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EXISTENCE OF SOLUTION FOR A FRACTIONAL
DIFFERENTIAL INCLUSION VIA NONSMOOTH
CRITICAL POINT THEORY

BiaN-X1A YANG* AND HONG-RUI SUN

ABSTRACT. This paper is concerned with the existence of solutions
to the following fractional differential inclusion

{ & (0 oD (@) + 4 2D (W (2))) € OFu(wu), € (0,1),
u(0) =u(l) =0,

where ¢D;? and ,D; B are left and right Riemann-Liouville frac-
tional integrals of order 8 € (0,1) respectively, 0 <p=1—¢ < 1
and F': [0,1] x R — R is locally Lipschitz with respect to the sec-
ond variable. Due to the general assumption on the constants p
and ¢, the problem does not have a variational structure. Despite
that, here we study it combining with an iterative technique and
nonsmooth critical point theory, we obtain an existence result for
the above problem under suitable assumptions. The result extends
some corresponding results in the literatures.
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1. Introduction

Fractional differential equations and inclusions have been proved that
they are very useful tools in modeling of many phenomena in various
fields of science and engineering, such as, viscoelasticity, electrochem-
istry, electromagnetism, economics, optimal control and so forth. For
details and examples, see [1,3,4,6,7,11,16,19] and the references therein.
In consequence, more and more attention has been paid to fractional dif-
ferential equations and inclusions.

The study of fractional differential inclusions was initiated by Sayed
and Ibrahim, see [21]. Very recently several qualitative results for frac-
tional differential inclusions were obtained in [2,5, 11,14, 23] and the
references therein. Especially, in [23], Teng et al. considered the frac-
tional differential inclusion

(1.1)
{ —% (% oD (W (z)) + % IDfﬁ(u’(z))> € OF,(z,u), =€ (0,1),
u(0) = u(1) =0,

by using nonsmooth mountain pass theorem and nonsmooth symmetric
mountain pass theorem, they derived the existence and multiplicity of
solutions, where (D, ” and ,D; 5 are left and right Riemann-Liouville
fractional integrals of order 5 € (0, 1) respectively, defined by

T 1
oD, Pu = ﬁ/o (z—s)?"tu(s)ds, .D;"u= ﬁ/x (s—x)Lu(s)ds.
Obviously, in (1.1), the coefficient % is very special. So a natural question
is what will happen for the existence with coefficient p and ¢, which only
satisfy p +q¢ =17

We will give a positive answer in present paper, so we attempt to use
nonsmooth mountain pass theorem and iterative technique to study the
existence of nontrivial solutions of fractional differential inclusion
(1.2)

—% (p oD (W () + ¢ J;Dl_ﬁ(u’(m))) € OF,(z,u), x€(0,1),
u(0) = u(l) =0,
where 0 <p=1—-¢g < 1, for s € R, F(+,s) is measurable, and for a.e.

z € [0,1], F(x,-) is locally Lipschitz, 0Fs(x,s) denotes the generalized
subdifferential in the sense of Clarke [9].
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In order to use variational method, we consider a family fractional
differential inclusions with variational structure, that is, for given w €
H§(0,1) , we discuss the following problem

(g 0D (@) + g D7 (! ()
(13) +(p — q) oD% (w'(2))) € DF(z,u), @ € (0,1),
u(0) = u(1) =0,

which can be solved by variational method. Then, for each w € H§ (0, 1),
we find a solution u,, € H§(0,1) with some bounds. Next, by iterative
technique, one gets the existence of solutions of (1.2) under suitable
assumptions.

This paper is organized as follows. In Section 2, we recall some ba-
sic knowledge of nonsmooth analysis and abstract results which we are
going to apply. Section 3 is devoted to present the preliminaries about
fractional calculus to derive our result, and list the assumptions on the
problem and state our main result. In the final Section, we give the
proof of the main result. The result extends that in [22,23].

2. Nonsmooth analysis

We collect some basic notions and results of nonsmooth analysis,
namely, the calculus for locally Lipschitz functionals developed by Clarke
[9], Motreanu and Panagiotopoulos [18], Chang [10], Gasinki and Papa-
georgiou [13].

