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ABELIAN PROPERTY CONCERNING FACTORIZATION

MODULO RADICALS

Dong Hyeon Chae, Jeong Min Choi, Dong Hyun Kim,
Jae Eui Kim, Jae Min Kim, Tae Hyeong Kim,

Ji Young Lee, Yang Lee, You Sun Lee, Jin Hwan Noh and
Sung Ju Ryu∗

Abstract. In this note we describe some classes of rings in relation
to Abelian property of factorizations by nilradicals and Jacobson
radical. The ring theoretical structures are investigated for various
sorts of such factor rings which occur in the process.

1. Introduction

Throughout this note every ring is an associative ring with iden-
tity unless otherwise stated. Let R be a ring. The polynomial (resp.,
power series) ring with an indeterminate x over R is denoted by R[x]
(resp., R[[x]]) and for any polynomial (resp., power series) f(x) in R[x]
(resp., R[[x]]), let Cf(x) denote the set of all coefficients of f(x). Use
the notation that R̄ = R/I and r̄ = r + I, where I is an ideal of R. Z
(Zn) denotes the ring of integers (modulo n). Denote the n by n full
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(resp., upper triangular) matrix ring over R by Matn(R) (resp., Un(R)).
Use Eij for the matrix with (i, j)-entry 1 and zeros elsewhere. Follow-
ing the literature, Dn(R) = {(aij) ∈ Un(R) | a11 = · · · = ann} and
Nn(R) = {(bij) ∈ Dn(R) | b11 = · · · = bnn = 0}.

Let J(R), N∗(R), N∗(R), and N(R) to denote the Jacobson radi-
cal, the lower nilradical (i.e., intersection of all prime ideals), the upper
nilradical (i.e., sum of all nil ideals), and the set of all nilpotent ele-
ments in R (possibly without identity), respectively. It is well-known
that N∗(R) ⊆ J(R) and N∗(R) ⊆ N∗(R) ⊆ N(R). A ring R is usually
called semiprimitive (resp., semiprime) if J(R) = 0 (resp., N∗(R) = 0).

A ring is usually called reduced if it has no nonzero nilpotents. A ring
is usually called Abelian if every idempotent is central. Reduced rings
are easily shown to be Abelian. It is obvious that the class of Abelian
rings is closed under subrings.

Let R be a ring and n ≥ 2. We use Vn(R) to denote the ring of all
matrices (aij) in Dn(R) such that ast = a(s+1)(t+1) for s = 1, . . . , n −
2 and t = 2, . . . , n− 1, following the literature, i.e.,

Vn(R) =




a1 a2 a3 · · · an
0 a1 a2 · · · an−1
0 0 a1 · · · an−2
...

...
...

. . .
...

0 0 0 · · · a1

 | a1, a2, . . . , an ∈ R
 .

It is well-known that Vn(R) is isomorphic to the factor ring R[x]/xnR[x],
via the corresponding

a1 a2 a3 · · · an
0 a1 a2 · · · an−1
0 0 a1 · · · an−2
...

...
...

. . .
...

0 0 0 · · · a1

 7→ a1 + a2x̄+ · · ·+ anx̄
n−1,

where x̄ = x+ xnR[x]. We use this fact freely. The following is a simple
extension of [15, Lemma 8] and [10, Lemma 2].

Proposition 1.1. For a ring R and n ≥ 2, the following conditions
are equivalent:

(1) R is Abelian;
(2) R[x] is Abelian;
(3) Dn(R) is Abelian;
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(4) Vn(R) is Abelian;
(5) R[x]/xnR[x] is Abelian.

Proof. The equivalence of the conditions (1), (2), and (3) is shown
by [15, Lemma 8] and [10, Lemma 2]. (3) implying (4), and (4) implying
(1) are obvious because Vn(R) is a subring of Dn(R), and R is a subring
of Vn(R). The equivalence of the conditions (4) and (5) follows the
isomorphism of Vn(R) and R[x]/xnR[x].

Considering Proposition 1.1, one may ask whether Abelian property
passes to factor rings. But the answer is negative by the following.

Example 1.2. Let F be a field and A = F 〈X〉 be the free algebra
generated by a set X of noncommuting indeterminates over F , where
the cardinality of X is ≥ 2. Then A is a domain and so it is Abelian.
Let a be taken arbitrarily in X. Consider next an ideal I of R generated
by a2 − a, and set R = A/I. Let x ∈ X coincide with its image x + I
in R for simplicity. Then a2 = a (i.e., a is an idempotent in R), but
ab 6= ba for all b ∈ X\{a}. Thus R is a non-Abelian ring.

