# QUADRATIC RESIDUE CODES OVER GALOIS RINGS 

Young Ho Park


#### Abstract

Quadratic residue codes are cyclic codes of prime length $n$ defined over a finite field $\mathbb{F}_{p^{e}}$, where $p^{e}$ is a quadratic residue $\bmod$ $n$. They comprise a very important family of codes. In this article we introduce the generalization of quadratic residue codes defined over Galois rings using the Galois theory.


## 1. Introduction

Let $R$ be a ring and $n$ a positive integer. A (linear) code over $R$ of length $n$ is an $R$-submodule of $R^{n}$. A code $C$ is cyclic if $a_{0} a_{1} \cdots a_{n-1} \in C$ implies $a_{n-1} a_{0} \cdots a_{n-2} \in C$. A cyclic code is isomorphic to an ideal of $R[x] /\left(x^{n}-1\right)$ via $a_{0} a_{1} \cdots a_{n-1} \mapsto a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$.

Quadratic residue codes have been defined over finite fields. See [4] for generality of codes and quadratic residue codes over fields. Being cyclic codes, quadratic residue codes over the prime finite field $\mathbb{F}_{p}=\mathbb{Z}_{p}$ can be lifted to codes over $\mathbb{Z}_{p^{e}}$ and to the ring $\mathcal{O}_{p}$ of $p$-adic integers using the Hensel lifting $[1,3,8]$. Quadratic residue codes can be also defined as duadic codes with idempotent generators and lifted to $\mathbb{Z}_{p^{e}}[2,5,9-11]$. However, we have found a better way of constructing quadratic residue codes for Galois rings.

[^0]
## 2. Galois Rings

$\mathbb{Z}_{p^{e}}$ is a local ring with maximal ideal $p \mathbb{Z}_{p^{e}}$ and residue field $\mathbb{Z}_{p}$. Let $r$ be a positive integer and let

$$
G R\left(p^{e}, r\right)=\mathbb{Z}_{p^{e}}[X] /\langle h(X)\rangle \simeq \mathbb{Z}_{p^{e}}[\zeta],
$$

where $h(X)$ is a monic basic irreducible polynomial in $\mathbb{Z}_{p^{e}}[X]$ of degree $r$ that divides $X^{p^{r}-1}-1$. The polynomial $h(X)$ is chosen so that $\zeta=$ $X+\langle h(X)\rangle$ is a primitive $\left(p^{r}-1\right)$ st root of unity. $G R\left(p^{e}, r\right)$ is the Galois extension of degree $r$ over $\mathbb{Z}_{p^{e}}$, called a Galois ring. We refer $[1,7]$ for details. Galois extensions are unique up to isomorphism. $G R\left(p^{e}, r\right)$ is a finite chain rings with ideals of the form $\left\langle p^{i}\right\rangle$ for $0 \leq i \leq e-1$, and residue field $\mathbb{F}_{p^{r}}$.

The set $T_{r}=\left\{0,1, \zeta, \ldots, \zeta^{p^{r}-2}\right\}$ is a complete set, known as Teichmüller set, of coset representatives of $G R\left(p^{e}, r\right)$ modulo $\langle p\rangle$. Any element of $G R\left(p^{e}, r\right)$ can be uniquely written as a $p$-adic sum $c_{0}+c_{1} p+$ $c_{2} p^{2}+\cdots+c_{e-1} p^{e-1}$ with $c_{i} \in T_{r}$. It can also be written in the $\zeta$-adic expansion $b_{0}+b_{1} \zeta+\cdots+b_{r-1} \zeta^{r-1}$ with $b_{i} \in \mathbb{Z}_{p^{e}}$.

The Galois group of isomorphisms of $G R\left(p^{e}, r\right)$ over $\mathbb{Z}_{p^{e}}$ is a cyclic group of order $r$ generated by the Frobenius automorphism Fr given by $\operatorname{Fr}\left(\sum_{i=0}^{r-1} b_{i} \zeta^{i}\right)=\sum_{i=0}^{r-1} b_{i} \zeta^{i p}\left(b_{i} \in \mathbb{Z}_{p^{e}}\right)$ in $\zeta$-adic expansion and $\operatorname{Fr}\left(\sum_{i=0}^{e-1} c_{i} p^{i}\right)=\sum_{i=0}^{e-1} c_{i}^{p} p^{i},\left(c_{i} \in T_{r}\right)$ in $p$-adic expansion. We recall that $G R\left(p^{e}, l\right) \subset G R\left(p^{e}, m\right)$ if and only if $l \mid m$. Moreover, the Galois group of $G R\left(p^{e}, r s\right)$ over $G R\left(p^{e}, r\right)$ is generated by $\mathrm{Fr}^{r}$ and hence

$$
\begin{equation*}
G R\left(p^{e}, r\right)=\left\{a \in G R\left(p^{e}, r s\right) \mid \operatorname{Fr}^{r}(a)=a\right\} \tag{1}
\end{equation*}
$$

