Korean J. Math. **24** (2016), No. 1, pp. 107–138 http://dx.doi.org/10.11568/kjm.2016.24.1.107

ALMOST-PRIMES REPRESENTED BY $p + a^m$

YAMING LU

ABSTRACT. Let $a \ge 2$ be a fixed integer in this paper. By using the method of Goldston, Pintz and Yıldırım, we will prove that there are infinitely many almost-primes which can be represented as $p + a^m$ in at least two different ways.

1. Introduction

In 1934, Romanoff [9] proved that the integers of the form $p+2^m$ have a positive density. Thereafter, many works have been done involving the so-called Romanoff's constant:

$$c = \liminf_{x \to \infty} \frac{\#\{n \le x : n = p + 2^m\}}{x}$$

For example, Chen and Sun [1] proved that c > 0.0868, this result is improved by Habsieger and Roblot [6] to 0.0933 and by Pintz [7] to 0.09368. Their works mainly based on studying the mean values involving r(n), the number of different representations of n in the form $p + 2^m$.

Prachar [8] studied a more generalized problem. He proved that if a > 1 and (m_j) is a strictly increasing sequence of non-negative integers, then the number of distinct integers $\leq x$ which can be expressed in the form $p + a^{m_j}$ is

$$\gg \frac{x}{\log x} \#\{m_j : a^{m_j} \leqslant x\}$$

Received March 19, 2015. Revised March 03, 2016. Accepted March 14, 2016.

²⁰¹⁰ Mathematics Subject Classification: 11P32, 11N36.

Key words and phrases: almost-primes, Goldston-Pintz-Yıldırım's method, sieve method.

This work was supported by N.S.F.(No.11201363) of P.R.China.

[©] The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

In this paper, we take interest in almost-primes with $r(n) \ge 2$. It is early in 1950 that Erdös [2] proved that there are infinitely many integers satisfying

$$r(n) \gg \log \log n$$

but his method can not be applied to attack the problem on almostprimes. The main result of this paper is the following theorem:

THEOREM 1.1. Let $a \ge 2$ be an fixed integer. Then there exists a positive integer R, such that there are infinitely many integers n satisfying:

- (1) n has at most R distinct prime divisors;
- (2) n can be represented as $p + a^m$ in at least two different ways.

We should mention to Friedlander and Iwaniec [4] who claimed: "We believe (although we did not check all details) that the method presented here can, when combined with the Fundamental Lemma, produce infinitely many almost-prime integers which have two different representations in the form $p + a^m$." Therefore, what we do in this paper is just to "check the details".

Throughout the paper, we denote ε to be a sufficiently small positive real number, and write

$$\Lambda^{\flat}(n) = \begin{cases} \log n, & \text{if } n \text{ is a prime,} \\ 0, & \text{otherwise.} \end{cases}$$

As usual, $\tau_k(n)$ is the divisor function and $\varphi(n)$ is the Euler's function.

2. Basic Considerations

The proof of Theorem 1.1 is based on the lower-bound sieve and the method of Goldston, Pintz and Yıldırım (see eg. [4], [5] and [10]).

Let N be a sufficiently large integer, we write

$$\mathcal{M} = \left\{ a^m : 1 \leqslant m \leqslant \frac{\log N}{2\log a} \right\}$$

and $\mathcal{H} = \{a^m : 1 \leq m \leq k\}$ a subset of \mathcal{M} . Let

$$Q(X) = \prod_{1 \le j \le k} (X - a^j),$$

and $\omega(d)$ denote the number of solutions $n \pmod{d}$ of $Q(n) \equiv 0 \pmod{d}$. Note that if $p \mid a$, then $\omega(p) = 1$; if $p \nmid a$, then $\omega(p) < p$ since $Q(0) \not\equiv 0$

(mod p). Therefore, $\omega(p) < p$ for every prime p, in another word, \mathcal{H} is "admissible".

We write

$$\det \mathcal{H} = \sum_{1 \le i < j \le k} (a^j - a^i)^2 = a^{k(k-1)} \prod_{1 \le j \le k-1} (a^j - 1)^{2(k-j)},$$

and let Δ be the product of all prime divisors of a and all primes p for which $a^j \equiv 1 \pmod{p}$ with some $1 \leq j \leq k$. Then we can easily check the following three things:

(i) Since \mathcal{H} is admissible, Δ is divisible by all primes $p \leq k + 1$. In practice, we shall choose k to be an even integer, therefore k + 2 is not a prime.

- (ii) If $p \nmid \Delta$, then $\omega(p) = k$.
- (iii) For any $a^m \in \mathcal{M}$, we have $\Delta \mid Q(a^m)$ since

$$Q(a^{m}) = \prod_{1 \le j \le k} \left(a^{m} - a^{j} \right) = a^{k(k+1)/2} \prod_{m-k \le j \le m-1} \left(a^{j} - 1 \right).$$

Now we consider the sequence (a_n) supported on the dyadic segment $(\frac{N}{2}, N]$ as well as $(Q(n), \Delta) = 1$ with

(2.1)
$$a_n = \left(\sum_{a^m \in \mathcal{M}} \Lambda^{\flat}(n - a^m) - \log N\right) \left(\sum_{\nu \mid Q(n)} \lambda_{\nu}\right),$$

where (λ_{ν}) is an upper-bound sieve supported on squarefree numbers $\nu < D = N^{\frac{1}{2}-2\varepsilon}$, $(\nu, \Delta) = 1$, whence the summation over ν is non-negative. Here we choose (λ_{ν}) to be the Selberg's Λ^2 -sieve, that is

$$\sum_{\nu|n} \lambda_{\nu} = \left(\sum_{d|n} \rho_d\right)^2$$

where (ρ_d) is a sequence of real numbers supported on squarefree numbers d with $d < \sqrt{D}$, $(d, \Delta) = 1$ which satisfies $\rho_1 = 1$ and

$$(2.2) |\rho_d| \leqslant 1$$

for all d (see Lemma 6.1). Thus

(2.3)
$$\lambda_{\nu} = \sum_{[d_1, d_2] = \nu} \rho_{d_1} \rho_{d_2}$$

and $|\lambda_{\nu}| \leq \tau_3(\nu)$ for all ν . If we can give a proper lower bound for the number of almost-primes n such that $a_n > 0$, we will prove Theorem 1.1. Therefore, we need to apply a lower-bound sieve to n.

Let

$$T = \{N/2 < n \leq N : (Q(n), \Delta) = 1\},$$

$$T_1 = T \cap \left\{n : \sum_{a^m \in \mathcal{M}} \Lambda^{\flat}(n - a^m) - \log N > 0\right\},$$

$$T_2 = T \cap \left\{n : \sum_{a^m \in \mathcal{M}} \Lambda^{\flat}(n - a^m) - \log N \leq 0\right\},$$

and $\mathcal{A} = (a_n)_{n \in T_1}$. We choose the sifting set $\mathcal{P} = \{p \ge k + 2 : p \nmid a\}$ since it is easy to deduce (n, a) = 1 from $(Q(n), \Delta) = 1$, and as usual, denote

$$P(z) = \prod_{\substack{p < z \\ p \in \mathcal{P}}} p.$$

Let (λ'_d) be a lower-bound sieve of level $D' = N^{\varepsilon}$, then the sifting function

(2.4)
$$S(\mathcal{A}, \mathcal{P}, z) = \sum_{\substack{n \in T_1 \\ (n, P(z)) = 1}} a_n \ge \sum_{n \in T_1} a_n \sum_{\substack{d \mid (n, P(z))}} \lambda'_d$$
$$= \sum_{n \in T} a_n \sum_{\substack{d \mid (n, P(z))}} \lambda'_d - \sum_{n \in T_2} a_n \sum_{\substack{d \mid (n, P(z))}} \lambda'_d = S_1 - S_2$$

say. If we can produce a positive lower bound of $S(\mathcal{A}, \mathcal{P}, z)$ for $z = D'^{\frac{1}{s}}$, we will deduce that there are infinitely many integers n which have at most $s\varepsilon^{-1} + k + 2$ distinct prime factors and satisfy $a_n > 0$.

Now we give a careful look at S_2 , we write

 $T_{21} = \{ n \in T_2 : n - a^m \text{ is not a prime for any } a^m \in \mathcal{M} \},$ $T_{22} = T_2 \setminus T_{21} = \{ n \in T_2 : \exists a^m \in \mathcal{M}, \text{ such that } n - a^m \text{ is a prime} \}.$

Almost-primes represented by $p + a^m$

Then,

$$-\sum_{n\in T_{21}}a_n\sum_{d\mid(n,P(z))}\lambda'_d = (\log N)\sum_{n\in T_{21}}\left(\sum_{\nu\mid Q(n)}\lambda_\nu\right)\left(\sum_{d\mid(n,P(z))}\lambda'_d\right)$$
$$= (\log N)\sum_{\substack{N/2 < n \le N\\(Q(n),\Delta)=1}}\left(\sum_{\nu\mid Q(n)}\lambda_\nu\right)\left(\sum_{d\mid(n,P(z))}\lambda'_d\right)$$
$$- (\log N)\sum_{\substack{N/2 < n \le N\\(Q(n),\Delta)=1\\ \exists a^m \in \mathcal{M}, \text{ s.t. } n-a^m \text{ is prime}}}\left(\sum_{\nu\mid Q(n)}\lambda_\nu\right)\left(\sum_{d\mid(n,P(z))}\lambda'_d\right)$$
$$\geq (\log N)\sum_{\nu\mid Q(n)}\left(\sum_{\nu\mid Q(n)}\lambda_\nu\right)\left(\sum_{\nu\mid Q(n)}\lambda'_d\right) - (\log N)\sum_{\nu\mid Q(n)}\left(\sum_{\nu\mid Q(n)}\lambda_\nu\right)\left(\sum_{\nu\mid Q(n)}\lambda'_d\right)$$

$$\geq (\log N) \sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1}} \left(\sum_{\nu \mid Q(n)} \lambda_{\nu} \right) \left(\sum_{\substack{d \mid (n, P(z)) \\ d \mid (n, P(z))}} \lambda'_{d} \right) - (\log N) \sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1 \\ (n, P(z)) = 1}} \left(\sum_{\nu \mid Q(n)} \lambda_{\nu} \right).$$

