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GLOBAL ATTRACTORS AND REGULARITY FOR THE

EXTENSIBLE SUSPENSION BRIDGE EQUATIONS

WITH PAST HISTORY

Shifang Liu and Qiaozhen Ma

⇤

Abstract. In this paper, we study the long-time dynamical be-
havior for the extensible suspension bridge equations with past his-
tory. We prove the existence of the global attractors by using the
contraction function method. Furthermore, the regularity of global
attractor is achieved.

1. Introduction

Let ⌦ ⇢ R2 be a bounded domain with a smooth boundary �. We
consider the asymptotic behavior of the solutions for the following ex-
tensible suspension bridge equation with linear memory:
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:

utt + ut +42u+ (↵� �kruk2L2(⌦))4u

� R1
0 µ(s)42u(t� s)ds+ ku+ = g(x) in ⌦⇥ R+,

u = 4u = 0 on �⇥ R+ ,

u(0) = u0(x), ut(0) = u1(x), x 2 ⌦,

(1.1)

Received May 9, 2016. Revised June 27, 2016. Accepted August 2, 2016.
2010 Mathematics Subject Classification: 35B40, 35B41, 35B45.
Key words and phrases: extensible suspension bridge equations; global attrac-

tors; a bounded absorbing set; past history.
⇤ Corresponding author.
This work was partly supported by the NSFC (11561064,11361053), and partly

supported by NWNU-LKQN-14-6.
c� The Kangwon-Kyungki Mathematical Society, 2016.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



376 Shifang Liu and Qiaozhen Ma

where u(x, t) is an unknown function, which represents the deflection of
the road bed in the vertical plane, the real constant ↵ represents the axial
force acting at the ends of the road bed of the bridge in the reference
configuration, namely, ↵ is negative when the bridge is stretched, positive
when it compressed, k > 0 denotes the spring constant, u+ = max{u, 0}
is the positive part of u, µ is the memory kernel, � is a given positive
constant, g(x) 2 L2(⌦) is a external force.

It is well known that Lazer and McKenna presented the following
suspension bridge equation

utt + ut +42u+ ku+ = g (1.2)

as a new problem of nonlinear analysis [1]. Adding a nonlinear force f(u) to
the model (1.2), it becomes

utt + �ut +42u+ ku+ + f(u) = g. (1.3)

Zhong et al. [3] proved the existence of strong solutions and global
attractors for (1.3). Similar models have been studied by several au-
thors, see [4�10] and references therein. For example, Ma et al. investi-
gated the existence of global attractors in [5, 6] as well as uniform com-
pact attractors in [7] for the coupled suspension bridge equation. Park
and Kang [8, 9] respectively obtained the pullback attractors for the
non-autonomous suspension bridge equations and the global attractors
for the autonomous suspension bridge equations with nonlinear damp-
ing. Xu and Ma [10] proved the existence of random attractors for the
floating beam equation with strong damping and white noise.

If taking into account the midplane stretching of the road bed due to
its elongation, then the following equation was arrived at

utt + �ut +42u+ (↵� kruk2L2(⌦))4u+ ku+ = g. (1.4)

There are some classical results for (1.4), for details see [11 � 13]. Re-
cently, Ma and Xu [14] studied the random attractors for the extensible
suspension bridge equation with white noise. The model (1.1) is de-
rived by considering the e↵ect of the past history in (1.4). As far as
the relative some problems to the past history, the asymptotic behav-
ior of solutions have been discussed in many literatures, please refer the
reader to [15� 18]. For (1.1), in the case when ↵ = � = 0 and without
the damping term ut, Kang [15] proved the existence of global attrac-
tors relying on the construction of a suitable Lyapunov functional in the
space H2(⌦) \ H1

0 (⌦) ⇥ L2(⌦) ⇥ L2
µ(R+;H2(⌦) \ H1

0 (⌦)). But in some
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cases, the damping term appearing in the equation is important and sig-
nificant from the view of the actual applications. Therefore, we in this
paper focus on the asymptotic behavior of the solutions for the exten-
sible suspension bridge equation with linear damping and memory, we
investigate the existence of the global attractor for equation (1.1). Fur-
thermore, the regularity of global attractor is shown.

We know that it is very vital to verify the compactness in proving the
existence of the global attractor. For our problem, there are two essential
di�culties in showing the compactness. One di�culty is caused by a
geometric nonlinearity, it makes our energy estimates more complex, so
we need to more accurate calculation. Another di�culty is the memory
kernel itself, because there is no compact embedding in the history space,
moreover, we can’t use the finite rank method, that is, we can’t use the
term (I � Pm)u as a test function to deal with our problem. For our
purpose, we have to introduce a new variable and define a extend Hilbert
space, as well as combine with the contraction function method.

This paper is organized as follows: In Section 2, we give some pre-
liminaries for our consideration, including the notation we will use, the
assumption on nonlinearity term and some general abstract results. In
Section 3, we prove our main results about the existence of global at-
tractors. In Section 4, we obtain the regularity of global attractors.