Let (X, |-]|x) be a Banach space, (X*, ||-||x+) be its topological dual,
and ¢ : X — R be a functional. We recall that ¢ is locally Lipschitz
(LL.) if for u € X, there exist a neighborhood U of u and a real number
Ky > 0 such that

() — o) < Kol —wlx for vweU.

If pis L.L. and u € X, the generalized directional derivative of ¢ at u
along the direction v € X is

and the generalized gradient of ¢ at u is the set
Op(u) = {u* € X*: (u*,v) < @(u;v) for ve X}
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Then for u € X,0p(u) € 2¥\{0} is a convex and weakly*-compact
subset [9, Proposition 1].

LEMMA 2.1. ([18, Proposition 1.1]) If ¢ € C*(X,R), then ¢ is LL.
and
P (uiv) = (¢'(u),v), Op(u) ={¢'(w)}, uveX.

LEMMA 2.2. ([18, Proposition 1.3]]) Let ¢ : X — R be a LL. func-
tional. Then for u € X, ¢°(u;-) is subadditive and positively homoge-
neous and

¢ (u;v) < Kylloll, veX
with Ky > 0 being a Lipschitz constant for ¢ around u.

Assume ¢ is a L.L. functional defined on Banach space X, set
A(u) = min{||u”|

then A\(u) exists and is lower semi-continuous [10,13]. v € X is said to
be a critical point of ¢ if 0 € dp(u).

A LL. functional ¢ : X — R is said to satisfy the non-smooth (PS)
condition at level ¢ € R, if any sequence {u,} C X with ¢(u,) — ¢ and
A(u,) — 0 as n — oo, has a strongly convergent subsequence [10, 13].

x<: ut€dp(u)}, uelX,

3. Fractional calculus and main result

For convenience, hereafter, we denote aw = 1 — § In view of § € (0,1),
we have a € (1,1). The fractional Sobolev space Hg'(0,1) is defined as
the completion of C§°(0, 1) under the norm

lulla = [loDgul| 2.
From [12, Theorem 2.13], we know H{(0, 1) is a reflexive Banach space,
and H§(0,1) — C][0,1] is compact, moreover, if v € H{(0,1), then
u(0) = u(1) = 0.
For the space H§ (0, 1), we have the following results.
LEMMA 3.1. ( [22, Lemma 2.2]) If u € H§(0,1), then
1 1

Ulloo < = ||| o’ Ul < —=||ul|a,
oo < oyl Tz < 5l

lulla

1
eos(ra)full < = [ oDZu- Dfude < s
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1
Da Qd < 2
[ leptultir < el

DEFINITION 3.2. By a weak solution of problem (1.2), it is under-
stood an element v € H§(0,1) for which there corresponds to a map-
ping [0,1] > z +— u*(z) with u*(z) € OF,(x,u(zx)) for a.e. x € [0, 1], and
having the property that for every v € H§(0,1), u*v € L0, 1] and

1 1 1
—p/ oDsu - . Divdr — q/ oDSv - . Diude = / u*(z)v(z)dz.
0 0 0

Similarly, a function @ € H§(0,1) is called a weak solution of problem
(1.3) if there exists a corresponding mapping [0,1] 3 = — @*(x) with
u*(z) € OF;(x,u(x)) for a.e. x € [0, 1], and having the property that for
every v € Hy(0,1), a*v € L'[0,1] and

1
—q / (0DSt - wDfv + oDov - ;DY) da
0

1 1
- (=9 / oDjw - . Difvdr = / w*(z)v(z)de.
0 0

DEFINITION 3.3. A function v € H§(0,1) is called a solution of prob-
lem (1.2) if p ¢ D?* 'y —q ,D}* 'u is derivable with respect to z € (0,1)

and
d
—%(p oDy —q D ) =u*, ae x€(0,1),
where u*(x) € OF,(z,u(x)) for a.e. z € [0, 1].

LEMMA 3.4. Ifu € H§(0,1) is a weak solution of problem (1.2), then
u is a solution of problem (1.2).

