COMPUTATION OF λ-INVARIANT

Jangheon Oh

Abstract

We give an explicit formula for the computation of Iwasawa λ-invariants and an example of the computation using our method.

1. Introduction

Let K be an imaginary quadratic field and p be an odd prime. It is well-known(see [1] and [2]) that there exist non-negative integers $\lambda_{p}(K)$ and $\nu_{p}(K)$ such that the exact power of p dividing the class number $h\left(K_{n}\right)$ is equal to $\lambda_{p}(K) n+\nu_{p}(K)$ for all suficiently large n. Here K_{n} is the n-th layer of the cyclotomic \mathbb{Z}_{p}-extension of K. Fukuda [3] computed $\lambda_{p}(K)$ using theorems of Gold and Iwasawa's construction of p-adic L function attached to K. In a paper [6], we gave another method to compute $\lambda_{p}(K)$ using Sinnott's construction of p-adic L function and Kida's formula. Examples of computation of $\lambda_{p}(K)$ were given for $p=3$ in the paper. In this paper, we compute $\lambda_{p}(K)$ for primes greater than 5 using our method in the paper [6].

2. Computation of λ-invariant

We briefly explain our method in the paper [6] for computing $\lambda_{p}(K)$. Let Λ be the ring of \mathbb{Z}_{p}-valued measures on \mathbb{Z}_{p}. Then Λ is isomorphic to

[^0]the ring $\mathbb{Z}_{p}[[T-1]]$;explicitly, if $\alpha \in \Lambda$, then the power series associated to α is defined by
$$
F(T)=\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}\binom{x}{n} d \alpha(T-1)^{n}
$$
where $\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!}$.
Let $c>1$ be an integer prime to p and the conductor of a nontrivial first kind character χ of K, and let $\varepsilon: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ be the function defined by $\varepsilon(a)=\chi(a)$, if a is not divisible by c, and $\varepsilon(a)=\chi(a)(1-c)$ if a is divisible by c. Define
$$
F_{\varepsilon}(T)=\frac{\sum_{a=1}^{f} \varepsilon(a) T^{a}}{1-T^{f}}
$$
where f is any multiple of the minimal period of ε. It is known that $F_{\varepsilon}(T)$ lies in $\mathbb{Z}_{p}[[T-1]]$. Hence it corresponds to a measure in Λ. Let $G(T)$ be the power series in $\mathbb{Z}_{p}[[T-1]]$ corresponding to the measure
$$
\left(\left.\sum_{\eta \in V} \alpha \circ \eta\right|_{U}\right) \circ \phi,
$$
where V is the group of p-1-th roots of unity in $\mathbb{Z}_{p}, U=1+p \mathbb{Z}_{p}$ and ϕ is the isomorphism $\phi: \mathbb{Z}_{p} \simeq U$ given by $\phi(y)=(1+p)^{y}$.

If $F(T)$ is an element of $\mathbb{Z}_{p}[[T-1]]$, write $F(T)=p^{\mu} F_{0}(T), F_{0}(T)=$ $\sum_{n \geq 0} a_{n}(T-1)^{n}$, where $a_{n} \not \equiv 0 \bmod p$ for some n. Then the λ-invariant of $\bar{F}(T)$ is defined by

$$
\lambda(F(T))=\min \left\{n: a_{n} \not \equiv 0 \bmod p\right\}
$$

Sinnott [7] proved that

$$
\lambda_{p}(K)=\lambda(G(T))
$$

when $p \geq 5$. Moreover we have Kida's formula [5]:

$$
p \lambda(G(T))=\lambda\left(\left.\sum_{\eta \in V} \alpha \circ \eta\right|_{U}\right) .
$$

In the paper [6], we computed the power series $Q(T)$ corresponding to the measure $\left.\sum_{\eta \in V} \alpha \circ \eta\right|_{U}$.

Theorem 1.

$$
Q(T)=\sum_{\eta \in V} \frac{\sum_{a \equiv \eta^{-1}}^{f} \varepsilon(a) T^{a \eta}}{1-T^{f \eta}},
$$

where f is a multiple of the minimal period of ε and p.
Proof. See the proof of Theorem 2 in [6].
To compute $\lambda(Q(T))$ explicitly, we need to replace η by an integer i_{η}.
Lemma 1. Let $f(T)$ be in $\mathbb{Z}_{p}[[T-1]]$. Then

$$
\lambda(f(T))=\lambda\left(f\left(T^{\beta}\right)\right)
$$

for $\beta \in 1+p \mathbb{Z}_{p}$.
Proof. Note that if $f(T)$ is the power series associated to a measure α, then $f\left(T^{\beta}\right)$ is the power series associated to a measure $\alpha \circ \beta^{-1}$. So $f\left(T^{\beta}\right)$ is in $\mathbb{Z}_{p}[[T-1]]$. We may write $f(T)=\sum_{n=0}^{\infty} a_{n}(T-1)^{n}$. By the definition of λ we see that $a_{n} \equiv 0 \bmod p$ for $n<\lambda(f(T))$ and $a_{\lambda(f(T))} \not \equiv 0 \bmod p$. Since