2. Preliminaries

In this section, we introduce some notations, functional spaces and
preliminaries results that will be used.

In order to obtain our main results, we first transform the equa-
tion (1.1) into a determined autonomous dynamical system by intro-
ducing a new variable. For this purpose, as in [16], we define

⌘ = ⌘t(x, s) = u(x, t)� u(x, t� s), (x, s) 2 ⌦⇥ R+, t > 0. (2.1)

By formal di↵erentiation in (2.1) we obtain

⌘tt(x, s) = �⌘ts(x, s) + ut(x, t), (x, s) 2 ⌦⇥ R+, t > 0. (2.2)

Then we have

⌘0(x, s) = u0(x, 0)� u0(x,�s), (x, s) 2 ⌦⇥ R+.
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By assuming that µ 2 L1(R+), the original problem (1.1) can be trans-
formed into the equivalent autonomous system

8
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:

utt + ut + (1� R1
0 µ(s)ds)42u+ (↵� �kruk2L2(⌦))4u

+
R1
0 µ(s)42⌘t(s)ds+ ku+ = g(x) in ⌦⇥ R+,

⌘t = �⌘s + ut, (x, t, s) 2 ⌦⇥ R+ ⇥ R+ ,
(2.3)

with the boundary conditions

u = �u = 0, (x, t) 2 �⇥ R+, ⌘ = 4⌘ = 0, (x, t, s) 2 �⇥ R+ ⇥ R+,
(2.4)

and the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), ⌘t(x, 0) = 0, ⌘0(x, s) = ⌘0(x, s),
(2.5)

where
8

>

>

>

<

>

>

>

:

u0(x) = u0(x, 0), x 2 ⌦,

u1(x) = @tu0(x, t) |t=0, x 2 ⌦,

⌘0(x, s) = u0(x, 0)� u0(x,�s), (x, s) 2 ⌦⇥ R+.

Throughout this paper we use the standard functional space and de-
note (·, ·) be a L2(⌦)-inner product and k · kp be Lp(⌦) norm. Espe-
cially, we take

H = V0 = L2(⌦), V = V1 = H2(⌦) \H1
0 (⌦),

equipped with respective inner product and norm,

(u, v)V = (4u,4v), kukV = k4uk2.
Define

D(A) = {u 2 H4(⌦) : u|@⌦ = 4u|@⌦ = 0},
where Au = 42u, and equip this space with the inner product (Au,Av)
and the norm kAuk22 = (Au,Au).

Obviously, we have the following continuous dense injections:

D(A) ⇢ V ⇢ H = H⇤ ⇢ V ⇤,

where H⇤, V ⇤ is a dual space of H, V respectively.
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In order to consider the relative displacement ⌘ as a new variable, one
introduces the weighted L2-space

L2
µ(R+;Vi) = {⌘ : R+ ! Vi|

Z 1

0

µ(s)k⌘(s)k2Vi
ds < 1},

which is a Hilbert space endowed with inner product and norm

(u, v)µ,Vi =

Z 1

0

µ(r)(u(r), v(r))Vidr,

kuk2µ,Vi
= (u, u)µ,Vi =

Z 1

0

µ(r)ku(r)k2Vi
dr, i = 0, 1, 2,

respectively, where V2 = D(A
3
4 ), V3 = D(A). Finally, we introduce the

following Hilbert space

H0 = V ⇥H ⇥ L2
µ(R+;V ),

H1 = D(A)⇥ V ⇥ L2
µ(R+;D(A)).

Using the Poincaré inequality we obtain

�1kvk22 6 k4vk22, 8v 2 V,

where �1 denotes the first eigenvalue of 42v = �v in ⌦ with v = 4v =
0 on �.

We present the following conditions about memory kernel
(H1) µ 2 C1(R+) \ L1(R+), µ0(s) 6 0 6 µ(s), 8s 2 R+ ;
(H2) l = 1� R1

0 µ(s)ds = 1� µ0 > 0, 8s 2 R+ ;
(H3) µ0(s) + �µ(s) 6 0, 8s 2 R+, � > 0 .
In order to obtain the global attractors of the problem (2.3)-(2.5), we

need the following theorem. The well-posedness of the problem (2.3)-
(2.5) can be obtained by Faedo-Galerkin method (see [19] ) and combin-
ing with a prior estimate of 3.1, we omit it and only give the following
theorem:

Theorem 2.1. Assume that assumptions (H1) � (H3) hold and g 2
L2(⌦). Problem (2.3)�(2.5) has a weak solution (u, ut, ⌘) 2 C([0, T ],H0) with
initial data (u0, u1, ⌘0) 2 H0, satisfying

u 2 L1(0, T ;V ), ut 2 L1(0, T ;H), ⌘ 2 L1(0, T ;L2
µ(R+, V ))

and the mapping {u0, u1, ⌘0} ! {u(t), ut(t), ⌘t} is continuous in H0. In

addition, if zi(t) = (ui(t), ui
t(t), ⌘

i) be weak solution of problem (2.3) �
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(2.5) corresponding to initial data zi(0) = (ui(0), ui
1, ⌘

i
0), i = 1, 2. Then

one has

kz1(t)� z2(t)kH0 6 ectkz1(0)� z2(0)kH0 , t 2 [0, T ],

for some constant c > 0 .

