A NEW CHARACTERIZATION OF PRÜFER v-MULTIPLICATION DOMAINS

Gyu Whan Chang

Abstract

Let D be an integral domain and w be the so-called w-operation on D. In this note, we introduce the notion of $*(w)$ domains: D is a $*(w)$-domain if $\left(\left(\cap\left(x_{i}\right)\right)\left(\cap\left(y_{j}\right)\right)\right)_{w}=\cap\left(x_{i} y_{j}\right)$ for all nonzero elements $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n}$ of D. We then show that D is a Prüfer v-multiplication domain if and only if D is a $*(w)$-domain and A^{-1} is of finite type for all nonzero finitely generated fractional ideals A of D.

1. Introduction

A Prüfer v-multiplication domain $(\mathrm{P} v \mathrm{MD}) D$ is an integral domain in which each nonzero finitely generated ideal I is t-invertible, i.e., $\left(I I^{-1}\right)_{t}=D$. (Definitions related to the t-operation will be reviewed in the sequel.) PvMDs include Prüfer domains, GCD-domains, and Krull domains. There are many interesting characterizations of $\mathrm{P} v \mathrm{MDs}$ in the literature. Among them, Prüfer domains are $\mathrm{P} v \mathrm{MDs}$ whose maximal ideals are t-ideals, and D is a $\mathrm{P} v \mathrm{MD}$ if and only if D_{P} is a valuation domain for all maximal t-ideals P of D, if and only if the polynomial ring $D[X]$ over D is a Pv MD . The purpose of this note is to give another new characterization of $\mathrm{P} v \mathrm{MDs}$.

We first review definitions related to the t-operation. Let D be an integral domain with quotient field $K, F(D)$ be the set of nonzero

Received July 5, 2015. Revised December 3, 2015. Accepted December 10, 2015. 2010 Mathematics Subject Classification: 13A15, 13F05.
Key words and phrases: Prüfer v-multiplication domain; (t, v)-Dedekind domain; $*(w)$-domain.
(c) The Kangwon-Kyungki Mathematical Society, 2015.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
fractional ideals of D, and $f(D)$ be the set of nonzero finitely generated fractional ideals of D; so $f(D) \subseteq F(D)$, and $f(D)=F(D)$ if and only if D is a Noetherian domain. For $I \in F(D)$, if we let $I^{-1}=\{x \in K \mid x I \subseteq D\}$, then $I^{-1} \in F(D)$, and so we can define $I_{v}=\left(I^{-1}\right)^{-1}$. Also, let $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I\right.$ and $\left.J \in f(D)\right\}$ and $I_{w}=\left\{x \in K \mid x J \subseteq I\right.$ for some $J \in f(D)$ with $\left.J_{v}=D\right\}$. Let $*=v, t$, or w. It is well known that $*$ is a map from $F(D)$ into $F(D)$ such that, for all $0 \neq a \in K$ and $I, J \in F(D)$; (i) $(a D)_{*}=a D$ and $(a I)_{*}=a I_{*}$, (ii) $I \subseteq I_{*}$ and if $I \subseteq J$, then $I_{*} \subseteq J_{*}$, and (iii) $\left(I_{*}\right)_{*}=I_{*}$. Clearly, $I_{w} \subseteq I_{t} \subseteq I_{v}$, and if I is finitely generated, then $I_{t}=I_{v}$. An $I \in F(D)$ is said to be $*$-invertible if $\left(I I^{-1}\right)_{*}=D$. We say that $I \in F(D)$ is a $*$-ideal if $I_{*}=I$, while a $*$-ideal is a maximal $*$-ideal if it is maximal among proper integral $*$-ideals of D. Let $*-\operatorname{Max}(D)$ be the set of maximal $*$-ideals. Clearly, if D is a rank-one nondiscrete valuation domain, then $v-\operatorname{Max}(D)=\emptyset$. However, if D is not a field and $\star=t$ or w, then $\star-\operatorname{Max}(D) \neq \emptyset$, each maximal \star-ideal is a prime ideal, and $D=\bigcap_{\star-\operatorname{Max}(D)} D_{P}, t-\operatorname{Max}(D)=w-\operatorname{Max}(D)$, and $I_{w}=\bigcap_{P \in t-\operatorname{Max}(D)} I D_{P}$; so $I_{w} D_{P}=I D_{P}$ for each $P \in t-\operatorname{Max}(D)$ and for all $I \in F(D)[2]$. The equality of $t-\operatorname{Max}(D)=w-\operatorname{Max}(D)$ leads to the conclusion that $I \in F(D)$ is t-invertible if and only if I is w-invertible. A v-ideal I of D is said to be of finite type if $I=J_{v}$ for some $J \in f(D)$.

