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ESSENTIAL NORM OF THE PULL BACK OPERATOR

Tang Shuan and Wu Chong

Abstract. We obtain some estimations of the essential norm of a
pull back operator induced by quasi-symmetric homeomorphisms.
As a corollary, we deduce the compactness criterion of this operator.

1. Introduction

Let ∆ = {z : |z| < 1} be the unit disk in the complex plane C and
∆∗ = C\∆. A homeomorphism h is said to be quasis-ymmetric if there
is some M > 0, called the quasis-ymmetric constant of h, such that

1

M
≤
∣∣∣∣h(ei(θ+t))− h(eiθ)

h(eiθ)− h(ei(θ−t))

∣∣∣∣ ≤M

for all θ and t > 0. Denote by QS(S1) the group of quasi-symmetric
homeomorphisms of the unit circle S1. Beurling and Ahlfors [1] proved
that a sense preserving self-homeomorphism h is quasi-symmetric if and
only if there exists some quasi-conformal homeomorphism of ∆ onto
itself which has boundary value h. Later Douady and Earle [3] gave a
quasi-conformal extension of h to the unit disk which is also conformally
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invariant. Let Möb(S1) be the group of Möbius transformations mapping
∆ onto itself. The universal Teichmüller space is the right coset space
T = QS(S1)/Möb(S1).

A quasis-ymmetric homeomorphism h is said to be symmetric if

lim
t→0+

h(ei(θ+t))− h(eiθ)

h(eiθ)− h(ei(θ−t))
= 1

for all θ and t > 0. Let S(S1) denote the set of all symmetric homeo-
morphisms of the unit circle. Then S(S1) is a subgroup of QS(S1). The
little universal Teichmüller space is defined as T0 = S(S1)/Möb(S1).
The class of symmetric homeomorphisms has several equivalent defini-
tions and has been much investigated in classical complex analysis [6].
For any quasi-conformal homeomorphism f of the unit disk ∆ onto itself
with Beltrami coefficient µ(z), define b∗(f) to be the infimum taken over
all compact subset F contained in ∆ of the essential supremum norm of
µ(z) as z varies over ∆\F . We say a quasis-ymmetric homeomorphism
f is asymptotically conformal if b∗(f) = 0. Define the boundary dilata-
tion b(h) of a quasis-ymmetric homeomorphism h to be the infimum of
b∗(f) taken over all quasi-conformal mapping f with the boundary value
f |S1 = h. The following results are well known.

Proposition 1.1. [4] A quasis-ymmetric homeomorphism h is sym-
metric if and only if b(h) = 0.

Actually, Gardiner and Sullivan [4] proved that for a symmetric home-
omorphism, the Beurling-Ahlfors extension is asymptotically conformal.
The Douady-Earle extension also has this property (see [2] and [5]).

Hu and Shen [5] introduced some pull-back operators and functions
induced by quasis-ymmetric homeomorphism to study the universal Te-
ichmüller space and some subspaces of the universal Teichmüller space.
We recall some notations and definitions.

The Bergman space A2 consists of all holomorphic functions φ in the
unit disk ∆ with finite norm

(1) ‖φ‖ =

(
1

π

∫∫
∆

|φ(z)|2dxdy
) 1

2

<∞.

This is a Hilbert space with inner product defined as

(2) 〈φ, ψ〉 =
1

π

∫∫
∆

φ(z)ψ(z)dxdy.
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Let h be a quasis-ymmetric homeomorphism in the unit circle. The
following two kernel functions induced by h were introduced in [5],

(3) φh(ζ, z) =
1

2πi

∫
S1

h(w)

(1− ζw)2(1− zh(w))
dw, (ζ, z) ∈ ∆×∆,

(4) ψh(ζ, z) =
1

2πi

∫
S1

h(w)

(ζ − w)2(1− zh(w))
dw, (ζ, z) ∈ ∆×∆.

Both φh and ψh are holomorphic functions. It is noted that the function
φh was also appeared in Cui [2]. The two kernel functions induce the
following two operators from Bergman space A2 into itself respectively,

(5) T−h ψ(ζ) =
1

π

∫∫
∆

φh(ζ, z)ψ(z̄)dxdy, ζ ∈ ∆,

(6) T+
h ψ(ζ) =

1

π

∫∫
∆

ψh(ζ, z)ψ(z̄)dxdy, ζ ∈ ∆.

The two kernel functions also induce two functions,

(7) φh(z) =

(
1

π

∫∫
∆

|φh(ζ, z)|2dξdη
) 1

2

, z ∈ ∆,

(8) ψh(z) =

(
1

π

∫∫
∆

|ψh(ζ, z)|2dξdη
) 1

2

, z ∈ ∆.