The well-posedness of problem (2.3)-(2.5) implies that the family of
operators S(t) : H0 ! H0 defined by

S(t)(u0, u1, ⌘0) = (u(t), ut(t), ⌘
t), t > 0,

where (u(t), ut(t), ⌘t) is the unique weak solution of the system (2.3)-
(2.5), satisfies the semigroup properties and defines a nonlinear C0-
semigroup, which is locally Lipschitz continuous on H0.

Now, we recall some fundamentals of the theory of infinite dimensional
systems in mathematical physics, these abstract results will be used in
our consideration.

Definition 2.1. ([2]) A dynamical system (H, S(t)) is dissipative if
it possesses a bounded absorbing set, that is, a bounded set B ⇢ H such
that for any bounded set B ⇢ H there exists tB > 0 satisfying

S(t)B ⇢ B, 8t > tB.

Definition 2.2. ([18]) Let X be a Banach space and B be a bounded

subset of X. We call a function �(·, ·) which is defined on X ⇥ X a

contractive function on B ⇥ B if for any sequence {xn}1n=1 ⇢ B , there

is a subsequence {xnk
}1k=1 ⇢ {xn}1n=1, such that

lim
k!1

lim
l!1

�(xnk
, xnl

) = 0. (2.6)

Denote all such contractive functions on B ⇥ B by C .

Definition 2.3. ([18])Let {S(t)}t>0 be a semigroup on a Banach
space (X, k · k) that has a bounded absorbing set B0. Moreover, assume
that for ✏ > 0 there exist T = T (B0, ✏) and �T (·, ·) 2 C(B0) such that

kS(T )x� S(T )yk 6 ✏+ �T (x, y), 8(x, y) 2 B0,

where �T depends on T. Then {S(t)}t>0 is asymptotically compact in
X, i.e., for any bounded sequence {yn}1n=1 ⇢ X and {tn} with tn !
1, {S(tn)yn}1n=1 is precompact in X.

Theorem 2.2. ([2]) A dissipative dynamical system (H, S(t)) has a
compact global attractor if and only if it is asymptotically smooth.
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Our main result is the following:

Theorem 2.3. Assume that assumptions (H1) � (H3) hold and g 2
L2(⌦), ↵ 2 R, �, k > 0, then the dynamical system (H0, S(t)) cor-

responding to the system (2.3) � (2.5) has a compact global attrac-

tor A ⇢ H0, which attracts any bounded set in H0 with k · kH0 .

3. Global attractor in H0

In order to prove Theorem 2.3, we will apply the abstract results
presented in Section 2. The first step is to show that the dynamical
system (H0, S(t)) is dissipative. The second step is to verify the asymp-
totic compactness. Then the existence of a compact global attractor is
guaranteed by Theorem 2.2.

3.1. A priori estimates in H0

First, taking the scalar product inH of the first equation of (2.3) with v =
ut + �u, after a computation, we find

1

2

d

dt
(lk4uk22 + kvk22 + kku+k22) + �lk4uk22 + (1� �)(ut, v)

+((↵� �kruk22)4u, v) + (⌘t, ut)µ,V + �(⌘t, u)µ,V + �kku+k22 = (g, v).
(3.1)

Exploiting (H2)� (H3) and Hölder inequality, we have

(1� �)(ut, v) = (1� �)kvk22 � �(1� �)(u, v),

(⌘t, ut)µ,V =(⌘t, ⌘tt + ⌘ts)µ,V =
1

2

d

dt
k⌘tk2µ,V +

Z 1

0

µ(s)(⌘t(s), ⌘ts(s))V ds

=
1

2

d

dt
k⌘tk2µ,V +

1

2

Z 1

0

µ(s)dk⌘t(s)k2V

=
1

2

d

dt
k⌘tk2µ,V � 1

2

Z 1

0

µ0(s)k⌘t(s)k2V ds

>1

2

d

dt
k⌘tk2µ,V +

�

2

Z 1

0

µ(s)k⌘t(s)k2V ds

=
1

2

d

dt
k⌘tk2µ,V +

�

2
k⌘tk2µ,V ,

�(⌘t, u)µ,V > ��

4
k⌘tk2µ,V � (1� l)�2

�
k4uk22,
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and

((↵� �kruk22)4u, v)

=((↵� �kruk22)4u, ut + �u)

=� ↵

2

d

dt
kruk22 � �↵kruk22 +

�

4

d

dt
kruk42 + ��kruk42

>1

2

d

dt

 

r

�

2
kruk22 �

p
2↵

2
p
�

!2

+ �

 

r

�

2
kruk22 �

p
2↵

2
p
�

!2

� �↵2

2�
.