Following [6], we say that D is a $*$-domain if for all $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n}$ $\in D-\{0\}$, we have $\left(\cap\left(x_{i}\right)\right)\left(\cap\left(y_{j}\right)\right)=\cap\left(x_{i} y_{j}\right)$. In [6], it was shown that D is a $*$-domain if and only if $\left(\cap\left(x_{i}\right)\right)\left(\cap\left(y_{j}\right)\right)=\cap\left(x_{i} y_{j}\right)$ for all $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n} \in K-\{0\}$, if and only if D_{M} is a $*$-domain for all maximal ideals M of D and that a Prüfer domain and a GCD domain are $*$-domains. As a w-operation analogue of $*$-domains, we will call D a $*(w)$-domain if for all $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n} \in D-\{0\}$, we have $\left(\left(\cap\left(x_{i}\right)\right)\left(\cap\left(y_{j}\right)\right)\right)_{w}=\cap\left(x_{i} y_{j}\right)$. Clearly, a $*$-domain is a $*(w)$-domain. In this paper, we prove that D is a $*(w)$-domain if and only if D_{P} is a *-domain for all $P \in t-\operatorname{Max}(D)$. We then use this notion to show that D is a $\mathrm{P} v \mathrm{MD}$ if and only if D is a $*(w)$-domain and A^{-1} is of finite type for all $A \in f(D)$.

2. Main Result

Let D be an integral domain with quotient field K. It is easy to see that D is a $*(w)$-domain if and only if $\left(\left(\cap\left(x_{i}\right)\right)\left(\cap\left(y_{j}\right)\right)\right)_{w}=\cap\left(x_{i} y_{j}\right)$ for
all $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n} \in K-\{0\}$. In this section, we use this notion to give new characterizations of $\mathrm{P} v \mathrm{MDs}$ and related domains.

Lemma 1. The following statements are equivalent for an integral domain D.

1. D is a $*(w)$-domain.
2. D_{P} is a $*$-domain for all $P \in t-\operatorname{Max}(D)$.
3. $(A B)^{-1}=\left(A^{-1} B^{-1}\right)_{w}$ for all $A, B \in f(D)$.

Proof. (1) $\Leftrightarrow(2)$ Let $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n} \in K-\{0\}$. Note that $(I J) D_{P}=\left(I D_{P}\right)\left(J D_{P}\right)$ and $(I \cap J) D_{P}=I D_{P} \cap J D_{P}$ for all $I, J \in F(D)$ and $P \in t-\operatorname{Max}(D)\left[3\right.$, Theorems 4.3 and 4.4]. Also, $I_{w}=\bigcap_{P \in t-\operatorname{Max}(D)} I D_{P}$ and $I_{w} D_{P}=I D_{P}$ for all $P \in t-\operatorname{Max}(D)$. Hence $\left(\left(\cap\left(x_{i}\right)\right)\left(\cap\left(y_{j}\right)\right)\right)_{w}=$ $\cap\left(x_{i} y_{j}\right)$ if and only if $\left(\cap\left(x_{i}\right) D_{P}\right)\left(\cap\left(y_{j}\right) D_{P}\right)=\cap\left(x_{i} y_{j}\right) D_{P}$ for all $P \in$ t - $\operatorname{Max}(D)$. Thus, D is a $*(w)$-domain if and only if D_{P} is a $*$-domain for all $P \in t-\operatorname{Max}(D)$.
(1) \Rightarrow (3) Let $A=\left(x_{1}, \ldots, x_{m}\right)$ and $B=\left(y_{1}, \ldots, y_{n}\right)$ be nonzero finitely generated fractional ideals of D. Then $A B=\left(\left\{x_{i} y_{j}\right\}\right)$, and hence $\left(A^{-1} B^{-1}\right)_{w}=\left(\left(\cap\left(\frac{1}{x_{i}}\right)\right)\left(\cap\left(\frac{1}{y_{j}}\right)\right)\right)_{w}=\cap\left(\frac{1}{x_{i} y_{j}}\right)=(A B)^{-1}$.
$(3) \Rightarrow(1)$ Let $x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n} \in K-\{0\}$, and put $A=\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{m}}\right)$ and $B=\left(\frac{1}{y_{1}}, \ldots, \frac{1}{y_{n}}\right)$. Then $A, B \in f(D)$, and hence, $\left(\left(\cap\left(x_{i}\right)\right)\left(\cap\left(y_{j}\right)\right)\right)_{w}$ $=\left(A^{-1} B^{-1}\right)_{w}=(A B)^{-1}=\cap\left(x_{i} y_{j}\right)$ by (3).

