: jujeong@deu.ac.kr