Noticing that

$$S_{1} = \sum_{\substack{N/2 < n \leq N \\ (Q(n),\Delta)=1}} \sum_{\substack{a^{m} \in \mathcal{M} \\ P(n) = 1}} \Lambda^{\flat}(n-a^{m}) \left(\sum_{\nu \mid Q(n)} \lambda_{\nu}\right) \left(\sum_{\substack{d \mid (n,P(z)) \\ Q(n),\Delta)=1}} \lambda'_{d}\right)$$
$$- \left(\log N\right) \sum_{\substack{N/2 < n \leq N \\ (Q(n),\Delta)=1}} \left(\sum_{\nu \mid Q(n)} \lambda_{\nu}\right) \left(\sum_{\substack{d \mid (n,P(z)) \\ Q(n),\Delta)=1}} \lambda'_{d}\right),$$

we finally get from (2.4) that (2.5)

$$S(\mathcal{A}, \mathcal{P}, z) \ge \sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1}} \sum_{\substack{a^m \in \mathcal{M} \\ N/2 < n \leq N \\ (Q(n), \Delta) = 1}} \Lambda^{\flat}(n - a^m) \left(\sum_{\nu \mid Q(n)} \lambda_{\nu}\right) \left(\sum_{\substack{d \mid (n, P(z)) \\ d \mid (n, P(z))}} \lambda'_d\right)$$
$$- \left(\log N\right) \sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1 \\ (n, P(z)) = 1}} \left(\sum_{\nu \mid Q(n)} \lambda_{\nu}\right) - \sum_{n \in T_{22}} a_n \sum_{\substack{d \mid (n, P(z)) \\ d \mid (n, P(z))}} \lambda'_d$$
$$= S_3 - S_4 - S_5$$

say.

Before doing further calculations, we should study the reduced composition of sieve-twisted sums.

3. Reduced Composition of Sieves

Let (λ_d) be a finite sequence supported on squarefree numbers and write

$$\theta_n = \sum_{d|n} \lambda_d.$$

For g(d) a multiplicative function supported on finite set of squarefree numbers with $0 \leq g(p) < 1$, we denote h(d) the multiplicative function supported on squarefree numbers with

$$h(p) = \frac{g(p)}{1 - g(p)}.$$

We call g a density function and h the relative density function of g. Now we consider the sieve-twisted sum

$$G = \sum_{d} \lambda_d g(d).$$

LEMMA 3.1. It holds that

$$(3.1) G = VG^*,$$

where

(3.2)
$$V = \prod_{p} (1 - g(p)) \quad and \quad G^* = \sum_{d} \theta_d h(d).$$

Proof. This is Lemma A.1 of [3].

Next, we consider the reduced composition of two sieve-twisted sums of the following type:

(3.3)
$$G' * G'' = \sum_{(d_1, d_2)=1} \lambda'_{d_1} \lambda''_{d_2} g'(d_1) g''(d_2).$$

We have

Almost-primes represented by $p + a^m$

Lemma 3.2.

(3.4)
$$G' * G'' = \sum_{(b_1, b_2) = 1} \beta'_{b_1} \theta''_{b_2} g'(b_1) g''(b_2) \prod_{p \nmid b_1 b_2} (1 - g'(p) - g''(p)).$$

Proof. This is Lemma A.2 of [3].

Now assume that (λ') is an upper-bound sieve (either from the betasieve or from the Selberg's sieve), (λ'') is a beta-sieve of level D'', while g'' is supported on the divisors of $P(z'') = \prod_{p < z''} p$ for some $z'' \leq D''$ and satisfying

(3.5)
$$\prod_{w \leqslant p < w'} (1 - g(p))^{-1} \leqslant \left(\frac{\log w'}{\log w}\right)^{\kappa} \left(1 + O\left(\frac{1}{\log w}\right)\right)$$

for some $\kappa > 0$ and any 0 < w < w'. If we denote by $h^{(1)}(d)$ and $h^{(2)}(d)$ the multiplicative functions supported on squarefree numbers with

$$h^{(1)}(p) = \frac{g'(p)}{1 - g'(p) - g''(p)}$$
 and $h^{(2)}(p) = \frac{g''(p)}{1 - g'(p) - g''(p)}$

then we get (at primes)

(3.6)
$$g^{(1)} = \frac{h^{(1)}}{1+h^{(1)}} = \frac{g'}{1-g''}$$
 and $g^{(2)} = \frac{h^{(2)}}{1+h^{(2)}} = \frac{g''}{1-g'}$

respectively. Thus Lemma 3.2 indicates (3.7)

$$G' * G'' = \prod_{p} (1 - g'(p) - g''(p)) \sum_{(b_1, b_2) = 1} \beta_{b_1}' \beta_{b_2}'' h^{(1)}(b_1) h^{(2)}(b_2)$$
$$= \prod_{p} (1 - g'(p) - g''(p)) \sum_{b_1} \beta_{b_1}' h^{(1)}(b_1) \sum_{(b_2, b_1) = 1} \beta_{b_2}'' h^{(2)}(b_2).$$

From Lemma 3.1 and the Fundamental Lemma of the sieve we know that

$$\sum_{(b_2,b_1)=1} \theta_{b_2}'' h^{(2)}(b_2) = \prod_{p \nmid b_1} (1 - g^{(2)}(p))^{-1} \sum_{(d,b_1)=1} \lambda_d'' g^{(2)}(d) = 1 + O(e^{-s''}),$$

provided that $s'' = \log D'' / \log z''$ is sufficiently large. Inserting this into (3.7) and noticing that $\theta'_{b_1} \ge 0$, we obtain

$$\begin{aligned} G' * G'' &= (1 + O(e^{-s''})) \prod_{p} (1 - g'(p) - g''(p)) \left(\sum_{b_1} \theta'_{b_1} h^{(1)}(b_1)\right) \\ &= (1 + O(e^{-s''})) \prod_{p} (1 - g'(p) - g''(p))(1 - g^{(1)})^{-1} \left(\sum_{d} \lambda'(d)g^{(1)}(d)\right) \\ &= (1 + O(e^{-s''})) \prod_{p} (1 - g''(p)) \left(\sum_{d} \lambda'(d)g^{(1)}(d)\right). \end{aligned}$$

Therefore, we conclude:

PROPOSITION 3.3. Suppose that (λ') is an upper-bound sieve, (λ'') is a beta-sieve of level D". Let g" be a density function supported on the divisors of P(z'') for some $z'' \leq D''$. Then

(3.8)
$$G' * G'' = (1 + O(e^{-s''}))V''G^{(1)}$$

provided that $s'' = \log D'' / \log z''$ is sufficiently large, where

$$V'' = \prod_{p} (1 - g''(p)), \qquad G^{(1)} = \sum_{d} \lambda'(d) g^{(1)}(d)$$

with $g^{(1)}$ defined in (3.6).

4. Estimation of S_5

From (2.5) we know that

$$\begin{split} |S_5| &= \left| \sum_{n \in T_{22}} \left(\sum_{a^m \in \mathcal{M}} \Lambda^\flat(n - a^m) - \log N \right) \left(\sum_{\nu \mid Q(n)} \lambda_\nu \right) \left(\sum_{d \mid (n, P(z))} \lambda'_d \right) \right| \\ &\leq \sum_{n \in T_{22}} \log \frac{N}{\frac{N}{2} - \sqrt{N}} \left(\sum_{\nu \mid Q(n)} \lambda_\nu \right) \left| \sum_{d \mid (n, P(z))} \lambda'_d \right| \\ &\leq \left(\log 2 + O\left(\frac{1}{\sqrt{N}}\right) \right) \sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1}} \left(\sum_{\nu \mid Q(n)} \lambda_\nu \right) \left| \sum_{d \mid (n, P(z))} \lambda'_d \right| \\ &= \left(\log 2 + O\left(\frac{1}{\sqrt{N}}\right) \right) \left[\sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1 \\ (n, P(z)) = 1}} \sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1 \\ (n, P(z)) > 1}} \left(\sum_{d \mid (n, P(z))} \lambda'_d \right) \right] \\ &= \left(\log 2 + O\left(\frac{1}{\sqrt{N}}\right) \right) \left[2 \sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1 \\ (n, P(z)) > 1}} \sum_{\substack{N/2 < n \leq N \\ (Q(n), \Delta) = 1 \\ (n, P(z)) = 1}} \left(\sum_{\nu \mid Q(n)} \lambda_\nu \right) \left(\sum_{d \mid (n, P(z))} \lambda'_d \right) \right] \\ &= \left(\log 2 + O\left(\frac{1}{\sqrt{N}}\right) \right) (2S_{51} - S_{52}) \end{split}$$

say. In order to estimate $S_{51},$ we introduce an upper-bound beta-sieve (λ'') of level D'. Then

$$S_{51} \leqslant \sum_{\substack{N/2 < n \leqslant N \\ (Q(n), \Delta) = 1}} \left(\sum_{\nu \mid Q(n)} \lambda_{\nu} \right) \left(\sum_{\substack{d \mid (n, P(z)) \\ Q(n), \Delta) = 1}} \lambda_{\nu} \sum_{\substack{N/2 < n \leqslant N \\ (Q(n), \Delta) = 1 \\ Q(n) \equiv 0 \pmod{\nu} \\ n \equiv 0 \pmod{\nu}}} 1.$$