Here the map $\mathrm{Fr}^{r}$ is explicitly given as

$$
\mathrm{Fr}^{r}\left(a_{0}+a_{1} p+\cdots+a_{t} p^{t}+\cdots\right)=a_{0}^{p^{r}}+a_{1}^{p^{r}} p+\cdots+a_{t}^{p^{r}} p^{t}+\cdots
$$

where $a_{i} \in T_{r}$. In particular, if $\alpha$ is any $n$th of unity in the extension $G R\left(p^{e}, r s\right)$, where $n \mid p^{r s}-1$, then

$$
\begin{equation*}
\operatorname{Fr}^{r}(\alpha)=\alpha^{p^{r}} \tag{2}
\end{equation*}
$$

## 3. Quadratic residue codes for Galois rings

Now we are going to define quadratic residue codes over the Galois ring $G R\left(p^{e}, r\right)$. We fix an odd prime (length) $n$, and another prime
power $p^{r}$ which is a quadratic residue modulo $n$. Let $\alpha$ be a primitive $n$th root of unity in an extension $G R\left(p^{e}, r s\right)$ of $G R\left(p^{e}, r\right)$. Let $Q$ be quadratic residues $\bmod n, N$ quadratic nonresidues $\bmod n$. Define

$$
\begin{equation*}
q_{e}(X)=\prod_{i \in Q}\left(X-\alpha^{i}\right), \quad n_{e}(X)=\prod_{j \in N}\left(X-\alpha^{j}\right) \tag{3}
\end{equation*}
$$

Theorem 3.1. We have the factorization in $G R\left(p^{r}, e\right)[X]$ :

$$
X^{n}-1=(X-1) q_{e}(X) n_{e}(X)
$$

Proof. $\operatorname{Fr}^{r}\left(q_{e}(X)\right)=\prod_{i \in Q}\left(X-\alpha^{i p^{r}}\right)=\prod_{i \in Q}\left(X-\alpha^{i}\right)$ by (2) and the fact that $p^{r} Q=Q$. Hence $q_{e}(X) \in G R\left(p^{r}, e\right)$ by (1).

Definition 3.2. The quadratic residue codes $\mathcal{Q}_{e}, \mathcal{Q}_{e 1}, \mathcal{N}_{e}, \mathcal{N}_{e 1}$ (respectively) over the Galois ring $G R\left(p^{e}, r\right)$ are cyclic codes of length $n$ with generator polynomials (respectively)

$$
q_{e}(X), \quad(X-1) q_{e}(X), \quad n_{e}(X), \quad(X-1) n_{e}(X) .
$$

We now explain how to get the polynomials in the definition. First we define

$$
\lambda=\sum_{i \in Q} \alpha^{i}, \quad \mu=\sum_{j \in N} \alpha^{j} .
$$

Since $\lambda$ and $\mu$ are invariant under the Frobenius map, they lie in the ring $G R\left(p^{e}, r\right)$. Notice that a different choice (for example $\alpha^{j}$ for $j \in N$ ) of the root $\alpha$ may interchange $\lambda$ and $\mu$. We have the following theorem $[6,8]$.

Theorem 3.3. If $n=4 k \pm 1$ then $\lambda$ and $\mu$ are roots of $x^{2}+x= \pm k$ in the ring $G R\left(p^{e}, r\right)$.

The elementary symmetric polynomials $s_{0}, s_{1}, s_{2}, \cdots, s_{t}$ in the polynomial ring $S\left[X_{1}, X_{2}, \cdots, X_{t}\right]$ over a ring $S$ are given by

$$
s_{i}\left(X_{1}, X_{2}, \cdots, X_{t}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{t}} X_{i_{1}} X_{i_{2}} \cdots X_{i_{t}}, \quad \text { for } i=1,2, \cdots, t .
$$

We define $s_{0}\left(X_{1}, X_{2}, \cdots, X_{t}\right)=1$. For all $i \geq 1$, the $i$-power symmetric polynomials are defined by

$$
p_{i}\left(X_{1}, X_{2}, \cdots, X_{t}\right)=X_{1}^{i}+X_{2}^{i}+\cdots+X_{t}^{i}
$$