Hence we conclude from (3.1) that

1

2

d

dt

0

@lk4uk22 + kvk22 +
 

r

�

2
kruk22 �

p
2↵

2
p
�

!2

+ k⌘tk2µ,V + kku+k22

1

A

+�l

✓

1� (1� l)�

�l

◆

k4uk22 + (1� �)kvk22 � �(1� �)(u, v)

+�

 

r

�

2
kruk22 �

p
2↵

2
p
�

!2

+
�

4
k⌘tk2µ,V + �kku+k22 6 (g, v) +

�↵2

2�
.

(3.2)
Choose � small enough, such that

1� (1� l)�

�
� �

2�1
> 1� �,

1

2
� � > 1

4
,

then combining with Hölder, Y oung and Poincaré inequalities, we ob-
tain

�l

✓

1� (1� l)�

�l

◆

k4uk22 + (1� �)kvk22 � �(1� �)(u, v)

>�l

✓

1� (1� l)�

�l

◆

k4uk22 + (1� �)kvk22 �
�p
�1

k4uk2kvk2

>�l

✓

1� (1� l)�

�l

◆

k4uk22 + (1� �)kvk22 �
✓

�2

2�1
k4uk22 +

1

2
kvk22

◆

=�l

✓

1� (1� l)�

�l
� �

2�1l

◆

k4uk22 + (
1

2
� �)kvk22

>�l(1� �)k4uk22 +
1

4
kvk22.

(3.3)
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In addition,

(g, v) = 2kgk22 +
1

8
kvk22. (3.4)

Consequently, collecting with (3.2)-(3.4), there holds

d

dt

0

@lk4uk22 + kvk22 +
 

r

�

2
kruk22 �

p
2↵

2
p
�

!2

+ k⌘tk2µ,V + kku+k22

1

A

+2�l(1� �)k4uk22 +
1

2
kvk22 + 2�

 

r

�

2
kruk22 �

p
2↵

2
p
�

!2

+
�

2
k⌘tk2µ,V + 2�kku+k22 6 4kgk22 +

�↵2

�
.

(3.5)
Provided that �0 = min

�

2�(1� �), 12 ,
�
2

 

, let

E(t) = lk4uk22 + kvk22 +
 

r

�

2
kruk22 �

p
2↵

2
p
�

!2

+ k⌘tk2µ,V + kku+k22,

we have
d

dt
E(t) + �0E(t) 6 4kgk22 +

�↵2

�
= C1.

By the Gronwall lemma, we get

E(t) 6 E(t0)e
��0t +

C1

�0
, 8t > 0.

Thus, we get the existence of bounded absorbing set in H0, this is the
following results:

Lemma 3.1. Assume that assumptions (H1) � (H3) hold and g 2
L2(⌦), ↵ 2 R, �, k > 0, then the ball of H0, B0 = BH0(0, µ0), cen-

tered at 0 of radius µ0 =
q

C1
�0
, is an absorbing set in H0 for the

group {S(t)}t>0 generated by problem (2.3) � (2.5), namely, for any

bounded subset B in H0, S(t)B ⇢ B0 for t > t0(B) .

On the other hand, from the above discussion, there exist a con-
stant µ1 > µ0, such that

k4uk22 + kvk22 + k⌘tk2µ,V 6 µ2
1, 8t > t0. (3.6)

3.3. Existence of global attractor
First we prove an important Lemma.
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Lemma 3.2. Under the hypotheses of Theorem 2.3, there exists a

constant µ2 > µ0, such that

kr4uk22 + krutk22 + k⌘tk2
µ,D(A

3
4 )

6 µ2
2, 8t > t0. (3.7)

Proof. Multiplying the first equation of (2.3) by �4& = �4ut �
�4u, and integrating over ⌦, we get

1

2

d

dt

�

lkr4uk22 + kr&k22 + kkru+k22
�

+ �lkr4uk22 + (1� �)(ut,�4&)

+(⌘t, ut)µ,D(A
3
4 )
+ �(⌘t, u)

µ,D(A
3
4 )
+ �kkru+k22 + (g,4&)

= �((↵� �kruk22)4u,�4&).
(3.8)

Similar to the previous estimates, we see that

(1� �)(ut,�4&) = (1� �)kr&k22 � �(1� �)(u,r&),

(⌘t, ut)µ,D(A
3
4 )

> 1

2

d

dt
k⌘tk2

µ,D(A
3
4 )
+

�

2
k⌘tk2

µ,D(A
3
4 )
,

and

�(⌘t, u)
µ,D(A

3
4 )

> ��

4
k⌘tk2

µ,D(A
3
4 )
� (1� l)�2

�
kr4uk22.

Like the estimate of (3.2), there holds

�l

✓

1� (1� l)�

�l

◆

kr4uk22 + (1� �)kr&k22 � �(1� �)(ru,r&)

>�l(1� �)kr4uk22 +
1

4
kr&k22.