Notice that the condition $(\nu, d) = 1$ is automatical since $d \mid n, \nu \mid Q(n)$ and (d, a) = 1. The innermost sum can be represented as

$$\sum_{\substack{\alpha \pmod{\Delta} \\ (Q(\alpha),\Delta)=1 \\ \alpha \equiv 0 \pmod{\nu}}} \sum_{\substack{\beta \pmod{\nu} \\ Q(\beta) \equiv 0 \pmod{\nu} \\ \alpha \equiv 0 \pmod{\Delta} \\ \alpha \equiv 0 \pmod{(\Delta,d)}}} \sum_{\substack{\beta \pmod{\nu} \\ \beta \pmod{\nu} \\ n \equiv 0 \pmod{\lambda} \\ (Q(\alpha),\Delta)=1 \\ \alpha \equiv 0 \pmod{\nu}}} \sum_{\substack{\beta \pmod{\nu} \\ \beta \pmod{\nu} \\ (Q(\alpha),\Delta)=1 \\ \alpha \equiv 0 \pmod{\nu}}} \left(\frac{N/2}{\nu[\Delta,d]} + O(1)\right),$$

1

$$\begin{split} & (4.1) \\ & \sum_{\substack{\alpha \pmod{\Delta} \\ (Q(\alpha),\Delta)=1 \\ \alpha \equiv 0 \pmod{(\Delta,d)}}} 1 = \sum_{\substack{\alpha \pmod{\Delta} \\ \alpha \equiv 0 \pmod{(\Delta,d)}}} \sum_{\substack{\delta \mid \Delta \\ \alpha \equiv 0 \pmod{(\Delta,d)}}} \mu(\delta) = \sum_{\substack{\delta \mid \Delta \\ (\delta,d)=1}} \mu(\delta) \cdot \frac{\Delta}{(\Delta,d)\delta} \omega(\delta) = \frac{\Delta}{(\Delta,d)} \prod_{\substack{p \mid \Delta \\ p \nmid d}} \left(1 - \frac{\omega(p)}{p}\right) \\ & = \frac{\Delta}{(\Delta,d)} \gamma(\mathcal{H}) \prod_{\substack{p \mid (\Delta,d)}} \left(1 - \frac{\omega(p)}{p}\right)^{-1} \end{split}$$
 with

wi

where

$$\gamma(\mathcal{H}) = \prod_{p|\Delta} \left(1 - \frac{\omega(p)}{p}\right).$$

Moreover, from $(\nu,\Delta)=1$ we know that

$$\sum_{\substack{\beta \pmod{\nu}\\ Q(\beta) \equiv 0 \pmod{\nu}}} 1 = \tau_k(\nu).$$

Therefore, summing up the above four formulae we get

$$S_{51} \leqslant \gamma(\mathcal{H}) \sum_{d|P(z)} \sum_{(\nu,\Delta d)=1} \lambda_{\nu} \lambda_{d}'' \frac{\Delta}{(\Delta,d)} \tau_{k}(\nu) \\ \times \left(\frac{N/2}{\nu[\Delta,d]} + O(1)\right) \prod_{p|(\Delta,d)} \left(1 - \frac{\omega(p)}{p}\right)^{-1}$$

Since $|\lambda_{\nu}(d)| \leqslant \tau_3(d)$ and $|\lambda_d''| \leqslant 1$, we have

$$S_{51} \leqslant \frac{N}{2} \gamma(\mathcal{H}) \sum_{d|P(z)} \sum_{(\nu,\Delta d)=1} \lambda_{\nu} \lambda_{d}^{\prime\prime} \frac{\tau_{k}(\nu)}{d\nu} \prod_{p|(\Delta,d)} \left(1 - \frac{\omega(p)}{p}\right)^{-1} \\ + O\left(\gamma(\mathcal{H}) \sum_{d < D^{\prime}} \sum_{\nu < D} \tau_{3}(\nu) \tau_{k}(\nu) \frac{\Delta}{(\Delta,d)} \prod_{p|(\Delta,d)} \left(1 - \frac{\omega(p)}{p}\right)^{-1}\right) \\ = \frac{N}{2} \gamma(\mathcal{H}) \sum_{d|P(z)} \sum_{(\nu,\Delta d)=1} \lambda_{\nu} \lambda_{d}^{\prime\prime} \frac{\tau_{k}(\nu)}{d\nu} \prod_{p|(\Delta,d)} \frac{p}{p - \omega(p)} + O(\Delta DD^{\prime}(\log D)^{3k-1}).$$

From Proposition 3.3 we get for sufficiently large s that

(4.2)
$$S_{51} \leq (1 + O(e^{-s})) \frac{N}{2} \gamma(\mathcal{H}) G_1 V(z) + O(\Delta D D' (\log D)^{3k-1}),$$

where

(4.3)
$$V(z) = \prod_{\substack{p < z \\ p \nmid \Delta}} \left(1 - \frac{1}{p} \right) \prod_{\substack{k+2 \le p < z \\ p \mid \Delta, p \nmid a}} \left(1 - \frac{1}{p - \omega(p)} \right)$$

and

(4.4)
$$G_1 = \sum_{\substack{\nu < D \\ (\nu, \Delta) = 1}} \lambda_{\nu} \frac{\tau_k(\nu)}{\varphi(\nu)}.$$

Analogously,

$$S_{52} = (1 + O(e^{-s}))\frac{N}{2}\gamma(\mathcal{H})G_1V(z) + O(\Delta DD'(\log D)^{3k-1}).$$

Therefore,

(4.5)
$$S_5 \ll N\gamma(\mathcal{H})G_1V(z) + N^{1-\frac{\varepsilon}{2}}.$$

5. Evaluation of S_3 and S_4

First, we mention that $S_4 = S_{51} \log N$, where S_{51} is defined in the previous section. Thus (4.2) implies that

(5.1)
$$S_4 \leq (1 + O(e^{-s})) \frac{N \log N}{2} \gamma(\mathcal{H}) G_1 V(z) + O(\Delta D D' (\log N)^{3k}).$$

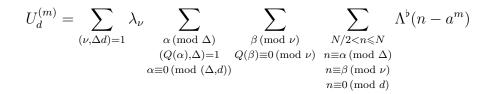
In order to calculate S_3 , we change the order of summation to get

(5.2)
$$S_3 = \sum_{d|P(z)} \lambda'_d \sum_{a^m \in \mathcal{M}} U_d^{(m)},$$

where

(5.3)
$$U_d^{(m)} = \sum_{\substack{N/2 < n \le N \\ (Q(n), \Delta) = 1 \\ n \equiv 0 \pmod{d}}} \Lambda^{\flat}(n - a^m) \left(\sum_{\nu \mid Q(n)} \lambda_{\nu}\right).$$

Next we come to the evaluation of $U_d^{(m)}$.



We write R_1 to be the summation with $(\beta - a^m, \nu) > 1$, then

$$\begin{split} R_{1} &= \sum_{(\nu,\Delta d)=1} \lambda_{\nu} \sum_{p|\nu} \log p \sum_{\substack{\alpha \pmod{\Delta} \\ (Q(\alpha),\Delta)=1 \\ \alpha \equiv 0 \pmod{\Delta} \\ (Q(\alpha),\Delta)=1 \\ \alpha \equiv 0 \pmod{\nu} \\ Q(\beta) \equiv 0 \pmod{\nu} \\ Q(\beta) \equiv 0 \pmod{\nu} \\ n-a^{m} = p \\ (mod \ \nu) \\ \alpha = a^{m} \equiv p \pmod{\Delta} \\ \ll \sum_{\nu < D} \tau_{3}(\nu) \tau_{k}(\nu) \sum_{\substack{p|\nu \\ p \equiv -a^{m} \pmod{d}} \\ p \equiv -a^{m} \pmod{d} \\ \ll \sum_{p < D} \tau_{3}(p) \tau_{k}(p) \log p \sum_{\nu < D/p} \tau_{3}(\nu) \tau_{k}(\nu) \\ p \equiv -a^{m} \pmod{d} \\ \ll D(\log D)^{3k-1} \sum_{\substack{p < D \\ p \equiv -a^{m} \pmod{d}} \\ \sum_{p < D \\ p \equiv -a^{m} \pmod{d}} \frac{\log p}{p} \ll \frac{D(\log D)^{3k}}{\varphi(d)}, \end{split}$$

where the implied constant depends only on k. If we denote by R_2 the summation with $(\beta - a^m, \nu) = 1$ and $(\alpha - a^m, \Delta) > 1$, then

$$R_{2} = \sum_{(\nu,\Delta d)=1} \lambda_{\nu} \sum_{p|\Delta} \log p \sum_{\substack{\alpha \pmod{\Delta} \\ (Q(\alpha),\Delta)=1 \\ \alpha \equiv 0 \pmod{\nu} \\ (Q(\alpha),\Delta)=1 \\ \alpha \equiv 0 \pmod{\nu} \\ (\beta) \equiv 0 \pmod{\nu} \\ (\beta) \equiv 0 \pmod{\nu} \\ (\beta) \equiv 0 \pmod{\nu} \\ (\beta-a^{m},\nu)=1 \\ n \equiv \alpha \pmod{\Delta} \\ (\alpha-a^{m},\Delta)=p \\ \beta-a^{m} \equiv p \pmod{\nu} \\ n \equiv 0 \pmod{\Delta} \\ \ll \sum_{\nu < D} \tau_{3}(\nu) \sum_{\substack{p|\Delta \\ p \equiv -a^{m} \pmod{d}}} \varphi\left(\frac{\Delta}{p}\right) \log p \\ \ll D(\log D)^{2}\varphi(\Delta) \sum_{\substack{p|\Delta \\ p \equiv -a^{m} \pmod{d}}} \frac{\log p}{p-1} \ll \Delta D(\log D)^{3} \log \Delta.$$

Therefore we conclude that

where the implied constant depends only on k.