Theorem 3.4 (Newton's identities). For each $1 \leq i \leq t$

$$
\begin{equation*}
p_{i}=p_{i-1} s_{1}-p_{i-2} s_{2}+\cdots+(-1)^{i} p_{1} s_{i-1}+(-1)^{i+1} i s_{i}, \tag{4}
\end{equation*}
$$

where $s_{i}=s_{i}\left(X_{1}, X_{2}, \cdots, X_{t}\right)$ and $p_{i}=p_{i}\left(X_{1}, X_{2}, \cdots, X_{t}\right)$.

Let $Q=\left\{q_{1}, q_{2}, \cdots q_{t}\right\}, N=\left\{n_{1}, n_{2}, \cdots, n_{t}\right\}$. The followings hold:
(i) $p_{i}\left(\alpha^{q_{1}}, \alpha^{q_{2}}, \cdots, \alpha^{q_{t}}\right)= \begin{cases}\lambda, & i \in Q, \\ \mu, & i \in N .\end{cases}$
(ii) $p_{i}\left(\alpha^{n_{1}}, \alpha^{n_{2}}, \cdots, \alpha^{n_{t}}\right)= \begin{cases}\mu, & i \in Q, \\ \lambda, & i \in N .\end{cases}$

We use these identities together with Newton's identity to get the formula for $q_{e}(X)$ and $n_{e}(X)[6,8]$.

Theorem 3.5. Let $t=(n-1) / 2$ and

$$
q_{e}(X)=a_{0} X^{t}+a_{1} X^{t-1}+\cdots+a_{t} .
$$

Then

1. $a_{0}=1, a_{1}=-\lambda$.
2. $a_{i}$ can be determined inductively by the formula

$$
a_{i}=-\frac{p_{i} a_{0}+p_{i-1} a_{1}+p_{i-2} a_{2}+\cdots+p_{1} a_{i-1}}{i}
$$

where $p_{i}=p_{i}\left(\alpha^{q_{1}}, \alpha^{q_{2}}, \cdots, \alpha^{q_{t}}\right)$.
Analogous statements hold for $n(X)$ with $a_{1}=-\mu$.
Finally we use this theorem to give some examples. We take the Galois ring $G R\left(3^{2}, 2\right)$ with $p=3, r=2$. Since $3^{2}$ is a quadratic residue for every $n$, there are quadratic residue codes of any length $n \neq 2,3$. Now $G R(9,2) \simeq \mathbb{Z}_{9}[\zeta]$ where $\zeta$ is the $p^{r}-1=8$ th root of unity satisfying $\zeta^{2}=\zeta+1$. We note that $\mathbb{F}_{9} \simeq \mathbb{Z}_{3}[\zeta]$ also. There exists an integer $s \leq n-1$ such that $n \mid 9^{s}-1$ by Fermat's little theorem. Then the $n$th root $\alpha$ of unity exists in $G R(9,2 s)$.

Let $n=4 k \pm 1$. According to Theorem 3.3 we first need to solve $x^{2}+x= \pm k$ in $G R(9,2)=\left\{a+b \zeta \mid a, b \in \mathbb{Z}_{9}\right\}$. In fact, we obtain $x=\frac{1}{2}(-1 \pm \sqrt{ \pm n})$ for $\lambda$ and $\mu$. Thus we need to solve $(a+b \zeta)^{2}= \pm n$, equivalently, $a^{2}+b^{2}= \pm n$ and $b(2 a+b)=0$. Solving these for small values of $n<40$, we obtain the following table.

| $n$ | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda$ | $8 \zeta$ | $5+7 \zeta$ | 6 | 5 | $6+5 \zeta$ | $6+5 \zeta$ | 5 | $5+7 \zeta$ | $8 \zeta$ | 0 |

We can compute the $q_{e}(X)$ and $n_{e}(X)$ by Theorem 3.5 for each $n$ as follows. Replace $r$ with $\lambda$ and $\mu=-1-\lambda$ to get $q_{e}(X)$ and $n_{e}(X)$ in the given polynomial in the Table 1.