Proof. Suppose u € H§ (0, 1) is a weak solution of problem (1.2), then
there exists u* € OF,(x,u) satisfying

1 1 1
(3.1) —p/ oDsu - . Divdr — q/ oDSv - Diude = / u*(z)v(z)de
0 0 0

for all v € H§(0,1). Similar to the argument of [15, Theorem 4.2], we

can get
1 x
/ (p oD?* ty — q D3y / u*(s)ds) V' (z)dz =0
0 0
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for all v € C§°(0,1). So there exists constant C, such that

p oD* 'y —q DIty + / u*(s)ds = C,
0

and then
d
—%(p 0D2'u — q . DI 'u) = u* ae x € (0,1).
According to Definition 3.3, we know that u is a solution of problem
(1.2). []

We impose F' the following conditions.

(F1) For s € R, the function z — F(x,s) is measurable, for a.e.
z €[0,1], s — F(z,s) is L.L. and F(z,0) = 0;

(F2) there exist a,b € L'([0,1],R,) and 7 € [1, 00), such that

s*| < a(z) +b(z)|s|"™", ae. z€[0,1], s€Rands* € IF,(x,s);
(F3) there exist p € (0,1),¢0 > 0 and M > 0, such that
co < F(x,8) < —puF°(z,s;—s) for a.e.z € [0,1],and s € R with |s| > M;
(F4) for s* € OF,(x,s), lin(l) £ =0inae z€[0,1].
S—
REMARK 3.5. Noting that from conditions (F1), (F2) and (F4), using

the Lebourg’s mean value theorem, we obtain that for given € > 0, there
exist b € L'([0,1],Ry),n > 2, such that

|F(2,)] < els* + b(x)|s]", =e€[0,1], s R,

REMARK 3.6. From conditions (F1), (F2) and the Lebourg’s mean
value theorem, one has

|F(x, )| < a(x)]sl+b(@)ls[", [F*(z,s;—s)| < a(x)|s|+b(z)|s]", = €0, 1].
LEMMA 3.7. Assume conditions (F1)(F3) hold, then

ls|

F(x,s) > é(x) <M>H, z e [0,1]\N,|s| > M,

where N is the Lebesgue-null set outside which the hypothesis (F3)
uniformly holds, and

(32) 6(x):m1n{F(x,M), F(J},—M)}, S [Oa 1]\Na

clearly, ¢(x) > ¢ for a.e. x € [0,1].
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Proof. For given s € R with |s| > M, set
F(z,\) = F(z,Xs), z€[0,1]\N, XeR,

then F(x,-) is 1.L.. Via Rademarchers theorem, we see that A — F(x, \)
is differentiable a.e. on R, and at a point of differentiability A € R, it
gets L F(z,\) = OFy(z,\). Moreover, it follows from Chain rule that
OFx(x, X) = sOF¢(x,&)|rs, hence AOFy(x, \) = AsOF¢(x,§)|rs- At a point
of differentiability, condition (F3) reduces to

WFy(@,8)s = F(z,s), z€[0,1]\N, |s| = M,

SO one presents

NF(z,\) _ 1
> — A

d)\ - ﬂf(x’ )7
ie. .

ﬁf(xv )‘> > i

Flz, A) — A

1

Integrating from 1 to A\g(A\g > 1), it gives In ];E(Zcx’\lo)) > In )}, hence

F(x,Xo) > Ny F(x,1), that is F(x, \s) > A\, F(x,s). Thus, for 2 €
[0,1]\ N, |s| > M, we have

Fo,s) = F (g; %%) > (%) ' Flz, %) > &(x) <|Mi|> |

For problem (1.2), since the symmetric position of the constants p
and ¢ lying in, without loss of generality, one can assume that p > q.

The functional I, : H§(0,1) — R corresponding to the problem (1.3)
is defined by

]

1 1 1
I,(u) = —q/ ngu-foud:U—(p—q)/ ngw-ID?udx—/ F(z,u)dz.
0 0 0

PROPOSITION 3.8. Assume that F' satisfies the hypotheses (F'1),(F2),
then the functional I,, : H{(0,1) — R is LL., and every critical point
u e H§(0,1) of I, is a solution of the problem (1.3).