For (b,q) = 1, we write

$$E(x,q;b) = \sum_{\substack{n \leq x \\ n \equiv b \pmod{q}}} \Lambda^{\flat}(n) - \frac{x}{\varphi(q)}$$

as usual. Then

(5.5)
$$U_d^{(m)} = \sum_{\substack{(\nu,\Delta d)=1\\ (\nu,\Delta d)=1}} \lambda_{\nu} \sum_{\substack{\alpha \pmod{\Delta} \\ ((\alpha-a^m)Q(\alpha),\Delta)=1\\ \alpha \equiv 0 \pmod{(\Delta,d)}}} \sum_{\substack{\beta \pmod{\nu} \\ Q(\beta) \equiv 0 \pmod{\nu} \\ (\beta-a^m,\nu)=1}} \frac{N/2}{\varphi(\nu[\Delta,d])} + R_d^{(m)}$$
$$+ O(D(\log D)^{3k}),$$

where

$$\begin{array}{l} (5.6)\\ R_d^{(m)} = \sum_{(\nu,\Delta d)=1} \lambda_\nu \\ \times \sum_{\substack{\alpha \,(\mathrm{mod}\ \Delta)\\ ((\alpha-a^m)Q(\alpha),\Delta)=1\\ \alpha\equiv 0 \,(\mathrm{mod}\ (\Delta,d))}} \sum_{\substack{\beta \,(\mathrm{mod}\ \nu)\\ \beta \,(\mathrm{mod}\ \nu)\\ (\beta-a^m,\nu)=1}} \left(E(N,\nu[\Delta,d];b) - E(N/2,\nu[\Delta,d];b) \right) \end{array}$$

with b the residue class modulo $\nu[\Delta, d]$ satisfying $b \equiv \alpha - a^m \pmod{\Delta}$, $b \equiv \beta - a^m \pmod{\nu}$ and $b \equiv -a^m \pmod{d}$. Notice that we include in the error term a few terms for $\Lambda^{\flat}(n)$ with n in the intervals $(N/2, N/2 + a^m]$ and $(N, N + a^m]$.

We can easily deduce that for every m

$$\sum_{d} \lambda'_{d} R_{d}^{(m)} \ll \Delta \sum_{q \leq \Delta DD'} \tau_{k+3}(q) \max_{(b,q)=1} \left(|E(N,q;b)| + |E(N/2,q;b)| \right),$$

while by Cauchy's inequality and $E(N,q;b) \ll N/\varphi(q)$

$$\sum_{q \leq \Delta DD'} \tau_{k+3}(q) \max_{(b,q)=1} |E(N,q;b)|$$

$$\leq \left(\sum_{q \leq \Delta DD'} \frac{\tau_{k+3}^2(q)N}{\varphi(q)}\right)^{\frac{1}{2}} \left(\sum_{q \leq \Delta DD'} \max_{(b,q)=1} |E(N,q;b)|\right)^{\frac{1}{2}},$$

and the Bombieri-Vinogradov theorem indicates

$$\sum_{q \leq \Delta DD'} \tau_{k+3}(q) \max_{(b,q)=1} |E(N,q;b)| \ll \frac{N}{(\log N)^{A+1}}$$

for any positive real number A. The same estimate holds for the sum involving E(N/2, q; b). Therefore,

(5.7)
$$\sum_{d} \lambda'_{d} R_{d}^{(m)} \ll \frac{N}{(\log N)^{A+1}}.$$

In order to calculate the main term in (5.5), we need to evaluate the sum over α and β respectively. Since $\Delta \mid Q(a^m)$ for any m, we have

$$\sum_{\substack{\alpha \pmod{\Delta} \\ ((\alpha - a^m)Q(\alpha), \Delta) = 1 \\ \alpha \equiv 0 \pmod{(\Delta,d)}}} 1 = \sum_{\substack{\alpha \pmod{\Delta} \\ (Q(\alpha), \Delta) = 1 \\ \alpha \equiv 0 \pmod{(\Delta,d)}}} 1 = \frac{\Delta}{(\Delta,d)} \gamma(\mathcal{H}) \prod_{p \mid (\Delta,d)} \left(1 - \frac{\omega(p)}{p}\right)^{-1}$$

by (4.1). For squarefree number ν satisfying $(\nu, \Delta) = 1$, we write

$$\tau_k^{(m)}(\nu) = \sum_{\substack{\beta \pmod{\nu} \\ Q(\beta) \equiv 0 \pmod{\nu} \\ (\beta - a^m, \nu) = 1}} 1,$$

then $\tau_k^{(m)}(\nu) = \tau_k(\nu_1)\tau_{k-1}(\nu_2)$ where $\nu = \nu_1\nu_2$ with $(\nu_1, Q(a^m)) = 1$ and $\nu_2 \mid Q(a^m)$. Therefore the main term in (5.5) is equal to

$$\frac{\Delta N\gamma(\mathcal{H})}{2\varphi([\Delta,d])\cdot(\Delta,d)} \prod_{p\mid(\Delta,d)} \left(1 - \frac{\omega(p)}{p}\right)^{-1} \sum_{(\nu,\Delta d)=1} \lambda_{\nu} \frac{\tau_{k}^{(m)}(\nu)}{\varphi(\nu)}$$
$$= \frac{\Delta N\gamma(\mathcal{H})}{2\varphi(\Delta)} \cdot \frac{1}{\varphi(d)} \prod_{p\mid(\Delta,d)} \left(1 - \frac{1}{p}\right) \left(1 - \frac{\omega(p)}{p}\right)^{-1} \sum_{(\nu,\Delta d)=1} \lambda_{\nu} \frac{\tau_{k}^{(m)}(\nu)}{\varphi(\nu)}.$$

Summing over d, we get from Proposition 3.3 that (5.8)

$$\sum_{d} \lambda'_{d} U_{d}^{(m)} = (1 + O(e^{-s})) \frac{\Delta N \gamma(\mathcal{H})}{2\varphi(\Delta)} G^{(m)} \prod_{\substack{p < z \\ p \nmid \Delta}} \left(1 - \frac{1}{p-1} \right) \\ \times \prod_{\substack{p < z \\ p \mid \Delta, p \nmid a}} \left(1 - \frac{1}{p-\omega(p)} \right) + O\left(\frac{N}{(\log N)^{A+1}}\right),$$
$$\geqslant (1 + O(e^{-s})) \frac{\Delta N \gamma(\mathcal{H})}{2\varphi(\Delta)} G^{(m)} V(z) + O\left(\frac{N}{(\log N)^{A+1}}\right)$$

where

$$G^{(m)} = \sum_{\substack{\nu < D\\(\nu, \Delta) = 1}} \lambda_{\nu} \frac{\tau_k^{(m)}(\nu)}{f(\nu)}$$

with $f(\nu)$ the multiplicative function satisfying f(p) = p - 2, and the error term mainly comes from (5.7).

Combining (5.1), (5.2) and (5.8) we finally arrive at (5.9)

$$S_{3} - S_{4} \ge (1 + O(e^{-s})) \frac{N\gamma(\mathcal{H})V(z)}{2} \left(\frac{\Delta}{\varphi(\Delta)} \sum_{a^{m} \in \mathcal{H}} G_{2} + \frac{\Delta}{\varphi(\Delta)} \sum_{a^{m} \in \mathcal{M} \setminus \mathcal{H}} G_{3} - G_{1} \log N\right) + O\left(\frac{N}{(\log N)^{A+1}}\right),$$

where V(z) is given in (4.3) and (5.10)

$$G_2 = \sum_{\substack{\nu < D \\ (\nu, \Delta) = 1}} \lambda_{\nu} \frac{\tau_{k-1}(\nu)}{f(\nu)}, \qquad G_3 = \sum_{\substack{\nu < D \\ (\nu, \Delta) = 1}} \lambda_{\nu} \frac{\tau_k^{(m)}(\nu)}{f(\nu)} \quad (a^m \in \mathcal{M} \setminus \mathcal{H}).$$

6. Choosing the Sifting Weights

In this section, we will choose the parameters λ_{ν} and give asymptotic formulae for G_1 and G_2 . We follow the way given in [4].

