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QUADRATIC RESIDUE CODES OVER GALOIS RINGS

Young Ho Park

Abstract. Quadratic residue codes are cyclic codes of prime length
n defined over a finite field Fpe , where pe is a quadratic residue mod
n. They comprise a very important family of codes. In this article
we introduce the generalization of quadratic residue codes defined
over Galois rings using the Galois theory.

1. Introduction

Let R be a ring and n a positive integer. A (linear) code over R of
length n is an R-submodule of Rn. A code C is cyclic if a0a1 · · · an−1 ∈ C
implies an−1a0 · · · an−2 ∈ C. A cyclic code is isomorphic to an ideal of
R[x]/(xn − 1) via a0a1 · · · an−1 7→ a0 + a1x+ · · ·+ an−1x

n−1.
Quadratic residue codes have been defined over finite fields. See [4]

for generality of codes and quadratic residue codes over fields. Being
cyclic codes, quadratic residue codes over the prime finite field Fp = Zp

can be lifted to codes over Zpe and to the ring Op of p-adic integers using
the Hensel lifting [1, 3, 8]. Quadratic residue codes can be also defined
as duadic codes with idempotent generators and lifted to Zpe [2,5,9–11].
However, we have found a better way of constructing quadratic residue
codes for Galois rings.
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2. Galois Rings

Zpe is a local ring with maximal ideal pZpe and residue field Zp. Let
r be a positive integer and let

GR(pe, r) = Zpe [X]/〈h(X)〉 ' Zpe [ζ],

where h(X) is a monic basic irreducible polynomial in Zpe [X] of degree
r that divides Xpr−1 − 1. The polynomial h(X) is chosen so that ζ =
X+〈h(X)〉 is a primitive (pr−1)st root of unity. GR(pe, r) is the Galois
extension of degree r over Zpe , called a Galois ring. We refer [1, 7] for
details. Galois extensions are unique up to isomorphism. GR(pe, r) is
a finite chain rings with ideals of the form 〈pi〉 for 0 ≤ i ≤ e − 1, and
residue field Fpr .

The set Tr = {0, 1, ζ, . . . , ζpr−2} is a complete set, known as Te-
ichmüller set, of coset representatives of GR(pe, r) modulo 〈p〉. Any
element of GR(pe, r) can be uniquely written as a p-adic sum c0 + c1p+
c2p

2 + · · · + ce−1p
e−1 with ci ∈ Tr. It can also be written in the ζ-adic

expansion b0 + b1ζ + · · ·+ br−1ζ
r−1 with bi ∈ Zpe .

The Galois group of isomorphisms of GR(pe, r) over Zpe is a cyclic
group of order r generated by the Frobenius automorphism Fr given

by Fr
(∑r−1

i=0 biζ
i
)

=
∑r−1

i=0 biζ
ip (bi ∈ Zpe) in ζ-adic expansion and

Fr
(∑e−1

i=0 cip
i
)

=
∑e−1

i=0 c
p
i p

i, (ci ∈ Tr) in p-adic expansion. We recall

that GR(pe, l) ⊂ GR(pe,m) if and only if l | m. Moreover, the Galois
group of GR(pe, rs) over GR(pe, r) is generated by Frr and hence

(1) GR(pe, r) = {a ∈ GR(pe, rs) | Frr(a) = a}.
Here the map Frr is explicitly given as

Frr(a0 + a1p+ · · ·+ atp
t + · · · ) = ap

r

0 + ap
r

1 p+ · · ·+ ap
r

t p
t + · · ·

where ai ∈ Tr. In particular, if α is any nth of unity in the extension
GR(pe, rs), where n | prs − 1, then

(2) Frr(α) = αpr

3. Quadratic residue codes for Galois rings

Now we are going to define quadratic residue codes over the Galois
ring GR(pe, r). We fix an odd prime (length) n, and another prime
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power pr which is a quadratic residue modulo n. Let α be a primitive
nth root of unity in an extension GR(pe, rs) of GR(pe, r). Let Q be
quadratic residues mod n, N quadratic nonresidues mod n. Define

(3) qe(X) =
∏
i∈Q

(X − αi), ne(X) =
∏
j∈N

(X − αj)

Theorem 3.1. We have the factorization in GR(pr, e)[X]:

Xn − 1 = (X − 1)qe(X)ne(X)

Proof. Frr(qe(X)) =
∏

i∈Q(X − αipr) =
∏

i∈Q(X − αi) by (2) and the

fact that prQ = Q. Hence qe(X) ∈ GR(pr, e) by (1).

Definition 3.2. The quadratic residue codesQe,Qe1,Ne,Ne1 (re-
spectively) over the Galois ring GR(pe, r) are cyclic codes of length n
with generator polynomials (respectively)

qe(X), (X − 1)qe(X), ne(X), (X − 1)ne(X).

We now explain how to get the polynomials in the definition. First
we define

λ =
∑
i∈Q

αi, µ =
∑
j∈N

αj.

Since λ and µ are invariant under the Frobenius map, they lie in the ring
GR(pe, r). Notice that a different choice (for example αj for j ∈ N) of
the root α may interchange λ and µ. We have the following theorem [6,8].