Proof. Let I,(u) = I1(u) + I2(u), where

1 1
Li(u) = —q/ oDSu - . Diudx — (p — q) / oDSw - . Diudzx,
0 0
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I(u) = — /01 F(z,u)dz.

Clearly I € C'(H§(0,1),R). By Lemma 2.1, I is 1.L. on H$(0,1). From
condition (F2), one knows that I, is I.L. on L"[0, 1]. Moreover H§(0, 1) is
compactly embedded into L]0, 1]. So I is also L.L. on H§(0, 1), see [10,
Proposition 2.3 and Theorem 2.2] and [17], furthermore,

(3.3) 0l (u) C — /1 OF,(z,u)dx.

The interpretation of (3.3) is as follows: for every u* € dIy(u), we have
u*(x) € —0F,(z,u(x)) for a.e. = € [0 1], and for every v € H§(0,1),

the function w*v € L'[0,1] and (u*,v) fo x)dx. Therefore I,
is 1.L. on H(0,1).

Now we shall show that each critical point u of I, is a weak solution
of problem (1.3). Let uw € H§(0,1) be a critical point of I,,, then
(3.4)
0 € O, (u) = {u* € (HZ(0,1))* : (u*,v) < I%(u;v) for v e HF(0,1)}.

Set

(3.5)
(Au(u),v)

1 1
¢ [ (Dtu-uDiv D D) dz = (p =) [ oDtw-,Dfuds,
0 0
u,v € H§(0,1). It follows from Lemma 2.1, (3.4) that
Ay(u) +u* =0 with u* € 9l1(u),

hence u*(z) € —0F,(z,u(x)) a.e. on [0,1] and for every v € H§(0,1),
one obtains

1
—q/ (oD% - ;Do + ¢DSv - D) dz
0
1 1
—(p— Q)/ oDyw - . Divdx +/ wvdxr = 0.
0 0

By Definition 3.2, u is a weak solution of problem (1.3), similar to the
proof of Lemma 3.4, it gets u is a solution of problem (1.3). ]
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For the u, M given in condition (F3), denote

(3.6) 0= q(l—20)|cos(ra)], b= ’;f{j((;a;'“).
Assume that a® > b* + b, we take
a—+/a®—=bb+1)  a+/a®—bb+1)
B0 a= 2(1+b) 2= 2(1+b) ‘
For € € (€1, €2), define
. 2p (| S T 45|(cos(73i)\z) =T
3.8 t=t(e T ,
o 9= [ ()7 Jy @) ()< da ]
B G (0 U O S it
&) = Toostma)) <M> /O (@l de + o P
(3.9) + (1+ ,u)/o (Ma(z) + M"b(x))dz,
(3.10) 1
4eC'(€) 2 R(e) = Ry
By = Rule) = (4(16— 4(b+ 1)62—6)  fa=Role) = I()(2a— 1)z

where ¢ is defined in (3.2), ¢ € H§(0,1) is a fixed function with |||, =
1.

The main result of this paper is the following.

THEOREM 3.9. Assume that F' satisfies the hypotheses (F1)-(F4). If
there exists € € (€1, €2), such that

(3.11) Lg, = sup {H |s1],|s2] < Ra, s1 # 52} exists,
(3.12) ;
(q| cos(ra)| e ) (Pe)2a -1 . (2<p —9R )
2 (C(a+1))? [ b(x)da q| cos(ma)[?
and

(3.13) Li, < (D(a +1))? (2q| cos(ma)| — %)
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hold. Then the problem (1.2) has at least one nonzero solution, where
st € OF,(z,s;),x € [0,1],7 = 1,2, €1,€o are defined in (3.7), b,n are
defined in Remark 3.5.

4. Proof of main result

In this section, we give the proof of Theorem 3.9 by the nonsmooth
mountain pass theorem and iterative technique, the proof idea inspired
from [22].