Almost-primes represented by $p + a^m$

Denote

$$g_1(\nu) = \frac{\tau_k(\nu)}{\varphi(\nu)}, \qquad g_2(\nu) = \frac{\tau_{k-1}(\nu)}{f(\nu)},$$

and

$$g_3(\nu) = \frac{\tau_k^{(m)}(\nu)}{f(\nu)} \ (a^m \in \mathcal{M} \setminus \mathcal{H}),$$

let $h_i(\nu)$ be the relative density function of $g_i(\nu)$. It is well-known from the Selberg's Λ^2 -sieve theory that

(6.1)
$$G_1 = \sum_{\substack{c < \sqrt{D} \\ (c, \Delta) = 1}} h_1(c) y_c^2,$$

where

$$y_c = \frac{\mu(c)}{h_1(c)} \sum_{m \equiv 0 \pmod{c}} \rho_m g_1(m).$$

Using the Möbius inversion formula on divisor-closed set we obtain

(6.2)
$$\rho_m = \frac{\mu(m)}{g_1(m)} \sum_{c \equiv 0 \pmod{m}} h_1(c) y_c.$$

Therefore the initial condition $\rho_1 = 1$ is equivalent to

(6.3)
$$\sum_{\substack{c<\sqrt{D}\\(c,\Delta)=1}} h_1(c)y_c = 1.$$

Now we choose

(6.4)
$$y_c = \frac{1}{Y} \left(\log \frac{\sqrt{D}}{c} \right)^{\ell},$$

for squarefree $c \leq \sqrt{D}$, $(c, \Delta) = 1$ and $y_c = 0$ otherwise. Inserting this into (6.3) we find that

(6.5)
$$Y = \sum_{\substack{c < \sqrt{D} \\ (c,\Delta) = 1}}^{\flat} h_1(c) \left(\log \frac{\sqrt{D}}{c}\right)^{\ell},$$

where \sum^{\flat} means the summation goes through squarefree integers. Before going further, we give a result involving the sieve weight constituents which verifies (2.2).

LEMMA 6.1. For any integer $m \ge 1$, we have $|\rho_m| \le 1$.

Proof. From (6.2) and (6.4) we know that

$$\rho_m = \frac{\mu(m)h_1(m)}{Yg_1(m)} \sum_{\substack{c < \sqrt{D}/m \\ (c,\Delta m) = 1}}^{\flat} h_1(c) \left(\log \frac{\sqrt{D}}{cm}\right)^{\ell}.$$

Then the desired result follows from

$$Y = \sum_{\substack{u|m \ c < \sqrt{D} \\ (c,\Delta)=1 \\ (c,m)=u}} \sum_{\substack{c < \sqrt{D} \\ (c,\Delta)=1 \\ (c,m)=u}}^{\flat} h_1(c) \left(\log \frac{\sqrt{D}}{c}\right)^{\ell} = \sum_{\substack{u|m \ h_1(u) \ c < \sqrt{D}/u \\ (c,\Delta m)=1}}^{\flat} h_1(c) \left(\log \frac{\sqrt{D}}{cm}\right)^{\ell}$$
$$\geq \left(\sum_{\substack{u|m \ h_1(u) \ c < \sqrt{D}/m \\ (c,\Delta m)=1}}^{\flat} h_1(c) \left(\log \frac{\sqrt{D}}{cm}\right)^{\ell}\right)$$
$$= \frac{h_1(m)}{g_1(m)} \sum_{\substack{c < \sqrt{D}/m \\ (c,\Delta m)=1}}^{\flat} h_1(c) \left(\log \frac{\sqrt{D}}{cm}\right)^{\ell}.$$

In order to calculate the sum in (6.5), we introduce the following lemma.

LEMMA 6.2. Let κ and ℓ be positive integers and assume g is a multiplicative function supported on squarefree numbers such that

(6.6)
$$g(p) = \frac{\kappa}{p} + O\left(\frac{1}{p^2}\right), \qquad \kappa \ge 1.$$

Then, for $x \ge 2$,

(6.7)
$$\sum_{\substack{m \leq x \\ (m,\Delta)=1}}^{\flat} g(m) \Big(\log \frac{x}{m} \Big)^{\ell} = \mathfrak{S} \frac{\ell!}{(\ell+\kappa)!} (\log x)^{\ell+\kappa} \bigg(1 + O\bigg(\frac{1}{\log x}\bigg) \bigg),$$

where

(6.8)
$$\mathfrak{S} = \prod_{p \nmid \Delta} \left(1 - \frac{1}{p} \right)^{\kappa} (1 + g(p)) \prod_{p \mid \Delta} \left(1 - \frac{1}{p} \right)^{\kappa},$$

and the implied constant depends only on κ , ℓ , Δ and on the one in (6.6).

124

Almost-primes represented by $p + a^m$

Proof. This is Corollary A.6 of [4].

Since $h_1(p) = k(p-k-1)^{-1}$ for $p \nmid \Delta$, we get from Lemma 6.2 that

(6.9)
$$Y = \mathfrak{S}(\Delta) \frac{\ell!}{(k+\ell)!} (\log \sqrt{D})^{k+\ell} \left(1 + O\left(\frac{1}{\log D}\right)\right),$$

where

(6.10)
$$\mathfrak{S}(\Delta) = \prod_{p \nmid \Delta} \left(1 - \frac{1}{p} \right)^k \left(1 - \frac{k}{p-1} \right)^{-1} \prod_{p \mid \Delta} \left(1 - \frac{1}{p} \right)^k.$$

Analogously, (6.1) and (6.4) indicate that

$$Y^{2}G_{1} = \sum_{\substack{c < \sqrt{D} \\ (c,\Delta)=1}}^{\flat} h_{1}(c) \left(\log \frac{\sqrt{D}}{c}\right)^{2\ell}$$
$$= \mathfrak{S}(\Delta) \frac{(2\ell)!}{(k+2\ell)!} (\log \sqrt{D})^{k+2\ell} \left(1 + O\left(\frac{1}{\log D}\right)\right).$$

Applying (6.9) we obtain

(6.11)
$$G_1 = \mathfrak{S}(\Delta)^{-1} \frac{(2\ell)!(k+\ell)!^2}{(k+2\ell)!\ell!^2} (\log \sqrt{D})^{-k} \left(1 + O\left(\frac{1}{\log D}\right)\right).$$

Next we calculate G_2 . We have

(6.12)
$$G_2 = \sum_{\substack{c < \sqrt{D} \\ (c,\Delta) = 1}} \frac{1}{h_2(c)} \left(\sum_{m \equiv 0 \pmod{c}} \rho_m g_2(m)\right)^2$$

Notice that ρ_m is given in (6.2), whence

$$\sum_{m \equiv 0 \pmod{c}} \rho_m g_2(m) = \sum_{m \equiv 0 \pmod{c}} \frac{\mu(m)g_2(m)}{g_1(m)} \sum_{d \equiv 0 \pmod{m}} h_1(d)y_d$$
$$= \frac{\mu(c)g_2(c)}{g_1(c)} \sum_{d \equiv 0 \pmod{c}} h_1(d)y_d \sum_{u|\frac{d}{c}} \frac{\mu(u)g_2(u)}{g_1(u)}.$$

Since

$$\sum_{\substack{u|\frac{d}{c}}} \frac{\mu(u)g_2(u)}{g_1(u)} = \prod_{\substack{p|\frac{d}{c}}} \left(1 - \frac{(k-1)(p-1)}{k(p-2)}\right) = \prod_{\substack{p|\frac{d}{c}}} \frac{p-k-1}{k(p-2)} = \frac{1}{h_1(d/c)f(d/c)},$$

125

we conclude that

$$\sum_{m \equiv 0 \pmod{c}} \rho_m g_2(m) = \mu(c) \frac{\varphi(c)}{\tau_k(c)} \frac{\tau_{k-1}(c)}{f(c)} \sum_{d \equiv 0 \pmod{c}} \frac{h_1(d)y_d}{h_1(d/c)f(d/c)}$$
$$= \mu(c)\varphi(c)h_1(c) \frac{\tau_{k-1}(c)}{\tau_k(c)} \sum_{d \equiv 0 \pmod{c}} \frac{y_d}{f(d)}.$$

Inserting this into (6.12), we have

$$G_{2} = \sum_{\substack{c < \sqrt{D} \\ (c,\Delta)=1}}^{\flat} \frac{1}{h_{2}(c)} \left(\varphi(c)h_{1}(c)\frac{\tau_{k-1}(c)}{\tau_{k}(c)}\sum_{d\equiv 0 \pmod{c}}\frac{y_{d}}{f(d)}\right)^{2}$$
$$= \sum_{\substack{c < \sqrt{D} \\ (c,\Delta)=1}}^{\flat} h_{2}(c)\varphi(c)^{2} \left(\sum_{d\equiv 0 \pmod{c}}\frac{y_{d}}{f(d)}\right)^{2}$$
$$= \frac{1}{Y^{2}} \sum_{\substack{c < \sqrt{D} \\ (c,\Delta)=1}}^{\flat} h_{2}(c)\frac{\varphi(c)^{2}}{f(c)^{2}} \left[\sum_{\substack{d < \sqrt{D}/c \\ (d,\Delta c)=1}}^{\flat} \frac{1}{f(d)} \left(\log\frac{\sqrt{D}}{cd}\right)^{\ell}\right]^{2}.$$

Applying Lemma 6.2 we have

$$Y^{2}G_{2} = \frac{\mathfrak{S}_{1}(\Delta)^{2}}{(\ell+1)^{2}} \sum_{\substack{c < \sqrt{D} \\ (c,\Delta)=1}}^{\flat} h_{2}(c) \left(\log\frac{\sqrt{D}}{c}\right)^{2\ell+2} \left(1 + O\left(\frac{1}{\log\sqrt{D}/c}\right)\right),$$

where

$$\mathfrak{S}_1(\Delta) = \prod_{p \nmid \Delta} \left(1 - \frac{1}{p} \right) \left(1 + \frac{1}{p-2} \right) \prod_{p \mid \Delta} \left(1 - \frac{1}{p} \right)$$