Theorem 3.3. If n = 4k ± 1 then λ and µ are roots of x2 + x = ±k
in the ring GR(pe, r).

The elementary symmetric polynomials s0, s1, s2, · · · , st in the poly-
nomial ring S[X1, X2, · · · , Xt] over a ring S are given by

si(X1, X2, · · · , Xt) =
∑

i1<i2<···<it

Xi1Xi2 · · ·Xit , for i = 1, 2, · · · , t.

We define s0(X1, X2, · · · , Xt) = 1. For all i ≥ 1, the i-power symmetric
polynomials are defined by

pi(X1, X2, · · · , Xt) = X i
1 +X i

2 + · · ·+X i
t .

Theorem 3.4 (Newton’s identities). For each 1 ≤ i ≤ t

(4) pi = pi−1s1 − pi−2s2 + · · ·+ (−1)ip1si−1 + (−1)i+1isi,

where si = si(X1, X2, · · · , Xt) and pi = pi(X1, X2, · · · , Xt).
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Let Q = {q1, q2, · · · qt}, N = {n1, n2, · · · , nt}. The followings hold:

(i) pi(α
q1 , αq2 , · · · , αqt) =

{
λ, i ∈ Q,
µ, i ∈ N.

(ii) pi(α
n1 , αn2 , · · · , αnt) =

{
µ, i ∈ Q,
λ, i ∈ N.

We use these identities together with Newton’s identity to get the
formula for qe(X) and ne(X) [6, 8].

Theorem 3.5. Let t = (n− 1)/2 and

qe(X) = a0X
t + a1X

t−1 + · · ·+ at.

Then

1. a0 = 1, a1 = −λ.
2. ai can be determined inductively by the formula

ai = −pia0 + pi−1a1 + pi−2a2 + · · ·+ p1ai−1
i

,

where pi = pi(α
q1 , αq2 , · · · , αqt).

Analogous statements hold for n(X) with a1 = −µ.

Finally we use this theorem to give some examples. We take the
Galois ring GR(32, 2) with p = 3, r = 2. Since 32 is a quadratic residue
for every n, there are quadratic residue codes of any length n 6= 2, 3. Now
GR(9, 2) ' Z9[ζ] where ζ is the pr − 1 = 8th root of unity satisfying
ζ2 = ζ + 1. We note that F9 ' Z3[ζ] also. There exists an integer
s ≤ n− 1 such that n | 9s − 1 by Fermat’s little theorem. Then the nth
root α of unity exists in GR(9, 2s).

Let n = 4k ± 1. According to Theorem 3.3 we first need to solve
x2 + x = ±k in GR(9, 2) = {a + bζ | a, b ∈ Z9}. In fact, we obtain
x = 1

2
(−1±

√
±n) for λ and µ. Thus we need to solve (a + bζ)2 = ±n,

equivalently, a2 + b2 = ±n and b(2a + b) = 0. Solving these for small
values of n < 40, we obtain the following table.

n 5 7 11 13 17 19 23 29 31 37
λ 8ζ 5 + 7ζ 6 5 6 + 5ζ 6 + 5ζ 5 5 + 7ζ 8ζ 0

We can compute the qe(X) and ne(X) by Theorem 3.5 for each n as
follows. Replace r with λ and µ = −1 − λ to get qe(X) and ne(X) in
the given polynomial in the Table 1.
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n qe(X) or ne(X)
5 1− rX +X2

7 −1 + (−1− r)X − rX2 +X3

11 −1 + (−1− r)X +X2 −X3 − rX4 +X5

13 1− rX + 2X2 + (−1− r)X3 + 2X4 − rX5 +X6

17 1− rX + (2− r)X2 + (3− r)X3 + (1− 2r)X4 + (3− r)X5+
(2− r)X6 − rX7 +X8

19 −1 + (−1− r)X + 2X2 + (−1 + r)X3 + (−3− r)X4 + (2− r)X5+
(2 + r)X6 − 2X7 − rX8 +X9

23 −1 + (−1− r)X + (2− r)X2 + 4X3 + (4 + r)X4 + (3 + 2r)X5+
(−1 + 2r)X6 + (−3 + r)X7 − 4X8 + (−3− r)X9 − rX10 +X11

29 1− rX + 4X2 + (−2− r)X3 + (1 + r)X4 −X5 + (1− r)X6 + (4− r)X7+
(1− r)X8 −X9 + (1 + r)X10 + (−2− r)X11 + 4X12 − rX13 +X14

31 −1 + (−1− r)X + (3− r)X2 + (6 + r)X3 + 2rX4 − 4X5 + (1− r)X6+
(3 + r)X7 + (−2 + r)X8 + (−2− r)X9 + 4X10 + 2(1 + r)X11+
(−5 + r)X12 + (−4− r)X13 − rX14 +X15

37 1− rX + 5X2 + (−3− 2r)X3 + (8 + r)X4 + (−4− 3r)X5 + (9 + r)X6+
(−5− 2r)X7 + (6 + r)X8 + (−3− 2r)X9 + (6 + r)X10 + (−5− 2r)X11+
(9 + r)X12 + (−4− 3r)X13 + (8 + r)X14 + (−3− 2r)X15 + 5X16 − rX17 +X18

Table 1. Generator polynomials of qe(X) and ne(X)
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