These pull-back operators and functions play an important role in the
Teichmüller theory (see [5], [8], [9]). They were used in [5] and [8] to
characterize when a quasis-ymmetric homeomorphism is symmetric or
belongs to the Weil-Petersson class. They were also used to study the
BMO-Teichmüller theory in [9].

Proposition 1.2. [5] T−h : A2 → A2 is bounded operator if and only

if h is quasis-ymmetric and ‖T−h ‖ ≤
‖µ‖∞√
1−‖µ‖2∞

, where µ is the Beltrami

coefficient of a quasi-conformal extension of h.

Proposition 1.3. [5] Let h be a quasis-ymmetric homeomorphism.
Then the following statements are equivalent:
(1) T−h : A2 → A2 is a compact operator;
(2) h is symmetric;
(3) lim|z|→1 φh(z)(1− |z|2) = 0.
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A nature problem is how to estimate the essential norm of the pull-
back operator T−h . In this note, we will give some estimations of the
essential norm of the pull back operator T−h and then deduce the com-
pactness criterion of this operator. We first recall the definition of essen-
tial norm of a operator in Banach space. Let X and Y be Banach spaces.
For a bounded linear operator T : X → Y , the essential norm ‖T‖e is
defined to be the distance from T to the set of the compact operators
K : X → Y , precisely

(9) ‖T‖e = inf ‖T −K‖

where the infimum is taken over all compact operators K from X into
Y and ‖ · ‖ denotes the usual operator norm. Note that T is compact if
and only if ‖T‖e = 0.

We first give a representation formula for the essential norm of the
pull-back operator by means of the degenerating sequence (see the defi-
nition in the next section). Then we obtain our main estimation of the
essential norm of the pull back operator T−h as follows.

Theorem 1.4. Let h be a quasis-ymmetric homeomorphism. Then
there is a constant C > 0 which depends only on the quasis-ymmetric
constant of h such that

(10) lim
|a|→1

(1− |a|2)φh(a) ≤ ‖T−h ‖e ≤ C lim
|a|→1

(1− |a|2)φh(a).

By means of Proposition 1.1, Proposition 1.3 and Theorem 1.4, we
have the following result.

Corollary 1.5. Let h be a quasis-ymmetric homeomorphism. Then
the following statements are equivalent:
(1) T−h : A2 → A2 is a compact operator;
(2) h is symmetric;
(3) lim|z|→1 φh(z)(1− |z|2) = 0;
(4) b(h) = 0.

The formula of the essential norm of T−h will be given in the second
section and the proofs of Theorems 3.1 and 1.4 will be presented in the
next two sections.
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2. A formula of the essential norm of T−h

Let φ be an analytic function in ∆ with Taylor expansion

φ(z) =
∞∑
k=0

akz
k.

For any positive integer n ≥ 1, define two operators as following

Rnφ(z) =
∞∑
k=n

akz
k,

and

Kn = I − Rn,

where I is the identity operator. We need the following unified estima-
tion for the operator Rn.

Lemma 2.1. For any ε > 0 and 0 < r < 1, there is a positive integer
N0 which depends only on r such that for any n > N0, |a| < r and
f ∈ A2,

(11) sup
‖f‖≤1

|Rnf(a)| < ε.

Proof. The reproducing kernel function in A2 is

Ka(z) =
1

(1− āz)2
, a ∈ ∆, z ∈ ∆.

For fixed a ∈ ∆, the function Ka(z) is a bounded analytic function.
It is easy to see that the operator Rn is a self-adjoint operator in A2.
Therefore, for any f ∈ A2,

〈Rnf,Ka〉 = 〈f,RnKa〉.

This yields

|Rnf(a)| = 1

π
|〈Rnf,Ka〉| =

1

π
|〈f,RnKa〉| ≤

1

π
‖f‖‖RnKa‖∞.

It is noted that Ka(z) =
∑∞

n=0(n+ 1)ānzn, therefore for any |a| < r,

|RnKa(z)| = |
∞∑
k=n

(k + 1)ākzk| ≤
∞∑
k=n

(k + 1)rk.
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For any ε > 0, take N0 such that 1
π

∑∞
k=N0

(k + 1)rk < ε, then when
n > N0 and |a| < r,

sup
‖f‖≤1

|Rnf(a)| < ε.

The proof of Lemma 2.1 is completed.

We say a sequence {ϕn} ∈ A2 is degenerating, if ‖ϕn‖ ≤ 1 and {ϕn}
converges uniformly to zero uniformly on any compacted subset of ∆.
The following result gives an expression of the essential norm of the
operator T−h .