$$
\begin{aligned}
T^{\beta}= & \sum_{n=0}^{\infty}\binom{\beta}{n}(T-1)^{n} \equiv 1+\beta(T-1)+\text { higher terms } \\
& \equiv T+\text { higher terms }(\bmod p),
\end{aligned}
$$

it is easy to check that $\lambda(f(T))=\lambda\left(f\left(T^{\beta}\right)\right)$.
For $\eta \in V$, let $1 \leq i_{\eta}, j_{\eta} \leq(p-1)$ be integers such that $\eta \equiv i_{\eta} \bmod p$ and $i_{\eta} j_{\eta} \equiv 1 \bmod p$. Now we give a formula to compute λ-invariants for imaginary quadratic fields.

Theorem 2. For primes $p \geq 5$, we have

$$
\lambda_{p}(K)=\frac{1}{p} \lambda\left(\sum_{\eta \in V} \frac{\sum_{a \equiv j_{\eta}}^{f} \varepsilon(a) T^{a i_{\eta}}}{1-T^{f i_{\eta}}}\right) .
$$

Proof.

$$
\begin{aligned}
\lambda_{p}(K) & =\lambda(G(T))=\frac{1}{p} \lambda\left(\left.\sum_{\eta \in V} \alpha \circ \eta\right|_{U}\right) \\
& =\frac{1}{p} \lambda(Q(T))=\frac{1}{p} \lambda\left(\sum_{\eta \in V} \frac{\sum_{a \equiv j_{\eta}}^{f} \varepsilon(a) T^{a i_{\eta}}}{1-T^{f i_{\eta}}}\right)
\end{aligned}
$$

The last equality comes from Lemma 1 with $\beta=\eta^{-1} i_{\eta}$.
We give an example.

Example 1. For $K=\mathbb{Q}(\sqrt{-127})$ and $p=5$, we can choose $c=$ $2, f=1270$. Moreover, $\varepsilon(a)=\left(\frac{a}{127}\right)(-1)^{a+1}$, where $\left(\frac{*}{*}\right)$ is the Jacobi symbol. Hence we have

$$
\begin{aligned}
\lambda_{5}(\mathbb{Q}(\sqrt{-127})) & =\frac{1}{5} \lambda\left(\frac{\sum_{a \equiv 1(5)}^{1270} \varepsilon(a) T^{a}}{1-T^{1270}}+\frac{\sum_{a \equiv 3(5)}^{1270} \varepsilon(a) T^{2 a}}{1-T^{2 * 1270}}\right. \\
& \left.+\frac{\sum_{a \equiv 2(5)}^{1270} \varepsilon(a) T^{3 a}}{1-T^{3 * 1270}}+\frac{\sum_{a \equiv 4(5)}^{1270} \varepsilon(a) T^{4 a}}{1-T^{4 * 1270}}\right) . \\
& =\frac{1}{5} \lambda\left((T-1)^{10}+(T-1)^{11}+\text { higher terms }(\bmod \mathrm{p})\right)=2,
\end{aligned}
$$

which agrees with the Table 1 of [4]. We used Maple for the second equality.

References

[1] K.Iwasawa, On \mathbb{Z}_{ℓ}-extensions of algebraic number fields, Ann. of math. 98 (2) (1973), 246-326.
[2] B.Ferrero and L.Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
[3] T.Fukuda, Iwasawa λ-invariants of imaginary quadratic fields, J. of the College of Industrial Technology, Nihon Univ. 27 (1) (1994), 35-86.
[4] T.Fukuda, Iwasawa λ-invariants of imaginary quadratic fields, II , J. of the College of Industrial Technology, Nihon Univ. 27 (2) (1994), 83-134.
[5] Y.Kida, The λ-invariants of p-dic measures on \mathbb{Z}_{p} and $1+q \mathbb{Z}_{p}$, Sci. Rep. Kanazawa Univ. 30 (1986), 33-38.
[6] J.Oh, On the Iwasawa λ-invariants of imaginary quadratic fields, Proc. Japan Acad. Ser. A math. Sci. 75 (3) (1999), 29-31.
[7] W.Sinnott, On the μ-invariant of the Gamma-transform of a rational function , Invent. Math. 75 (1984), 273-282.

Jangheon Oh
Faculty of Mathematics and Statistics
Sejong University
Seoul 05006, Korea
E-mail: oh@sejong.ac.kr

[^0]: Received February 11, 2016. Revised June 23, 2016. Accepted July 28, 2016.
 2010 Mathematics Subject Classification: 11R23.
 Key words and phrases: Iwasawa theory, Iwasawa invariants, p-adic L-function.
 (c) The Kangwon-Kyungki Mathematical Society, 2016.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