Proof of Theorem 3.9. We proceed by three steps to prove the main
result.

Step 1: For given w € H§(0,1) with ||w|, < Ry, one shows that I,
has a nontrivial critical point in H§(0,1) by the nonsmooth mountain
pass theorem.

Firstly, we check that I,, satisfies the nonsmooth (PS) condition. Sup-
pose {u,} C H§(0, 1) satisfies

(4.1) I,(u,) = C and A(u,) — 0 as n — oo.

For every n > 1, since 01, (u,) C (H§(0,1))* is a weakly* compact set
and the norm function is weakly lower semi-continuous in Banach space,
we can find v} € I, (uy,), such that

(42)  AMua) = e lagony and ) = Ay, — o,

with v, (z) € OF,, (z,u,(z)) for a.e. x € [0,1]. Hence, by (4.1), (4.2),
(3.5), Lemma 3.1, condition (F3) and Remark 3.6, it shows

C+ 1+ pl|una
> Ly(un) — M(U;, Up)

1 1 1
= _Q/ ODgun'ID?undm_(p_Q)/ ODgw'ID?und-I_/ F(.]Z,un)d.il?
0 0 0
1 1
+ MQ/ ODgun : thlxundx + MQ/ xD?un : ODgund$
0 0

1
+ p(p —q) / 0DSw - D undr — (v, —uy,)
0
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1 1
=q(2u—1) / 0Dy, - o Diundr + (p — q)(pp — 1) / oDow - . D u,dx
0 0

1
—/ F(z,u,)de — p(v,, —uy,)
0

(r—q)(1 = p)
| cos(mav)|

> q(1 = 2p)| cos(ma)|[[unllz, - [w]la][tn]la

[ (P ) do
{lun|<M}

- / (F(ZE, un) + NFO(J;’ Unp; _un)) dx
{lun|>M}

1
> allunl2 + blwllalunlle — (14 1) / (Ma(z) + Mb(x))dz,

where a, b are defined in (3.6). So the sequence {u,} is bounded. Thus,
by passing to a subsequence if necessary, we can assume that u,, — u in
H§(0,1). Via Rellich-Kondrachov compactness theorem, one gets

(4.3) u, — u in L*[0,1], and u, — u in C[0,1].
By Lemma 3.1 and (3.5), it gives

(At — Auity i, — 1) =—2q / (0Dt () — (@), DS utn() — u(2))) da

> 24| cos(ma)|un — ull2.

Consequently, in order to prove u,, — u, it suffices to prove the following
fact

(4.4) lim(Ayu, — Ay, u, —u) < 0.

Indeed, from (4.1) and (4.2), there holds
1
nlltn — ulla = (up, up —u) = (Aptin, uy, —u) — / U+ (Up, — u)dx
0

with €, — 0. In view of (4.3) and Holder’s inequality, one has fol Uy -
(t, —u)dx — 0 as n — oco. So im(Ayup,, u, —u) < 0. Via u, — u in

H§(0,1), it is easy to get lim (A, u, u, —u) = 0. Hence
n—oo

lim (A, — Aptt, g —u) < Hm (Aytiy, w, —u) — lim (A, u, —u) < 0.
n—o0 n—00 n—00
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that is, (4.4) holds, we obtain u,, — u in H§(0,1).

On the other hand, via Lemma 3.1 and Remark 3.5, one derives
Ly(u)

1 1 1
= —Q/ oDyu - . Diudr — (p — q) / oDSw - ,Dfudx — / F(x,u)dz
0 0 0

> g| cos(ma)||[ullz — (p — @) |w|lallDfull e — €llul72 — /O b(z)|u(z)|"dz

by e
|COS(7Ta)|H e ([(a _|_1))2|| la =1 ||oo/0 b(r)d
o= DRy, -

[ cos(ma)|

> qf cos(mav)]||ull5, —

> | cos(ma)|Jul2 — E—L2

e
Tfa)2a— 1l "

_ (dleostma)l e Joblaydr ey
2 (Mla+1))  (D(a)20 -1z ° .
i (2om N, - LD g,

| cos(mav)|

Wllulla

by the assumption (3.12), one can choose p > %, such that

q| cos(ra)| € - fl b(z)dx
2 (Cle+1))> ~ (T(a)(2a —1)2)

P
Now, let uw € H§(0,1) with ||ul|, = p, then there exists ; > 0, such that
(4.5) I,(u) > By uniformly for w € Hg(0,1) with [|w|. < R;.