| $n$ | $q_{e}(X)$ or $n_{e}(X)$ |
| ---: | :--- |
| 5 | $1-r X+X^{2}$ |
| 7 | $-1+(-1-r) X-r X^{2}+X^{3}$ |
| 11 | $-1+(-1-r) X+X^{2}-X^{3}-r X^{4}+X^{5}$ |
| 13 | $1-r X+2 X^{2}+(-1-r) X^{3}+2 X^{4}-r X^{5}+X^{6}$ |
| 17 | $1-r X+(2-r) X^{2}+(3-r) X^{3}+(1-2 r) X^{4}+(3-r) X^{5}+$ |
|  | $(2-r) X^{6}-r X^{7}+X^{8}$ |
| 19 | $-1+(-1-r) X+2 X^{2}+(-1+r) X^{3}+(-3-r) X^{4}+(2-r) X^{5}+$ |
|  | $(2+r) X^{6}-2 X^{7}-r X^{8}+X^{9}$ |
| 23 | $-1+(-1-r) X+(2-r) X^{2}+4 X^{3}+(4+r) X^{4}+(3+2 r) X^{5}+$ |
|  | $(-1+2 r) X^{6}+(-3+r) X^{7}-4 X^{8}+(-3-r) X^{9}-r X^{10}+X^{11}$ |
| 29 | $1-r X+4 X^{2}+(-2-r) X^{3}+(1+r) X^{4}-X^{5}+(1-r) X^{6}+(4-r) X^{7}+$ |
|  | $(1-r) X^{8}-X^{9}+(1+r) X^{10}+(-2-r) X^{11}+4 X^{12}-r X^{13}+X^{14}$ |
| 31 | $-1+(-1-r) X+(3-r) X^{2}+(6+r) X^{3}+2 r X^{4}-4 X^{5}+(1-r) X^{6}+$ |
|  | $(3+r) X^{7}+(-2+r) X^{8}+(-2-r) X^{9}+4 X^{10}+2(1+r) X^{11}+$ |
| 37 | $(-5+r) X^{12}+(-4-r) X^{13}-r X^{14}+X^{15}$ |
| $1-r X+5 X^{2}+(-3-2 r) X^{3}+(8+r) X^{4}+(-4-3 r) X^{5}+(9+r) X^{6}+$ |  |
|  | $(-5-2 r) X^{7}+(6+r) X^{8}+(-3-2 r) X^{9}+(6+r) X^{10}+(-5-2 r) X^{11}+$ |
|  | $(9+r) X^{12}+(-4-3 r) X^{13}+(8+r) X^{14}+(-3-2 r) X^{15}+5 X^{16}-r X^{17}+X^{18}$ |

Table 1. Generator polynomials of $q_{e}(X)$ and $n_{e}(X)$

## References

[1] A.R.Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, Des. Codes. Cryptogr. 6 (1995), 21-35.
[2] M.H. Chiu, S.S.Yau and Y. Yu, $\mathbb{Z}_{8}$-cyclic codes and quadratic residue codes, Advances in Applied Math. 25 (2000), 12-33.
[3] S.T. Dougherty, S.Y. Kim and Y.H. Park, Lifted codes and their weight enumerators, Discrite Math. 305 (2005), 123-135.
[4] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003.
[5] S. J. Kim, Quadratic residue codes over $\mathbb{Z}_{16}$, Kangweon-Kyungki Math. J. 11 (2003), 57-64.
[6] S. J. Kim, Generator polynomials of the p-adic quadratic residue codes, Kangweon-Kyungki Math. J. 13 (2005), 103-112.
[7] B. McDonald, Finite rings with identity, Marcel Dekker, 1974.
[8] Y.H. Park, Quadratic residue codes over p-adic integers and their projections to integers modulo $p^{e}$, Korean J. Math. 23 (2015), 163-169.
[9] V.S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $\mathbb{Z}_{4}$, IEEE Trans. Inform. Theory. 42 (1996), 1594-1600.
[10] B. Taeri, Quadratic residue codes over $\mathbb{Z}_{9}$, J. Korean Math Soc. 46 (2009), 13-30.
[11] X. Tan, A family of quadratic residue codes over $\mathbb{Z}_{2^{m}}$, preprint, 2011.

Young Ho Park<br>Department of Mathematics<br>Kangwon National University<br>Chun Cheon 24341, Korea<br>E-mail: yhpark@kangwon.ac.kr


[^0]:    Received August 9, 2016. Revised September 18, 2016. Accepted September 19, 2016.

    2010 Mathematics Subject Classification: 94B05, 11 T 71.
    Key words and phrases: quadratic residue code, Galois rings, code over rings.
    This work was supported by 2014 Research Grant from Kangwon National University (No. 120141505).
    (c) The Kangwon-Kyungki Mathematical Society, 2016.

    This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