Applying Lemma 6.2 again we get

$$Y^{2}G_{2} = \frac{\mathfrak{S}_{1}(\Delta)^{2}}{(\ell+1)^{2}} \cdot \mathfrak{S}_{2}(\Delta) \frac{(2\ell+2)!}{(k+2\ell+1)!} (\log\sqrt{D})^{k+2\ell+1} \left(1 + O\left(\frac{1}{\log D}\right)\right),$$

where

$$\mathfrak{S}_2(\Delta) = \prod_{p \nmid \Delta} \left(1 - \frac{1}{p} \right)^{k-1} \left(1 + \frac{k-1}{p-k-1} \right) \prod_{p \mid \Delta} \left(1 - \frac{1}{p} \right)^{k-1}.$$

Combining with (6.9), we get (6.13)

$$G_2 = \frac{\mathfrak{S}_1(\Delta)^2 \mathfrak{S}_2(\Delta)}{\mathfrak{S}(\Delta)^2} \frac{(k+\ell)!^2 (2\ell+2)!}{(\ell+1)!^2 (k+2\ell+1)!} (\log\sqrt{D})^{1-k} \left(1 + O\left(\frac{1}{\log D}\right)\right).$$

If we write

(6.14)
$$\mathfrak{S}'(\Delta) = \prod_{p \nmid \Delta} \left(1 - \frac{1}{p} \right) \left(1 + \frac{1}{p+2} \right),$$

then a modicum of calculation shows that

$$\frac{\mathfrak{S}_1(\Delta)^2\mathfrak{S}_2(\Delta)}{\mathfrak{S}(\Delta)} = \frac{\varphi(\Delta)}{\Delta}\mathfrak{S}'(\Delta).$$

Therefore, comparing (6.13) with (6.11) we finally get

(6.15)
$$\frac{\Delta}{\varphi(\Delta)}G_2 = \frac{(2\ell+1)\mathfrak{S}'(\Delta)G_1\log D}{(\ell+1)(k+2\ell+1)}\left(1+O\left(\frac{1}{\log D}\right)\right).$$

The last task is to evaluate G_3 , we will complete it in the next section.

7. Asymptotics of G_3 and Proof of the Theorem

First we will give a more precise form of the error term in Lemma 6.2.

LEMMA 7.1. Under the assumption of Lemma 6.2, we have (7.1) $\sum_{\substack{m \leq x \\ (m,\Delta)=1}}^{\flat} g(m) \Big(\log \frac{x}{m} \Big)^{\ell} = \mathfrak{S} \frac{\ell!}{(\ell+\kappa)!} (\log x)^{\ell+\kappa} + O\Big((\log x)^{\kappa+\ell-1} \log \log(\Delta+2) \Big),$

where \mathfrak{S} is given in (6.8) and the implied constant depends only on κ , ℓ and on the one in (6.6).

Proof. First we introduce the following asymptotic formula

(7.2)
$$\sum_{\substack{m \leqslant x \\ (m,\Delta)=1}}^{\flat} g(m) = \frac{\mathfrak{S}}{\kappa!} (\log x)^{\kappa} + O\left((\log x)^{\kappa-1} \log \log(\Delta+2)\right),$$

the proof is analogous to the one given for Theorem A.5 in [4], the only difference is that the condition (A.15) appeared in [4] should be replaced

by

$$\sum_{\substack{p \leqslant x \\ p \nmid \Delta}} g(p) \log p = \kappa \log x + O(\log \log(\Delta + 2))$$

since

(7.3)

$$\sum_{p|\Delta} \frac{\log p}{p} = \sum_{\substack{p|\Delta\\p \leqslant \log(\Delta+2)}} \frac{\log p}{p} + \sum_{\substack{p|\Delta\\p > \log(\Delta+2)}} \frac{\log p}{p} \\ \ll \log \log(\Delta+2) + \frac{\log \log(\Delta+2)}{\log(\Delta+2)} \sum_{p|\Delta} 1 \\ \ll \log \log(\Delta+2).$$

Then, using partial summation we can get (7.1) from (7.2).

LEMMA 7.2. Under the assumption of Lemma 6.2, we have

$$\sum_{\substack{m \leqslant x \\ (m,\Delta)=1 \\ m \mid \Delta'}}^{\flat} g(m) \left(\log \frac{x}{m}\right)^{\kappa+\ell} \\ = \left(1 + O\left(\frac{(\log \log(\Delta\Delta'+2))^{\kappa+1}}{\mathfrak{S}\log x}\right)\right) (\log x)^{\kappa+\ell} \prod_{\substack{p \nmid \Delta \\ p \mid \Delta'}} (1+g(p)),$$

where \mathfrak{S} is given in (6.8), and the implied constant depends only on κ , ℓ and on the one in (6.6).

Proof. We have

$$\sum_{\substack{m \leqslant x \\ (m,\Delta)=1}}^{\flat} g(m) \left(\log \frac{x}{m}\right)^{\ell} = \sum_{\substack{m_1 m_2 \leqslant x \\ (m_1 m_2, \Delta)=1 \\ m_1 \mid \Delta', \ (m_2, \Delta')=1}}^{\flat} g(m_1 m_2) \left(\log \frac{x}{m_1 m_2}\right)^{\ell}$$
$$= \sum_{\substack{m_1 \leqslant x \\ (m_1, \Delta)=1 \\ m_1 \mid \Delta'}}^{\flat} g(m_1) \sum_{\substack{m_2 \leqslant x/m_1 \\ (m_2, \Delta\Delta')=1}}^{\flat} g(m_2) \left(\log \frac{x}{m_1 m_2}\right)^{\ell}$$

Almost-primes represented by $p + a^m$

(7.4)
$$= \sum_{\substack{m_1 \leq x \\ (m_1, \Delta) = 1 \\ m_1 \mid \Delta'}} g(m_1) \left[\frac{\mathfrak{S}'\ell!}{(\kappa + \ell)!} \left(\log \frac{x}{m_1} \right)^{\kappa + \ell} + O\left(\left(\log \frac{x}{m_1} \right)^{\kappa + \ell - 1} \log \log(\Delta \Delta' + 2) \right) \right]$$

where

$$\mathfrak{S}' = \prod_{p \nmid \Delta \Delta'} \left(1 - \frac{1}{p} \right)^{\kappa} (1 + g(p)) \prod_{p \mid \Delta \Delta'} \left(1 - \frac{1}{p} \right)^{\kappa}.$$

It is obvious that

$$\sum_{m_1|\Delta'} g(m_1) \leqslant \exp\left(\sum_{p|\Delta'} g(p)\right) \ll \exp\left(\kappa \sum_{p|\Delta'} \frac{1}{p}\right) \ll \left(\log\log(\Delta'+2)\right)^{\kappa},$$

where the last step is analogous to (7.3). Therefore, the error term in (7.4) is

$$O((\log x)^{\kappa+\ell-1}(\log\log(\Delta\Delta'+2))^{\kappa+1}).$$

Now, using Lemma 7.1 to calculate the left hand side of (7.4), we have

$$\sum_{\substack{m \leqslant x \\ (m,\Delta)=1 \\ m \mid \Delta'}}^{\flat} g(m) \left(\log \frac{x}{m}\right)^{\kappa+\ell} = \frac{\mathfrak{S}}{\mathfrak{S}'} (\log x)^{\kappa+\ell} \left(1 + O\left(\frac{\left(\log\log(\Delta\Delta'+2)\right)^{\kappa+1}}{\mathfrak{S}\log x}\right)\right),$$

where \mathfrak{S} is given in (6.8). Since

$$\frac{\mathfrak{S}}{\mathfrak{S}'} = \prod_{\substack{p \nmid \Delta \\ p \mid \Delta'}} (1 + g(p)),$$

the desired result is obtained.

Now we begin to calculate G_3 . As in section 6, we have

(7.5)
$$G_3 = \sum_{\substack{c < \sqrt{D} \\ (c,\Delta) = 1}}^{\flat} \frac{1}{h_3(c)} \left(\sum_{m \equiv 0 \pmod{c}} \rho_m g_3(m)\right)^2.$$

From (6.2) we know that

$$\sum_{m\equiv 0 \pmod{c}} \rho_m g_3(m) = \sum_{m\equiv 0 \pmod{c}} g_3(m) \mu(m) \frac{\varphi(m)}{\tau_k(m)} \sum_{d\equiv 0 \pmod{m}} h_1(d) y_d$$
$$= \frac{\mu(c)\varphi(c)g_3(c)}{\tau_k(c)} \sum_{d\equiv 0 \pmod{c}} h_1(d) y_d \sum_{u|\frac{d}{c}} \frac{\mu(u)\varphi(u)g_3(u)}{\tau_k(u)}$$
$$= \frac{\mu(c)\varphi(c)g_3(c)}{\tau_k(c)} \sum_{d\equiv 0 \pmod{c}} h_1(d) y_d \prod_{p|\frac{d}{c}} \left(1 - \frac{(p-1)\tau_k^{(m)}(p)}{k(p-2)}\right)$$
$$= \frac{\mu(c)\varphi(c)g_3(c)}{\tau_k(c)} \sum_{d\equiv 0 \pmod{c}} h_1(d) y_d \frac{f_1(b/c)}{\tau_k(b/c)f(b/c)},$$

where f_1 is the multiplicative function with

$$f_1(p) = k(p-2) - (p-1)\tau_k^{(m)}(p).$$

Therefore,

(7.6)
$$\sum_{m \equiv 0 \pmod{c}} \rho_m g_3(m) = \frac{\mu(c)\varphi(c)g_3(c)h_1(c)}{\tau_k(c)} \sum_d \frac{h_1(d)f_1(d)}{\tau_k(d)f(d)} y_{dc}.$$