Then we get from (3.8)

1

2

d

dt

⇣

lkr4uk22 + kr&k22 + k⌘tk2
µ,D(A

3
4 )
+ kkru+k22

⌘

+ �l(1� �)kr4uk22

+
1

4
kr&k22 +

�

4
k⌘tk2

µ,D(A
3
4 )
+ kkru+k22 6 �((↵� �kruk22)4u, &).

(3.9)
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From (3.6), Y oung, Hölder and Poincaré inequalities, it follows that

|� ((↵� �kruk22)4u,�4&)|
6((↵� �kruk22)4u,�4ut � �4u)

=� 1

2

d

dt
(↵� �k4uk22)k4uk22 + �kruk2krutk2k4uk22

��(↵� �kruk22)k4uk22
6� 1

2

d

dt
(↵� �kruk22)k4uk22 � �(↵� �kruk22)k4uk22

+
�

2
krutk22 +

�2µ6
1

2�

6� 1

2

d

dt
(↵� �kruk22)k4uk22 � �(↵� �kruk22)k4uk22

+
�

2
kr&k22 +

�3

2�1
kr4uk22 +

�2µ6
1

2�
,

(3.10)

in above inequality, we use the fact that krutk22 = kr& � �ruk22 6
kr&k22 + �2kruk22, where � is a proper positive constant.
Combining with (3.9)� (3.10), we can obtain

d

dt

⇣

lkr4uk22 + kr&k22 + k⌘tk2
µ,D(A

3
4 )
+ (↵� �kruk22)k4uk22) + kkru+k22

⌘

+l

✓

2�(1� �)� �3

l�1

◆

kr4uk22 +
✓

1

2
� �

◆

kr&k22 +
�

2
k⌘tk2

µ,D(A
3
4 )

+2�(↵� �kruk22)k4uk22 + 2�kkru+k22 6
�2µ6

1

�
.

(3.11)
Taking � small enough, such that

2�(1� �)� �3

l�1
> 0,

1

2
� � > 0.

Thus, denote

Y (t) = lkr4uk22+kr&k22+k⌘tk2
µ,D(A

3
4 )
+(↵��kruk22)k4uk22+kkru+k22,

we have
d

dt
Y (t) + ↵0Y (t) 6 C2.

where ↵0 = min
n

2�(1� �)� �3

l�1
, 12 � �, �

2

o

, C2 =
�2µ6

1
� .
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By the Gronwall lemma, we get

Y (t) 6 e�↵0tY (0) +
C2

↵0
.

Because of Y (t) > kr4uk22 + krutk22 + k⌘tk2
µ,D(A

3
4 )
, we have (3.7).

Next we show an essential inequality to prove Theorem 2.3.

Lemma 3.3. Under the hypotheses of Theorem 2.3, given a bounded

set B ⇢ H0, let z1 = (u, ut, ⌘) and z2 = (v, vt, ⇠) be two weak solu-

tions of problem (2.3)� (2.5) such that z1(0) = (u0, u1, ⌘0) and z2(0) =
(v0, v1, ⇠0) are in B. Then

kz1(t)� z2(t)k2H0

6e�↵1tkz1(0)� z2(0)k2H0
+ C3

Z t

0

e�↵1(t�s)ku(s)� v(s)k22(p+1)ds

+ C4

Z t

0

e�↵1(t�s)kru(s)�rv(s)k22ds, 8t > 0,

(3.12)

where ↵1 > 0 is a small constant and p, C3, C4 are positive constants.

Proof. Let us fix a bounded set B ⇢ H0. We set w = u � v and ⇣ =
⌘ � ⇠. Then (w, ⇣) satisfy
8

>

>

<

>

>

:

wtt + wt + l42w + (↵� �kruk22)4w +
R1
0 µ(s)�2⇣t(s)ds

+k(u+ � v+) = 0,

⇣t = �⇣s + wt,
(3.13)

with initial condition

w(0) = u0 � v0, wt(0) = u1 � v1, ⇣0 = ⌘0 � ⇠0.

Taking the scalar product in H of the first equation of (3.13) with & =
wt + �w , we have

1

2

d

dt
(lk4wk22 + k&k22) + �lk4wk22 + (1� �)(wt, &) + (⇣t, wt)µ,V + �(⇣t, w)µ,V

=� (k(u+ � v+), &)� ((↵� �kruk22)4w, &).
(3.14)

Combining with previous discussion, we can obtain

(1� �)(wt, &) = (1� �)k&k22 � �(1� �)(w, &),
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(⇣t, wt)µ,V > 1

2

d

dt
k⇣tk2µ,V +

�

2
k⇣tk2µ,V ,

and

�(⇣t, w)µ,V > ��

4
k⇣tk2µ,V � (1� l)�2

�
k4wk22.

Like the estimate of (3.2), there holds

�l

✓

1� (1� l)�

�l

◆

k4wk22 + (1� �)k&k22 � �(1� �)(w, &)

> �l(1� �)k4wk22 +
1

4
k&k22.