For ¢ € H§(0,1) with ||¢||o = 1, we will prove

I,(tp) - —c0 as t — oo.
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In fact, by Lemma 3.1 and Remark 3.6, as t — oo, it gives

I (W’)

1 1 1
= —qt2/ oDy - . D pdr — (p—q)t/ oDiw-xD?sod:v—/ F(z,te)dx
0 0 0

1
o . NGOG
< ol el o= el Dol - [ eto) (P4 o
0

| cos(mav)

qt’ tp = @lwlla £\ /1 i 1
< Dol — [ — vd
= | cos(ma)] T | cos(ma)| lo Dzl 2 i i é(z)|p(x)|ndx

qt? LHp )R <%>/01 &) ()| * dar

<
~ |cos(ma)| | cos(ma)|
— —OQ.

Thus, there exists to > 0 such that [[top||s > p and I,,(top) < 0.

Then noting that ,(0) = 0, combining with (4.5) and the non-
smooth mountain pass theorem [11,13], we obtain that there is w,, €
H§(0,1)\{0} with 0 € 01,(u,,) and

Iy () =1 f L, > OJ
() = i 100 2 1>

where I' = {g € C([0,1], H§(0,1))]g(0) = 0, g(1) = top}. By Proposi-
tion 3.8, we get u,, is a solution of problem (1.3).

Step 2: We construct an iterative sequence {u,} and estimate its
norm in H§(0,1).

For u; = 0, by Step 1, we know [,,, has a nontrivial critical point us.
If we can prove ||uzl|, < Ry, then by Step 1, one gets I, has a critical
point u3. So in order to obtain iterative sequence {u,}, we need prove
that if we assume ||u,_1||o < Rj, then w,, the nontrivial critical point of
I, , obtained by Step 1, satisfies ||u,]|o < R;.
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Indeed, by Lemma 3.1, and Cauchy’s inequality with the positive
constant €, for ¢ € H§(0,1) satistying ||¢||o = 1, it gives

(4.6) max I, (tp)

t€[0,00)
< / () (12NN gy 1= @l e
= feos(ma)[ o M | cos(mar)|
1
at’ LN 1 », Plp—q)
< - [ — wd -
~ | cos(ma)] (M> /0 Aw)le@)ldot elfun-rla + 4e| cos(mar)|?
at’ A L ,  Plr—q)?
| cos(ma) (M> /o Awlple)lrde + vl + 4e| cos(mar)|?

= CO+eluali =1+ p) [ (Ma(a) + Mrbla)de

where € € (€1, €), €1, €5 are defined in (3.7), ¢, C(e) are defined in (3.8),
(3.9) respectively.

On the other hand, since 0 € 01, _, (u,,), one has
(4.7)

1 1 1
QQ/ ODgOc[un'xD?undx_‘_(p_Q)/ ODgun—l'xDlaund$+/ U:Undl' = 07
0 0 0

where u} (z) € OF,, (x,u,(x)) for a.e. x € [0,1]. Take (4.7), Lemma 3.1,
(F3), Remark 3.6 into account, it derives

L,y (Un)

1 1
= _(J/ ngun-ID‘fundz—/ F(x,uy,)dx
0 0
1
—(p— C])/ oDy + o DS updx
0

1 1
= _Q/ ODgun : mD(llundx - / F(l’, un)dx
0 0
1 1
0= 0) [ oD Diundr+ 2 [ oD D
0 0

1 1
+u(p — q) / 0Dgun—1 - o Diupdr + u/ Uy U d
0 0
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1
= (2u— 1)q/ oD%y, - D uyde
0
1
o= )= 1) [ oD Dfunds
0