In the following arguments, we see two sorts of rings which are closed
under factor rings modulo nilradicals. For a reduced ring R, Armendariz
[4, Lemma 1] proved that

ab = 0 for all a ∈ Cf(x), b ∈ Cg(x) whenever f(x)g(x) = 0

where f(x), g(x) ∈ R[x]. Based on this result, Rege et al. [20] called a
ring (possibly without identity) Armendariz if it satisfies this property.
So reduced rings are clearly Armendariz. Armendariz rings are Abelian
by [11, Corollary 8] or the proof of [2, Theorem 6]. We use this fact
without referring.

Let R be an Armendariz ring. Then R/N∗(R) is an Armendariz
ring by [8, Theorem 1.4(2)]. Moreover N∗(R) = N∗(R) by [14, Lemma
2.3(5)], and so R/N∗(R) is also Armendariz. Thus both R/N∗(R) and
R/N∗(R) are Abelian. This result can be obtained also by the following
argument.

Let I be an ideal of a ring R. Following the literature, we say that
idempotents modulo I can be lifted (or I is idempotent-lifting) provided
that for every f ∈ R such that f 2 − f ∈ I there exists e2 = e ∈ R such
that e− f ∈ I. A nil ideal is an important example by [18, Proposition
3.6.1].
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Proposition 1.3. (1) Let R be an Abelian ring and N be an ideal
of R. If idempotents modulo N can be lifted, then R/N is an Abelian
ring.

(2) Let R be an Abelian ring. Then R/N is an Abelian ring for any
nil ideal N of R.

(3) Let R be an Armendariz ring. Then R/N is Abelian for any nil
ideal N of R; especially, R/N∗(R) and R/N∗(R) are both Abelian.

Proof. (1) Assume that idempotents modulo N can be lifted. Con-
sider next R̄ = R/N , and let f̄ be an idempotent in R̄. Then there
exists e2 = e ∈ R such that ē = f̄ because idempotents modulo N can
be lifted. But since e is central in R, we get that

f̄ r̄ = ēr̄ = er = re = r̄ē = r̄f̄

for all r ∈ R. Thus R̄ is an Abelian ring.
(2) Since idempotents modulo nil ideals can be lifted by [18, Propo-

sition 3.6.1], R/N is an Abelian ring by (1).
(3) is an immediate consequence of (2) because Armendariz rings are

Abelian, noting that the lower nilradical and upper nilradical are both
nil ideals.

Considering Proposition 1.3(3), it is natural to ask whether any factor
ring of an Armendariz ring is Abelian. However the answer is negative
by Example 1.2. In fact, A is a domain (hence Armendariz), but the
factor ring R = A/I is non-Abelian.

We recall next three kinds of well-known definitions. A ring R is
called semilocal if R/J(R) is semisimple Artinian, and a semilocal ring
R is called semiperfect if idempotents modulo J(R) can be lifted. A
ring R is called local if R/J(R) is a division ring. Local rings are clearly
semiperfect, and another important case of semiperfect rings is when the
Jacobson radical is nil by [18, Proposition 3.6.1]. Local rings are Abelian
obviously.

Remark 1.4. The factor rings of semiperfect rings modulo Jacobson
radicals need not be Abelian as can be seen by Matn(D) over a division
ring D when n ≥ 2. Let R be a semiperfect ring. If R is Abelian then
R/J(R) is Abelian by Proposition 1.3(1) because J(R) is idempotent-
lifting. Note that R/J(R) is an Abelian ring if and only if R/J(R) is a
finite direct product of division rings.
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Note that the Jacobson radicals of right Artinian rings are nilpotent
by [17, Theorem 2.4.12]. So the factor ring R/J(R) of an Abelian ring
R is Abelian by Proposition 1.3(2) when R is right Artinian. There
exist many right Artinian Abelian rings by help of by [10, Lemma 2].
In this note, we will study Abelian property of various kinds of factor
rings, concentrating on factorizing by nilradicals and Jacobson radicals,
motivated by the preceding results.

2. Abelian factor rings modulo nil and Jacobson radicals

In this section we study Abelian property of factor rings factorized
by lower nilradicals, upper nilradicals, and Jacobson radicals. Let R
be a ring. It is well-known that N∗(Matn(R)) = Matn(N∗(R)). So
the factor ring Matn(R)/N∗(Matn(R)) cannot be Abelian when n ≥ 2
because Matn(R)/N∗(Matn(R)) is isomorphic to Matn(R/N∗(R)). So
the following definition makes sense.