Theorem 2.2. Let h be a quasis-ymmetric homeomorphism. Then

(12) ‖T−h ‖e = sup
{ϕn}

{
lim
n→∞
‖T−h ϕn‖

}
,

where the supremum is taken over all degenerating sequence {ϕn} ⊂ A2

.

Proof. Note that the degenerating sequence {ϕn} in A2 weakly con-
verges to zero. Therefore, for any compact operator K : A2 → A2, we
have ‖K(ϕn)‖ → 0 as n→∞. We deduce that

‖T−h −K‖ ≥ lim
n→∞
‖(T−h −K)(ϕn)‖

≥ lim
n→∞
‖T−h (ϕn)‖ − lim

n→∞
‖K(ϕn)‖

= lim
n→∞
‖T−h (ϕn)‖.

Take the supremun over all degenerated sequence {ϕn} ∈ A2, and then
take the infimum over all compact operator K : A2 → A2, we have

‖T−h ‖e ≥ sup
{ϕn}

{
lim
n→∞
‖T−h ϕn‖

}
.

Noting that h is a quasis-ymmetric homeomorphism, by Proposition
1.2, we know that T−h is a bounded operator in A2. It is noted that for
each n, Kn is a compact operator, which implies that T−h Kn is also a
compact operator for all n. Therefore, we have

‖T−h ‖e = ‖T−h Rn + T−h Kn‖e ≤ ‖T−h Rn‖ ≤ lim
n→∞

sup
‖φ‖≤1

‖T−h Rn(φ)‖.

For each n, there is a sequence {φnm} ⊂ A2 with ‖φnm‖ ≤ 1 such that

‖T−h Rn‖ = lim
m→∞

‖T−h Rn(φnm)‖.
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We choose a sequence {φn} ⊂ A2 with ‖φn‖ ≤ 1 such that

‖T−h Rn‖ ≤ ‖T−h Rn(φn)‖+
1

n
.

Denote the sequence {Rn(φn)} by {ϕn}. Note that for each n, Rn is a
projection operator from A2 to A2, therefore ‖Rn‖ = 1 and ‖ϕn‖ ≤ 1.
It follows from Lemma 2.1 that the sequence {ϕn} converges uniformly
to zero on any compact subset of ∆. Thus the sequence {ϕn} is a
degenerating sequence and

‖T−h ‖e ≤ lim
n→∞
‖T−h Rn‖ ≤ lim

n→∞
‖T−h ϕn‖.

Therefore we have

‖T−h ‖e ≤ sup
{ϕn}

{
lim
n→∞
‖T−h ϕn‖

}
,

where the supremum is taken over all degenerating sequence {ϕn} ⊂ A2.
The proof of Theorem 2.2 is completed.

3. Estimations in terms of boundary distortion

In this section, an estimation of the essential norm of the pull-back
operator by means of the boundary distortion will be given. We prove
the following result.

Theorem 3.1. Let h be a quasis-ymmetric homeomorphism. Then

(13) lim
|a|→1

(1− |a|2)|φh(a)| ≤ ‖T−h ‖e ≤
b(h)√

1− b(h)2
,

where b(h) is the boundary dilatation of h.

To proof the theorem, we need the following results.

Lemma 3.2. [5] [9] Let h be a quasis-ymmetric homeomorphism.
(1) For any ψ ∈ A2, choosing φ such that φ′ = ψ, we have

T−h ψ(ζ) =
1

2πi

∫
∂∆

φ(h(w))

(1− ζw)2
dw.

(2) Let a ∈ ∆ and Ka(ζ) = 1−|a|2
(1−aζ)2 . Then we have

T−h (Ka(ζ)) = (1− |a|2)φh(ζ, a).
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We first estimate the lower bound. Let a ∈ ∆. Consider the function

Ka(ζ) =
1− |a|2

(1− aζ)2
,

it is known that Ka(ζ) ∈ A2 and ‖Ka‖ = 1. Notice that the family Ka

in A2 converges uniformly to zero locally in ∆ as |a| → 1. Therefore, for
any compact operator K : A2 → A2, we have ‖K(Ka)‖ → 0 as |a| → 1.
By Theorem 2.2, we deduce that

‖T−h ‖e ≥ lim
|a|→1
‖T−h (Ka)‖

By Lemma 3.2,

T−h (Ka(ζ)) = (1− |a|2)φh(ζ, a).

Therefore, we have

‖T−h ‖e ≥ lim
|a|→1

(1− |a|2)|φh(a)|.

We now estimate the upper bound. From the proof of Theorem 2.2,
we have

‖T−h ‖e = ‖T−h Rn + T−h Kn‖e ≤ ‖T−h Rn‖.