Then we get from (3.14)

1

2

d

dt
(lk4wk22 + k&k22 + k⇣tk2µ,V ) + �l(1� �)k4wk22 +

1

4
k&k22 +

�

4
k⇣tk2µ,V

6� ((↵� �kruk22)4w, &)� (k(u+ � v+), &).
(3.15)

From (3.6), (3.7), Y oung and Hölder inequalities, we see that

|� ((↵� �kruk22)4w, &)|
6((↵� �kruk22)4w,wt + �w)

=� 1

2

d

dt
(↵� �kruk22)krwk22 + �kruk2krutk2krwk22

� �(↵� �kruk22)krwk22
6� 1

2

d

dt
(↵� �kruk22)krwk22 + �µ1µ2krwk22

� �(↵� �kruk22)krwk22.

(3.16)

Thanks to the Y oung and Poincaré inequalities, we obtain

|� (k(u+ � v+), &)|

=

�

�

�

�

�
Z

⌦

k(u+ � v+)(wt + �w)dx

�

�

�

�

6
Z

⌦

k(u+ � v+)wtdx+

Z

⌦

k(u+ � v+)�wdx

6k2

�
ku+ � v+k22 +

�

4
kwtk22 + �kLkwk22

6
✓

k2Lc0
�

+ �kLc0 +
�3c0
4

◆

kwk22(p+1) +
�

4
k&k22,

(3.17)
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in above inequality, we use the fact that |u+(t)�v+(t)| 6 L|u(t)�v(t)| 6
L|w(t)|, kwtk22 = k&��wk22 6 k&k22+�2kwk22, where L is a proper positive
constant and c0 > 0 is an embedding constant for L2(p+1)(⌦) ,! L2(⌦).
Integrating with (3.16)-(3.17), we get from (3.15)

d

dt
(lk4wk22 + k&k22 + k⇣tk2µ,V + (↵� �kruk22)krwk22))

+ l(2�(1� �))k4wk22 +
✓

1

2
� �

2

◆

k&k22 +
�

2
k⇣tk2µ,V

+ 2�(↵� �kruk22)k4wk22
6
✓

2k2Lc0
�

+ 2�kLc0 +
�3c0
2

◆

kwk22(p+1) + 2�µ1µ2krwk22.

(3.18)

Choosing � small enough, such that

2�(1� �) > 0,
1

2
� �

2
> 0.

Thus, denote

W (t) = lk4wk22 + k&k22 + k⇣tk2µ,V + (↵� �kruk22)krwk22,
we have

d

dt
E(t) + ↵1E(t) 6 C3kwk22(p+1) + C4krwk22,

where ↵1 = min
�

2�(1� �), 1��
2 , �

2

 

, C3 =
2k2Lc0

�0
+2�kLc0+

�3c0
2 , C4 =

2�µ1µ2, which implies that

E(t) 6 e�↵1tE(0) + C3

Z t

0

e�↵1(t�s)kwk22(p+1)ds

+C4

Z t

0

e�↵1(t�s)kru(s)�rv(s)k22ds.

Because of E(t) > kz1(t)� z2(t)k2H0
, we have (3.12).

Lemma 3.4. Under assumptions of Theorem 2.3, the dynamical sys-

tem (H0, S(t)) corresponding to problem (2.3)� (2.5) is asymptotically

smooth.

Proof. Let B be a bounded subset of H0 positively invariant with
respect to S(t). Denote by CB several positive constants that are depen-
dent on B but not on t. For z10 , z20 2 B, S(t)z10 = (u(t), ut(t), ⌘t) and
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S(t)z20 = (v(t), vt(t), ⇠t) are the solutions of (2.3)� (2.5). Then given ✏ >
0 , from inequality (3.7), we can choose T > 0 such that

kS(t)z10 � S(t)z20kH0

6 ✏+ CB

✓

Z T

0

ku(s)� v(s)k22(p+1)ds+

Z T

0

kru(s)�rv(s)k22ds
◆

1
2

,

(3.19)
where CB > 0 is a constant which depends only on the size of B.

The condition p > 0 implies that 2 < 2(p+1) < 1 . Taking ✓ = 1
2(1�

1
p+1) and applying Gagliardo � Nirenberg interpolation inequality, we
have

ku(t)� v(t)k2(p+1) 6 Ck4(u(t)� v(t))k✓2ku(t)� v(t)k1�✓
2 .

Since k4u(t)k2 and k4v(t)k2 are uniformly bounded, there exists a con-
stant CB > 0 such that

ku(t)� v(t)k22(p+1) 6 CBku(t)� v(t)k2(1�✓)
2 . (3.20)

Then, from (3.19) and (3.20) we obtain

kS(t)z10 � S(t)z20kH0 6 ✏+ �T (z
1
0 , z

2
0),

with

�T (z
1
0 , z

2
0) = CB

✓

Z T

0

ku(s)� v(s)k2(1�✓)
2 ds+

Z T

0

kru(s)�rv(s)k22
◆

1
2

.