1
- / (F(a,un) + s (— ) da

0
a(1 — 242)] cos(ra) [unll? + (1 = 1)(p — @)t llalle Dfun |
[ () ) do

|un | <M

A%

—/ (F(z,up) + pF° (2, un; —uy)) do
|un|>M

v

1
allun|ls = bllun—illallunlla — (1 + u)/o (Ma(x) + M"b(x))dx

v

1
il = (el + 512

(4.8)  —(14p) /0 (Ma(z) + M"b(x))dz,

where € € (€1, €2), €1, €5 are defined in (3.7). According to the nonsmooth
mountain pass characterization of the critical level, we have

(4.9) max [, ,(te) > Ly, (un).

te[0,00)

So combining with (4.6), (4.8) and (4.9), it concludes

1
lunl? < eltaca 4 (ellnll + a2 + €0,

i.e.

b
(@ = be)l[unlle < (e+ )llwnall +Cle).
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Since € € (€1, €2), it holds a — be > € + 2. Then

b
o _ €t 4 2 C(e)
n < n—1|la
o2 < 2 2+
- e—l—ﬁ n_lﬂu 12+ Ce) n2 €+4¥: k
— \a—be Hla ™ 0 be a — be
k=0
Y p—iC

4ae —4(b+1)e2 —b

Consequently, if we take u; = 0 and let u,, be a critical point of I, _,
for n =2,3,..., then from the above argument, one knows ||u, ||, < Ry
and I, (u,)>p; >0forn=23,....

Step 3: We show the iterative sequence {u,} constructed in Step 2
is convergent to a nontrivial solution of the problem (1.2).

We intend to prove {u,} is a Cauchy sequence in H§(0,1). In-
deed, since ||unplla < Ry, in view of Lemma 3.1 and the definition of
Ry, one derives |uylloe < Re. By 0 € 01, (uy)(uns1 — uy),0 €
Iy, (Uny1)(Uni1 — uy), we get

1
(4.10) —q/ (0D, - 2 DT (Upi1 — Up) + 2 DTy - 0Dy (Upt1 — up)) da
0
1 1
_(p - CD/ ODgun—l : xD(f(un—i—l - un)dx - / u:(un—l-l - un)dx
0 0

and

(4.11)

1
_y / (0D%uns1 + 2 D (1 — tn) + 2 D%ty - 0D (thnss — )
0

1 1
S / DD - 2 DO (s — ) = / Wy (s — ),
0 0

where u)(z) € OF,, (z,u,(x)), u () € OF,, ., (€, upt1(x)) for ae. x €
[0,1]. (4.11) subtracting (4.10), combining lemma 3.1 and (3.11), one
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concludes
2q| cos(ma)|||uns1 — unll3
1

S _QQ/ ODg(un—&—l - un) : lely(un—&—l - un)dl’

0

1
= (p - Q)/ ng(Un - unfl) ' a:D?(urH»l - Un)d$
0

1
b [ i = ) s — )
0

1
< = tllalltnss =l [ (00 = ) s — )
| cos(mav)| 0
p—q
< Hun - un—1||oz||un+1 _unHa +LRzl|un+1 _un“%Q
| cos(mav)]
p—yq B B L, T
’COS(’/TO()’HU” un—l”a”“n—‘rl un||06+ (F(Oé+1))2||un+l un”a
p—q Lk,
- T ||Un — Up— a+—un — Un||« Unp — Unpl||a-
(sl = el gl = wlla ) s = ]
Hence,
(4.12)
Lg (p—q)
2 - —2 mn - n||lo < T 7 N n - n— o
(20l costre)] = (s st =l < Dy = ]

By the assumptions (3.13) and (4.12), we know {u,} is a Cauchy se-
quence in H§(0,1). So we suppose that u,, — u in H§(0,1). In view of
the definition of {u, }, we know u is a weak solution and then by Lemma
3.4, it is a solution of problem (1.2). Note that I, . (u,) > (; and
B1 > 0 does not depend on n, we derive that u is a nontrivial solution
of problem (1.2). O
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