Recall from [6, Theorem 2.1] that D is a $*$-domain if and only if D_{M} is a $*$-domain for every maximal ideal M of D. Hence, if each maximal ideal of D is a t-ideal (e.g., D is a Prüfer domain or D is one-dimensional), then D is a $*$-domain if and only if D is a $*(w)$-domain by Lemma 1 .

Corollary 2. Let S be a multiplicative subset of D. If D is a $*(w)$-domain, then D_{S} is also a $*(w)$-domain.

Proof. If Q is a maximal t-ideal of D_{S}, then $Q \cap D$ is a t-ideal of D and $Q=(Q \cap D) D_{S}$. Hence, there is a maximal t-ideal M of D with $Q \cap D \subseteq M$, and so $D_{Q \cap D}=\left(D_{M}\right)_{(Q \cap D) D_{M}}$. By Lemma $1, D_{M}$ is a $*-$ domain, and hence $D_{Q \cap D}=\left(D_{M}\right)_{(Q \cap D) D_{M}}$ is a $*$-domain (see the proof of $\left[6\right.$, Theorem 2.1]). Again, by Lemma $1, D_{S}$ is a $*(w)$-domain.

We next give a new characterization of $\mathrm{P} v \mathrm{MDs}$.
Theorem 3. An integral domain D is a $P v M D$ if and only if D is a $*(w)$-domain and A^{-1} is of finite type for all $A \in f(D)$.

Proof. (\Rightarrow) Let $P \in t$ - $\operatorname{Max}(D)$. Then D_{P} is a valuation domain, and hence D_{P} is a $*$-domain. Thus D is a $*(w)$-domain by Lemma 1. Also, if $A \in f(D)$, then $\left(A A^{-1}\right)_{t}=D$, and hence A^{-1} is t-invertible. Thus, A^{-1} must be of finite type.
(\Leftarrow) Let $A \in f(D)$. Then $A^{-1}=B_{v}$ for some $B \in f(D)$, and hence by Lemma 1, $D \subseteq\left(A A^{-1}\right)^{-1}=\left(A B_{v}\right)^{-1}=(A B)^{-1}=\left(A^{-1} B^{-1}\right)_{w}=$ $\left(A^{-1} A_{v}\right)_{w} \subseteq\left(A^{-1} A_{v}\right)_{t}=\left(A^{-1} A_{t}\right)_{t}=\left(A^{-1} A\right)_{t} \subseteq D$. Thus, $\left(A A^{-1}\right)_{t}=$ D.

A Mori domain is an integral domain which satisfies the ascending chain condition on the set of integral v-ideals. Mori domains contain Krull domains and Noetherian domains. Also, it is well known that D is a Krull domain if and only if D is a Mori $\mathrm{P} v \mathrm{MD}$.

Corollary 4. A Mori domain D is a Krull domain if and only if D is a $*(w)$-domain.

Proof. This is an immediate consequence of Theorem 3 because (i) a Mori domain is a Krull domain if and only if it is a $\mathrm{P} v \mathrm{MD}$, (ii) every v-ideal of a Mori domain is of finite type, and A^{-1} is a v-ideal for all $A \in F(D)$.

An integral domain D is called a (t, v)-Dedekind domain (or pre-Krull domain as in [6]) if A_{v} is t-invertible for all $A \in F(D)$. Clearly, a (t, v)-Dedekind domain is a $\mathrm{P} v \mathrm{MD}$. Also, if D is a (t, v)-Dedekind domain, then $\left(A_{v} A^{-1}\right)_{t}=D$, and so $\left(A A^{-1}\right)_{v}=\left(A_{v} A^{-1}\right)_{v}=D$ for all $A \in F(D)$. Thus, a (t, v)-Dedekind domain is completely integrally closed. Hence, Krull domains $\Rightarrow(t, v)$-Dedekind domains \Rightarrow completely integrally closed $\mathrm{P} v \mathrm{MDs} \Rightarrow \mathrm{P} v \mathrm{MDs}$. The (t, v)-Dedekind domains were studied in $[1,4,7]$.