The following proof �T 2 C, namely �T satisfies (2.6) .
Given a sequence (zn0 ) = (un

0 , u
n
1 , ⌘

n
0 ) 2 B, let us write S(t)(zn0 ) =

(un(t), un
t (t), ⌘

n,t). Since B is positively invariant by S(t), t > 0, it follows
that sequence (un(t), un

t (t), ⌘
n,t) is uniformly bounded in H0. On the

other hand, (un, un
t ) is bounded in C([0, T ], V ⇥H), T > 0.

By the compact embedding V ⇢ H, there exists a subsequence (unk) that
converges strongly in C([0, T ], H). Thus,

lim
k!1

lim
l!1

Z T

0

kunk(s)� unl(s)k2(1�✓)
2 ds = 0.

Furthermore, since B is a bounded positively invariant set in H, without
loss of generality, we assume that

un ! u weakly star in L1(0, T ;H2
0 (⌦)), (3.21)



390 Shifang Liu and Qiaozhen Ma

By the compact embedding theorem, from (3.21), we have

un ! u strongly in L2(0, T ;H1
0 (⌦)), (3.22)

So we obtain

lim
k!1

lim
l!1

Z T

0

krunk(s)�runl(s)k22ds = 0.

and consequently (2.6) holds.
Proof of Theorem 2.3. Lemma 3.1 and Lemma 3.3 imply that (H0, S(t)) is

a dissipative dynamical system which is asymptotically smooth. Then
it has compact global attractor from Theorem 2.2.

4. Asymptotic regular estimates

Theorem 4.1. Under assumptions of Theorem 2.3. Then the global

attractor A is a bounded subset of H1.

In order to prove Theorem 4.1, we fix a bounded set B ⇢ H0 and
for z = (u0, u1, ⌘0) 2 B, we split the solution S(t)z = (u(t), ut(t), ⌘t) of
problem (2.3)� (2.5) into the sum

S(t)z = D(t)z +K(t)z,

where D(t)z = z1(t) and K(t)z = z2(t), namely z = (u, ut, ⌘
t) = z1 +

z2, furthermore,

u = v + w, ⌘t = ⇣t + ⇠t,

z1 = (v, vt, ⇣
t), z2 = (w,wt, ⇠

t),

where z1(t) satisfy
8

>

>

>

>

>

<

>

>

>

>

>

:

vtt + vt + l42v + (↵� �kruk22)4v +
R1
0 µ(s)�2⇣t(s)ds+ �v = 0,

⇣tt = �⇣ts + vt,

v(x, t)|@⌦ = 0, v(x, ⌧) = u⌧ (x),

⇣t(x, s)|@⌦ = 0, ⇣⌧ (x, s) = ⌘⌧ (x, s),
(4.1)
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and z2(t) satisfy
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

wtt + wt + l42w + (↵� �kruk22)4w +
R1
0 µ(s)�2⇠t(s)ds� �v + ku+

= g,

⇠tt = �⇠ts + wt,

w(x, t)|@⌦ = 0, w(x, ⌧) = 0,

⇠t(x, s)|@⌦ = 0, ⇠⌧ (x, s) = ⇠⌧ (x, s) = 0.
(4.2)

The well-posedness of the problem (4.1) and (4.2) can be obtained by
Faedo-Galerkin method.

Furthermore, combining with a prior estimate of 3.1, about the solu-
tion z1(t) of equation (4.1) has the following result.

Lemma 4.2. Under assumptions of Theorem 2.3, there exists a con-

stant k0 > 0, such that the solution of (4.1) satisfy

kD(t)zk2H0
6 Ce�k0t,

where C is a constant.
About the solution of equation (4.2), we have the following results.

Lemma 4.3. Under assumptions of Theorem 2.3, there exists a con-

stant N > 0, such that the solution of (4.2) satisfy

kK(t)zk2H1
6 N.

Proof. Taking the scalar product in H of the first equation of (4.2)
with A& = Awt + �Aw, we find

1

2

d

dt
(lkAwk22 + k4&k22) + �lkAwk22 + (1� �)(wt, A&) + ((↵� �kruk22)4w,A&)

+(⇠t, wt)µ,D(A) + �(⇠t, w)µ,D(A) + (ku+, A&) = (g,A&) + (�v,A&).
(4.3)

Similar to the previous discussion, there yields

(1� �)(wt, A&) = (1� �)k4&k22 � �(1� �)(Aw, &),

(⇠t, wt)µ,D(A) >
1

2

d

dt
k⇠tk2µ,D(A) +

�

2
k⇠tk2µ,D(A),

�(⇠t, w)µ,D(A) > ��

4
k⇠tk2µ,D(A) �

(1� l)�2

�
kAwk22.
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Then we get from (4.3)

1

2

d

dt
(lkAwk22 + k4&k22 + k⇠tk2µ,D(A)) + �l

✓

1� (1� l)�

�l

◆

kAwk22

+ (1� �)k4&k22 +
�

4
k⇠tk2µ,D(A) � �(1� �)(Aw, &) + (ku+, A&)

6(g, A&) + (�v, A&)� ((↵� �kruk22)4w,A&).
(4.4)

Furthermore, similar to the estimate of (3.2), we obtain

�l

✓

1� (1� l)�

�l

◆

kAwk22 + (1� �)k4&k22 � �(1� �)(Aw, &)

>�l(1� �)kAwk22 +
1

4
k4&k22.