Recalling the definition of y_{dc} , we can express the summation over d as

$$\frac{1}{Y} \sum_{\substack{d < \sqrt{D}/c \\ (d,\Delta c) = 1}}^{\flat} \frac{h_1(d)f_1(d)}{\tau_k(d)f(d)} \Big(\log \frac{\sqrt{D}}{dc}\Big)^{\ell}.$$

Since

$$\frac{h_1(p)f_1(p)}{\tau_k(p)f(p)} = \begin{cases} \frac{1}{f(p)} & \text{if } p \mid Q(a^m), \\ \frac{\mu(p)h_1(p)}{f(p)} & \text{if } p \nmid Q(a^m), \end{cases}$$

Almost-primes represented by $p + a^m$

we have (note that
$$\Delta \mid Q(a^m)$$
)
(7.7)

$$\sum_{d} \frac{h_1(d)f_1(d)}{\tau_k(d)f(d)} y_{dc} = \frac{1}{Y} \sum_{\substack{uv < \sqrt{D}/c \\ (uv,\Delta c) = 1 \\ u \mid Q(a^m), (v,Q(a^m)) = 1}}^{\flat} \frac{1}{f(u)} \cdot \frac{\mu(v)h_1(v)}{f(v)} \Big(\log \frac{\sqrt{D}}{uvc}\Big)^{\ell}$$

$$= \frac{1}{Y} \sum_{\substack{u < \sqrt{D}/c \\ (u,\Delta c) = 1 \\ u \mid Q(a^m)}}^{\flat} \frac{1}{f(u)} \sum_{\substack{v < \sqrt{D}/(uc) \\ (v,Q(a^m)c) = 1}}}^{\flat} \frac{\mu(v)h_1(v)}{f(v)} \Big(\log \frac{\sqrt{D}}{uvc}\Big)^{\ell}$$

It is obvious that $\mu(v)h_1(v)/f(v) \ll v^{\varepsilon-2}$, therefore writing

$$\left(\log\frac{\sqrt{D}}{uvc}\right)^{\ell} = \sum_{j=0}^{\ell} {\ell \choose j} \left(\log\frac{\sqrt{D}}{uc}\right)^{\ell-j} \log^{j} v,$$

we get

$$\sum_{v} = \left(\log\frac{\sqrt{D}}{uc}\right)^{\ell} \sum_{\substack{v<\sqrt{D}/(uc)\\(v,Q(a^{m})c)=1}}^{\flat} \frac{\mu(v)h_{1}(v)}{f(v)} + O\left(\left(\log\frac{\sqrt{D}}{uc}\right)^{\ell-1}\right)$$
$$= \left(\log\frac{\sqrt{D}}{uc}\right)^{\ell} \prod_{p \nmid Q(a^{m})c} \left(1 - \frac{k}{(p-k-1)(p-2)}\right) + O\left(\left(\log\frac{\sqrt{D}}{uc}\right)^{\ell-1}\right).$$

Inserting this into (7.7) and making use of Lemma 7.2 we have

$$\sum_{d} \frac{h_1(d) f_1(d)}{\tau_k(d) f(d)} y_{dc} = \frac{1}{Y} \Big(\log \frac{\sqrt{D}}{c} \Big)^\ell \Big(1 + O \Big(\frac{\varphi(c)}{f(c)} \Big(\log \frac{\sqrt{D}}{c} \Big)^{-1} (\log \log N)^2 \Big) \Big) \\ \times \prod_{p \nmid Q(a^m)c} \Big(1 - \frac{k}{(p-k-1)(p-2)} \Big) \prod_{\substack{p \nmid \Delta c \\ p \mid Q(a^m)}} \Big(1 + \frac{1}{p-2} \Big),$$

combining with (7.5) and (7.6) we have

$$\begin{split} Y^{2}G_{3} \\ &= \sum_{\substack{c < \sqrt{D} \\ (c,\Delta)=1}}^{\flat} \frac{1}{h_{3}(c)} \frac{\varphi(c)^{2}g_{3}(c)^{2}h_{1}(c)^{2}}{\tau_{k}(c)^{2}} \Big(\log \frac{\sqrt{D}}{c}\Big)^{2\ell} \Big(1 + O\Big(\frac{\varphi(c)^{2}(\log \log N)^{4}}{f(c)^{2}\log(\sqrt{D}/c)}\Big)\Big) \\ &\times \prod_{\substack{p \mid Q(a^{m})c}} \Big(1 - \frac{k}{(p-k-1)(p-2)}\Big)^{2} \prod_{\substack{p \mid \Delta c \\ p \mid Q(a^{m})}} \Big(1 + \frac{1}{p-2}\Big)^{2} \\ &= \sum_{\substack{c < \sqrt{D} \\ (c,\Delta)=1}}^{\flat} \frac{\mathfrak{S}_{1}^{(m)}}{h_{3}(c)} \frac{\varphi(c)^{2}g_{3}(c)^{2}h_{1}(c)^{2}}{\tau_{k}(c)^{2}} \Big(\log \frac{\sqrt{D}}{c}\Big)^{2\ell} \Big(1 + O\Big(\frac{\varphi(c)^{2}(\log \log N)^{4}}{f(c)^{2}\log(\sqrt{D}/c)}\Big)\Big) \\ &\times \prod_{\substack{p \mid Q(a^{m}) \\ p \mid c}} \Big(1 - \frac{k}{(p-k-1)(p-2)}\Big)^{-2} \prod_{\substack{p \mid (c,Q(a^{m})) \\ p \mid (c,Q(a^{m}))}} \Big(1 + \frac{1}{p-2}\Big)^{-2} \\ &= \sum_{\substack{uv < \sqrt{D} \\ (uv,\Delta)=1 \\ u \mid Q(a^{m}), \ (v,Q(a^{m}))=1}}^{\flat} \frac{\mathfrak{S}_{1}^{(m)}}{h_{3}(uv)} \frac{\varphi(uv)^{2}g_{3}(uv)^{2}h_{1}(uv)^{2}}{\tau_{k}(uv)^{2}} \Big(\log \frac{\sqrt{D}}{uv}\Big)^{2\ell} \prod_{\substack{p \mid u}} \Big(1 + \frac{1}{p-2}\Big)^{-2} \end{split}$$

$$\times \prod_{p|v} \left(1 - \frac{k}{(p-k-1)(p-2)} \right)^{-2} \left(1 + O\left(\frac{\varphi(uv)^2 (\log \log N)^4}{f(uv)^2 \log(\sqrt{D}/uv)} \right) \right),$$

where

(7.8)
$$\mathfrak{S}_{1}^{(m)} = \prod_{p \nmid Q(a^{m})} \left(1 - \frac{k}{(p-k-1)(p-2)} \right)^{2} \prod_{\substack{p \nmid \Delta \\ p \mid Q(a^{m})}} \left(1 + \frac{1}{p-2} \right)^{2}.$$

It is easy to verify that

$$\frac{1}{h_3(p)} \frac{\varphi(p)^2 g_3(p)^2 h_1(p)^2}{\tau_k(p)^2} \left(1 + \frac{1}{p-2}\right)^{-2} = h_3(p)$$

for $p \mid Q(a^m)$ and also

$$\frac{1}{h_3(p)} \frac{\varphi(p)^2 g_3(p)^2 h_1(p)^2}{\tau_k(p)^2} \left(1 - \frac{k}{(p-k-1)(p-2)}\right)^{-2} = h_3(p)$$

for $p \nmid Q(a^m)$. Thus

$$Y^{2}G_{3} = \mathfrak{S}_{1}^{(m)} \sum_{\substack{u < \sqrt{D} \\ (u,\Delta)=1 \\ u \mid Q(a^{m})}}^{\flat} h_{3}(u) \sum_{\substack{v < \sqrt{D}/u \\ (v,Q(a^{m}))=1}}^{\flat} h_{3}(v) \Big(\log \frac{\sqrt{D}}{uv}\Big)^{2\ell} \times \Big(1 + O\bigg(\frac{\varphi(uv)^{2}(\log \log N)^{4}}{f(uv)^{2}\log(\sqrt{D}/uv)}\bigg)\bigg).$$

Making use of Lemma 7.1 we obtain

$$Y^{2}G_{3} = \mathfrak{S}_{1}^{(m)} \sum_{\substack{u < \sqrt{D} \\ (u,\Delta) = 1 \\ u \mid Q(a^{m})}}^{\flat} h_{3}(u) \bigg[\mathfrak{S}_{2}^{(m)} \frac{(2\ell)!}{(k+2\ell)!} \Big(\log \frac{\sqrt{D}}{u} \Big)^{k+2\ell} + O\bigg(\frac{\varphi(u)^{2}}{f(u)^{2}} \Big(\log \frac{\sqrt{D}}{u} \Big)^{k+2\ell-1} (\log \log N)^{4} \bigg) \bigg],$$

where

(7.9)
$$\mathfrak{S}_{2}^{(m)} = \prod_{p \nmid Q(a^{m})} \left(1 - \frac{1}{p}\right)^{k} \left(1 + \frac{k}{p - k - 2}\right) \prod_{p \mid Q(a^{m})} \left(1 - \frac{1}{p}\right)^{k}.$$

Therefore, Lemma 7.2 implies (7.10)

$$Y^{2}G_{3} = \frac{(2\ell)!\mathfrak{S}_{1}^{(m)}\mathfrak{S}_{2}^{(m)}}{(k+2\ell)!} \prod_{\substack{p \nmid \Delta \\ p \mid Q(a^{m})}} \left(1 + \frac{k-1}{p-k-1}\right) \cdot (\log\sqrt{D})^{k+2\ell} \\ \times \left(1 + O\left(\frac{(\log\log N)^{k}}{\log D}\right)\right) \\ + O\left(\mathfrak{S}_{1}^{(m)} \prod_{\substack{p \nmid \Delta \\ p \mid Q(a^{m})}} \left(1 + \frac{k-1}{p-k-1}\frac{(p-1)^{2}}{(p-2)^{2}}\right) \cdot (\log\sqrt{D})^{k+2\ell-1}\right).$$