Lemma 5. (cf. [5, Lemma 1.2]) If $A \in F(D)$, then A_{v} is t-invertible if and only if $(A B)^{-1}=\left(A^{-1} B^{-1}\right)_{w}$ for all $B \in F(D)$.

Proof. (\Rightarrow) If $x \in(A B)^{-1}$, then $x A B \subseteq D$, and so $x A \subseteq B^{-1}$. Hence $x A_{v}=(x A)_{v} \subseteq\left(B^{-1}\right)_{v}=B^{-1}$, and thus $x \in x D=x\left(A_{v} A^{-1}\right)_{w}=$ $\left(x A_{v} A^{-1}\right)_{w} \subseteq\left(B^{-1} A^{-1}\right)_{w}$. For the reverse containment, let $y \in\left(B^{-1} A^{-1}\right)_{w}$. Then $y A_{v} \subseteq A_{v}\left(A^{-1} B^{-1}\right)_{w} \subseteq\left(A_{v}\left(A^{-1} B^{-1}\right)_{w}\right)_{w}=\left(A_{v} A^{-1} B^{-1}\right)_{w}=$ $\left(\left(A_{v} A^{-1}\right)_{w} B^{-1}\right)_{w}=B^{-1}$. Hence $y A B \subseteq y A_{v} B \subseteq B^{-1} B \subseteq D$, and thus $y \in(A B)^{-1}$.
(\Leftarrow) Let $B=A^{-1}$. Then $B \in F(D)$, and hence $D \subseteq\left(A A^{-1}\right)^{-1}=$ $\left(A^{-1} A_{v}\right)_{w} \subseteq D$. Thus, $\left(A^{-1} A_{v}\right)_{w}=D$.

We next give a new characterization of (t, v)-Dedekind domains via *(w)-domains.

Corollary 6. The following statements are equivalent for an integral domain D.

1. D is a (t, v)-Dedekind domain.
2. D is a $*(w)$-domain and A_{v} is of finite type for all $A \in F(D)$.
3. D is completely integrally closed and $(A B)_{v}=\left(A_{v} B_{v}\right)_{t}$ for all $A, B \in F(D)$.
4. $(A B)^{-1}=\left(A^{-1} B^{-1}\right)_{t}$ for all $A, B \in F(D)$.
5. $(A B)^{-1}=\left(A^{-1} B^{-1}\right)_{w}$ for all $A, B \in F(D)$.

Proof. (1) \Rightarrow (2) Since A_{v} is t-invertible, A_{v} is of finite type. Also, a (t, v)-Dedekind domain is a $\mathrm{P} v \mathrm{MD}$, and so by Theorem $3, D$ is a $*(w)$ domain.
(2) \Rightarrow (1) Let $A \in F(D)$. Then $A^{-1} \in F(D)$ with $\left(A^{-1}\right)_{v}=A^{-1}$, and hence both A_{v} and A^{-1} are of finite type. Hence, $A_{v}=I_{v}$ and $A^{-1}=J_{v}$ for some $I, J \in f(D)$. Thus, by (2) and Lemma $1, D \supseteq\left(A_{v} A^{-1}\right)_{t}=$ $\left(I_{v} J_{v}\right)_{t}=\left(I_{t} J_{t}\right)_{t}=(I J)_{t}=(I J)_{v}=\left((I J)^{-1}\right)^{-1}=\left(\left(I^{-1} J^{-1}\right)_{w}\right)^{-1}=$ $\left(A^{-1} A_{v}\right)^{-1} \supseteq D$. Thus, $\left(A_{v} A^{-1}\right)_{t}=D$.
$(1) \Leftrightarrow(3) \Leftrightarrow(4)$ [7, Proposition 4.1].
$(1) \Leftrightarrow(5)$ Lemma 5 .

References

[1] D.D. Anderson, D.F. Anderson, M. Fontana, and M. Zafrullah, On v-domains and star operations, Comm. Algebra 37 (2009), 3018-3043.
[2] D.D. Anderson and S.J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461-2475.
[3] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
[4] Q. Li, (t, v)-Dedekind domains and the ring $R[X]_{N_{v}}$, Results in Math. 59 (2011), 91-106.
[5] M. Zafrullah, On generalized Dedekind domains, Mathematika 33 (1986), 285295.
[6] M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra 15 (1987), 1895-1920.
[7] M. Zafrullah, Ascending chain condition and star operations, Comm. Algebra 17 (1989), 1523-1533.

Gyu Whan Chang
Department of Mathematics Education
Incheon National University
Incheon 406-772, Korea.
E-mail: whan@inu.ac.kr