Thus, we will proceed to estimate the norm ‖T−h Rn‖ and obtain the
upper bound estimation of ‖T−h ‖e. Let f be a quasi-conformal extension
of the quasis-ymmetric homeomorphism h into ∆. By Lemma 3.2, for
any ψ ∈ A2, choosing φ such that φ′ = ψ, we have

T−h ψ(ζ) =
1

2πi

∫
∂∆

φ(h(w))

(1− ζw)2
dw.

The Green formula yields

T−h ψ(ζ) =
1

π

∫∫
∆

ψ(f(w))∂f(w)

(1− ζw)2
dudv.



Essential norm of the pull back operator 23

Noting that the Hilbert transformation is isometry on L2(C), we deduce
that

‖T−h Rnψ‖2 =
1

π

∫∫
∆

∣∣∣∣∣ 1π
∫∫

∆

Rnψ(f(w))∂f(w)

(1
ζ
− w)2

dudv

∣∣∣∣∣
2 ∣∣∣∣ 1

ζ4

∣∣∣∣ dξdη
=

1

π

∫∫
∆∗

∣∣∣∣ 1π
∫∫

∆

Rnψ(f(w))∂f(w)

(ζ − w)2
dudv

∣∣∣∣2 dξdη
≤ 1

π

∫∫
∆

∣∣Rnψ(f(w))∂f(w)
∣∣2 dudv(14)

≤ 1

π

∫∫
∆

|µ(w)|2

1− |µ(w)|2
|Rnψ(w)|2 dudv,

where µ(w) is the Beltrami coefficient of f−1.
Let 0 < r0 < 1, Ar0 = {z ∈ ∆ : |z| > r0} and ∆r0 = ∆\Ar0 . We

divide the integral above into two parts,

‖T−h Rnψ‖2 ≤ 1

π

∫∫
∆r0

|µ(w)|2

1− |µ(w)|2
|Rnψ(w)|2 dudv

+
1

π

∫∫
Ar0

|µ(w)|2

1− |µ(w)|2
|Rnψ(w)|2 dudv

= J1 + J2.

We first estimate the term J2. Let M = sup|w|>r0
|µ(w)|2

1−|µ(w)|2 . Noting that

sup{‖Rn‖ : n ≥ 1} = 1, we have

J2 =
1

π

∫∫
Ar0

|µ(w)|2

1− |µ(w)|2
|Rnψ(w)|2 dudv

≤ M‖Rnψ‖2

≤ M sup{‖Rn‖ : n ≥ 1}‖ψ‖2

≤ M‖ψ‖2.

Next, we estimate the term J1. Let k = ‖µ‖∞, we have

J1 =
1

π

∫∫
∆r0

|µ(w)|2

1− |µ(w)|2
|Rnψ(w)|2 dudv

≤ k2

1− k2

1

π

∫∫
∆r0

|Rnψ(w)|2 dudv.
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Therefore we deduce that

sup
‖ψ‖≤1

‖T−h Rnψ‖ ≤

(
M +

k2

1− k2

1

π

∫∫
∆r0

sup
‖ψ‖≤1

|Rnψ(w)|2 dudv

) 1
2

Thus, it follows from Lemma 2.1 that

lim
n→∞

sup
‖ψ‖≤1

‖T−h Rnψ‖ ≤M
1
2 .(15)

Let r0 → 1 and then take the infimum over all Beltrami coefficient µ
of quasi-conformal extension of the quasis-ymmetric homeomorphism h,
we have

‖T−h ‖e ≤ lim
n→∞
‖T−h Rn‖ ≤

b(h)√
1− b(h)2

.

The proof of Theorem 3.1 follows.

4. Proof of Theorem 1.4

From Theorem 3.1, we need only estimate the upper bound. Recall
that the Douady-Earle extension w = E(h)(z) of the quasis-ymmetric
homeomorphism h is defined as the equation, for z, w ∈ ∆,

(16) F (z, w) =
1

2π

∫
S1

(h(t)− w)(1− | w |2)

(1− wh(t)) | z − t |2
| dt |= 0,

(see [3]). Let µ(w) be the Beltrami coefficient of the inverse mapping
E(h)−1 of the Douay-Earle extension E(h) of quasis-ymmetric homeo-
morphism h. It follows from [2] and [5] that there is a constant C > 0
which depends only on the quasis-ymmetric constant of h such that

|µ(w)|2

1− |µ(w)|2
≤ C(1− |w|2)2φ2

h(w̄).(17)

Therefore, from (15) and (17), we have

lim
n→∞
‖T−h Rn‖2 ≤ C sup

|w|>r0
(1− |w|2)2φ2

h(w̄).

Let r0 → 1. We get

‖T−h ‖e ≤ C lim
|w|→1

(1− |w|2)φh(w).

We complete the proof of Theorem 1.4.
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