The error term can be disposed in the following way:

$$\begin{split} \mathfrak{S}_{1}^{(m)} &\prod_{\substack{p \nmid \Delta \\ p \mid Q(a^{m})}} \left(1 + \frac{k-1}{p-k-1} \frac{(p-1)^{2}}{(p-2)^{2}} \right) \\ \ll &\prod_{\substack{p \nmid \Delta \\ p \mid Q(a^{m})}} \left(\frac{p-1}{p-2} \right)^{2} \left(1 + \frac{k-1}{p-k-1} \frac{(p-1)^{2}}{(p-2)^{2}} \right), \end{split}$$

the product over primes $p \leq \log N$ is $O((\log \log N)^{k+1})$, while for $p > \log N$ we have

$$\left(\frac{p-1}{p-2}\right)^2 \left(1 + \frac{k-1}{p-k-1} \frac{(p-1)^2}{(p-2)^2}\right) \leqslant 1 + \frac{2k}{\log N},$$

therefore the corresponding product is

$$\leqslant \left(1 + \frac{2k}{\log N}\right)^{\omega(Q(a^m))} \ll \left(1 + \frac{2k}{\log N}\right)^{\frac{k \log N}{\log \log N}} = 1 + O\left(\frac{1}{\log \log N}\right),$$

since $Q(a^m) \leq N^{\frac{k}{2}}$. Whence the last *O*-term in (7.10) is $O((\log D)^{k+2\ell-1} (\log \log N)^{k+1})$. Analogously, If we denote by

$$\mathfrak{S}^{(m)} = \frac{\mathfrak{S}_1^{(m)} \mathfrak{S}_2^{(m)}}{\mathfrak{S}(\Delta)} \prod_{\substack{p \nmid \Delta \\ p \mid Q(a^m)}} \left(1 + \frac{k-1}{p-k-1} \right),$$

then it is easy to show that

(7.11)
$$\mathfrak{S}^{(m)} = \prod_{p \nmid \Delta} \left(1 - \frac{k}{(p-k-1)(p-2)} \right) \prod_{\substack{p \nmid \Delta \\ p \mid Q(a^m)}} \left(1 + \frac{1}{p-k-2} \right).$$

Therefore,

$$\mathfrak{S}_1^{(m)}\mathfrak{S}_2^{(m)}\prod_{\substack{p\nmid\Delta\\p\mid Q(a^m)}}\left(1+\frac{k-1}{p-k-1}\right)\ll \log\log N.$$

Hence the total error in (7.10) is $O((\log D)^{k+2\ell-1}(\log \log N)^{k+1}).$

Recalling the asymptotic formula of Y and G_1 in (6.9) and (6.11) respectively, we can deduce from (7.10) that

(7.12)
$$G_3 = \mathfrak{S}^{(m)}G_1 + O\left(\frac{G_1(\log \log N)^{k+1}}{\log D}\right).$$

Now we come to the proof of Theorem 1.1. Inserting (6.15) and (7.12) into (5.9), we have

$$\begin{split} S_3 - S_4 \\ &\geqslant (1 + O(e^{-s})) \frac{N\gamma(\mathcal{H})V(z)G_1}{2} \left[\frac{k(2\ell+1)\mathfrak{S}'(\Delta)\log D}{(\ell+1)(k+2\ell+1)} \left(1 + O\left(\frac{1}{\log D}\right) \right) \right. \\ &+ \frac{\Delta}{\varphi(\Delta)} \sum_{a^m \in \mathcal{M} \setminus \mathcal{H}} \mathfrak{S}^{(m)} - \log N + O\left((\log \log N)^{k+1} \right) \right] + O\left(\frac{N}{(\log N)^{A+1}} \right) \\ &\geqslant (1 + O(e^{-s})) \frac{N\gamma(\mathcal{H})V(z)G_1\log N}{2} \left[\frac{k(2\ell+1)\mathfrak{S}'(\Delta)}{2(\ell+1)(k+2\ell+1)} (1 - 4\varepsilon) \right. \\ &+ \frac{1}{2\log a} \prod_{p \nmid \Delta} \left(1 - \frac{k}{(p-k-1)(p-2)} \right) - 1 + O\left(\frac{(\log \log N)^{k+1}}{\log N} \right) \right] \\ &+ O\left(\frac{N}{(\log N)^{A+1}} \right). \end{split}$$

Combining with (2.5) and (4.5) we get (7.13) $S(\mathcal{A}, \mathcal{P}, z)$

$$\geq (1+O(e^{-s}))\frac{N\gamma(\mathcal{H})V(z)G_1\log N}{2} \left[\frac{k(2\ell+1)\mathfrak{S}'(\Delta)}{2(\ell+1)(k+2\ell+1)}(1-4\varepsilon) + \frac{1}{2\log a}\prod_{p\nmid\Delta}\left(1-\frac{k}{(p-k-1)(p-2)}\right) - 1 + O\left(\frac{(\log\log N)^{k+1}}{\log N}\right)\right] + O\left(\frac{N}{(\log N)^{A+1}}\right).$$

Therefore, $S(\mathcal{A}, \mathcal{P}, z)$ has a positive lower bound provided that (7.14) $\frac{k(2\ell+1)\mathfrak{S}'(\Delta)}{2(\ell+1)(k+2\ell+1)}(1-4\varepsilon) + \frac{1}{2\log a}\prod_{p\nmid\Delta}\left(1-\frac{k}{(p-k-1)(p-2)}\right)-1 > 0,$

we verify this in the following way.

Firstly, (6.14) implies that

$$\mathfrak{S}'(\Delta) = \prod_{p \nmid \Delta} \left(1 - \frac{3}{p(p+2)} \right) \geqslant \prod_{n \geqslant k+1} \left(1 - \frac{3}{n(n+2)} \right) = \frac{k}{k+3}.$$

Secondly, we have

$$\prod_{p \nmid \Delta} \left(1 - \frac{k}{(p-k-1)(p-2)} \right) \ge \gamma_k,$$

where (7.15)

(7.15)

$$\gamma_k = \prod_{p>k+2} \left(1 - \frac{k}{(p-k-1)(p-2)} \right) = \prod_{p>k+2} \left(1 + \frac{k}{(p-k-2)(p-1)} \right)^{-1}.$$

We can prove that there are infinitely many k such that γ_k has absolute lower-bound by studying the mean value.

LEMMA 7.3. It holds for any $K \ge 1$ that

$$\frac{1}{K} \sum_{\substack{K < k \leq 2K \\ 2|k}} \log \frac{1}{\gamma_k} \ll 1,$$

where the implied constant is absolute.

Proof. It is sufficient to prove that

$$\frac{1}{K} \sum_{K < k \le 2K} \sum_{k+2 < p \le 4K} \frac{k}{(p-k-2)(p-1)} \ll 1.$$

The left hand side is equal to

$$\frac{1}{K} \sum_{K+2 = $\frac{1}{K} \left(\sum_{K+2 = $\frac{1}{K} (\mathcal{K}_1 + \mathcal{K}_2)$$$$

say, where

$$\mathcal{K}_{1} \ll \sum_{K+2
$$\ll \sum_{K+2$$$$

On the other hand,

$$\mathcal{K}_{2} \ll \sum_{2K+3
$$= -\sum_{2K+3
$$\ll \sum_{2K+3$$$$$$

The desired result is obtained.

It follows from Lemma 7.3 that γ_k is bounded below by a positive absolute constant for some even number k in any dyadic segment. Choosing such a k, sufficiently large in terms of ε and a, and choosing $\ell = \sqrt{k/2}$, we find that the left hand side of (7.14) is positive. This completes the proof of Theorem 1.1.

Acknowledgment

The author would like to express his gratitude to the referee for his helpful comments.

References

- Y. G. Chen and X. G. Sun, On Romanoff's constant, J. Number Theory 106 (2004), 275–284.
- [2] P. Erdös, On integers of the form $2^k + p$ and some related problems, Summa Brasil. Math. **2** (1950), 113–123.
- [3] J. B. Friedlander and H. Iwaniec, *Hyperbolic prime number theorem*, Acta Math. 202 (2009), 1–19.
- [4] J. B. Friedlander and H. Iwaniec, *Opera de Cribro*, Colloquium Publications (vol.57), American Mathematical Society, Providence, Rhode Island, 2010.
- [5] D. A. Goldston, J. Pintz, and C. Y. Yıldırım, *Primes in tuples I*, Ann. of Math. 170 (2009), 819–862.
- [6] L. Habsieger, X. Roblot, On integers of the form $p+2^k$, Acta Arith. **122** (2006), 45–50.
- [7] J. Pintz, A note on Romanoff's constant, Acta Math. Hungar. 112 (2006), 1–14.
- [8] K. Prachar, Über einen Satz der additiven Zahlentheorie, Monatsh. Math. 56 (1952), 101–104.
- [9] N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 109 (1934), 668–678.
- [10] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yildirim, Bull. Amer. Math. Soc. 44 (2007), 1–18.

Yaming Lu School of Mathematics and Statistics Xi'an Jiaotong University Xi'an, Shaanxi, 710049, P. R. China *E-mail*: yaminglu@mail.xjtu.edu.cn