(4.5)

In line with the Hölder, Y oung, Cauchy inequalities and (3.6), (3.7), it
follows that

(ku+, A&) =(ku+, Awt + �Aw)

=
d

dt
(ku+, Aw)� (ku+

t , Aw) + �(ku+, Aw)

> d

dt
(ku+, Aw) + �(ku+, Aw)� kkutk2kAwk2

> d

dt
(ku+, Aw) + �(ku+, Aw)� kµ1kAwk2

> d

dt
(ku+, Aw) + �(ku+, Aw)� �

2
kAwk22 �

k2µ2
1

2�
, t > t0,

(4.6)

|� ((↵� �kruk22)4w,A&)|
6((↵� �kruk22)4w,Awt + �Aw)

=� 1

2

d

dt
(↵� �kruk22)kr4wk22 + �kruk2krutk2kr4wk22

��(↵� �kruk22)kr4wk22
6� 1

2

d

dt
(↵� �kruk22)kr4wk22 + 2�µ1µ

3
2

��(↵� �kruk22)kr4wk22,

(4.7)
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(�v, A&) = (�4v,4&) 6 �k4vk2k4&k2 6 �k4vk22 +
�

4
k4&k22

6 �µ2
1 +

�

4
k4&k22,

(4.8)

and

(g, A&) = (g, Awt + �Aw) =
d

dt
(g, Aw) + �(g, Aw). (4.9)

Thus, collecting (4.5)� (4.9), from (4.4) yields

d

dt
(lkAwk22 + k4&k22 + (↵� �ruk22)kr4wk22 + k⇠tk2µ,D(A)

+2(ku+, Aw)� 2(g, Aw)) + 2l
⇣

�(1� �)� �

2l

⌘

kAwk22

+
1� �

2
k4&k22 + 2�(↵� �ruk22)kr4wk22 +

�

2
k⇠tk2µ,D(A)

+2�(ku+, Aw)� 2�(g, Aw) 6 k2µ2
1

�
+ 2�µ2

1 + 4�µ1µ
3
2.

(4.10)

Taking �0 = min
�

2�(1� �)� �
l ,

1��
2 , �, �

2

 

, we can obtain from (4.10)

d

dt
(lkAwk22 + k4&k22 + (↵� �ruk22)kr4wk22 + k⇠tk2µ,D(A) + 2(ku+, Aw)

�2(g, Aw)) + �0(lkAwk22 + k4&k22 + (↵� �ruk22)kr4wk22 + k⇠tk2µ,D(A)

+2(ku+, Aw)� 2(g, Aw)) 6 k2µ2
1

�
+ 2�µ2

1 + 4�µ1µ
3
2,

(4.11)
On the other hand, by the Hölder inequality, the Sobolev embedding

theorem and (3.6), it follows that

d

dt

✓

l

2
kAwk22 + 2(ku+, Aw)

◆

=
d

dt
k
r

l

2
Aw +

r

2

l
u+k22 �

4k2

l

Z

⌦

|u+||u+
t |dx

> d

dt
k
r

l

2
Aw +

r

2

l
ku+k22 �

4k2

l
kuk2kutk2

> d

dt
k
r

l

2
Aw +

r

2

l
u+k22 �

4k2µ2
1

l
,

(4.12)
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and

d

dt

✓

l

2
kAwk22 � 2(g, Aw)

◆

=
d

dt
k
r

l

2
Aw �

r

2

l
gk22, t > t0. (4.13)

Therefore, integrating with (4.12)� (4.13), we get from (4.11)

d

dt
(k
r

l

2
Aw +

r

2

l
u+k22 + k

r

l

2
Aw �

r

l

2
gk22 + k4&k22

+(↵� �ruk22)kr4wk22 + k⇠tk2µ,D(A)) + �0(k
r

l

2
Aw +

r

2

l
u+k22

+k
r

l

2
Aw �

r

2

l
gk22 + k4&k22 + (↵� �ruk22)kr4wk22 + k⇠tk2µ,D(A))

6 C5,
(4.14)

where C5 = k2µ2
1(

1
� + 4

l ) +
2�0
l (k2µ2

1 + kgk22) + 2�µ2
1 + 4�µ1µ

3
2.

Applying the Gronwall lemma, we can obtain there exist a constantN such
that

kAwk22 + k4wtk22 + k⇠tk2µ,D(A) 6 N.

Proof of Theorem 4.1. By Lemma 4.2 and 4.3, (u, ut, ⌘
t) 2 H1 and

kAuk22 + k4utk22 + k⌘tk2µ,D(A) 6 N.

Now since u(t, x) satisfies (2.3) � (2.5) with initial data (u0, u1, ⌘0), we
can obtain

k(u0, u1, ⌘0)kH1 6 bN.

Thus A is a bounded subset of H1.
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