Definition 2.1. A ring R is called Abelian over lower nilradical (sim-
ply, Alnr) if R/N∗(R) is an Abelian ring.

Armendariz rings are Alnr by Proposition 1.3(3). Commutative rings
are clearly Alnr. Let R be a ring such that N∗(R) = N(R). Then
R/N∗(R) is a reduced (hence Abelian) ring, so R is Alnr. Thus one may
ask whether N∗(R) = N(R) if R is an Alnr ring. However the answer is
negative as can be seen by the following.

Example 2.2. We refer to the construction of [12, Example 1.2]. Let
S be a reduced ring and Mn = D2n(S) for all n ≥ 1. Define a map

σ : Mn → Mn+1 by B 7→
(
B 0
0 B

)
. Then Mn can be considered as a

subring of Mn+1 via σ (i.e., B = σ(B) for B ∈ Mn). Set R = ∪∞n=1Mn.
Then R is semiprime by [13, Theorem 2.2(2)]. But

N∗(R) = ∪∞n=1N2n(S) = N(R),

noting R/N∗(R) ∼= S. Thus N∗(R) = 0 ( N(R).
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Let E2 = E ∈ R. Then there exists k ≥ 1 such that

E =


f 0 0 · · · 0
0 f 0 · · · 0
0 0 f · · · 0
...

...
...

. . .
...

0 0 0 · · · f

 ∈ D2k(S)

with f 2 = f ∈ S, by [10, Lemma 2]. So E is central in R because f is
central in S, entailing that R is Abelian. This implies that R is Alnr
because R ∼= R/0 = R/N∗(R).

Let R be a ring. It is well-known that N∗(Matn(R)) = Matn(N∗(R)).
So the factor ring Matn(R)/N∗(Matn(R)) cannot be Abelian when n ≥
2 because Matn(R)/N∗(Matn(R)) is isomorphic to Matn(R/N∗(R)). So
the following definition makes sense.

Definition 2.3. A ring R will be called Abelian over upper nilradical
(simply, Aunr) if R/N∗(R) is an Abelian ring.

Armendariz rings are Aunr by Proposition 1.3(3). Let R be a ring
such that N∗(R) = N(R). Then R/N∗(R) is a reduced (hence Abelian)
ring, so R is Aunr. Thus it is natural to ask whether N∗(R) = N(R)
if R is an Aunr ring. However the answer is negative as can be seen by
the following.

Example 2.4. We apply the construction in [3, Example 4.8]. Let F
be a field and A = F 〈a, b〉 be the free algebra generated by noncommut-
ing indeterminates a, b over F . Consider next an ideal I of R generated
by a2, and set R = A/I. Then R is Armendariz by the argument
in [3, Example 4.8], so R is Aunr by Proposition 1.3(3). Let a, b coincide
with their images of a, b in R for simplicity. a2 = 0, but (ab)n 6= 0 for
all n ≥ 1. This implies a /∈ N∗(R) and N∗(R) ( N(R). So R/N∗(R) is
not reduced as can be seen by a+N∗(R) 6= 0 and (a+N∗(R))2 = 0.

Aunr rings need not be Alnr as the following shows.

Example 2.5. We also refer to the construction of [12, Example 1.2].
Let S be a reduced ring and Ln = U2n(S) for all n ≥ 1. Define a map

σ : Ln → Ln+1 by B 7→
(
B 0
0 B

)
. Then Ln can be considered as a
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subring of Ln+1 via σ (i.e., B = σ(B) for B ∈ Ln). Set R = ∪∞n=1Ln.
Then R is semiprime by [13, Theorem 2.2(1)]. But

N∗(R) = {B ∈ R | all the diagonal entries of B are zero} = N(R).

So R/N∗(R) is isomorphic to a subring of
∏∞

n=1 Sn, where Sn = S for
all n ≥ 1. Thus R/N∗(R) is a reduced ring, and so R is Aunr.

However R ∼= R/N∗(R) = R/0 is non-Abelian as can be seen by the
noncentral matrices Eii for all i ≥ 1, noting Eii is an idempotent. In
fact, EiiEi(i+1) = Ei(i+1) 6= 0 = Ei(i+1)Eii. Thus R is not Alnr.

We study next the structure of rings whose factor rings modulo Ja-
cobson radicals are Abelian rings. Let R be a ring. It is well-known that
J(Matn(R)) = Matn(J(R)). So the factor ring Matn(R)/J(Matn(R))
cannot be Abelian when n ≥ 2 because Matn(R)/J(Matn(R)) is iso-
morphic to Matn(R/J(R)). So the following definition makes sense.

Definition 2.6. A ring R will be called Abelian over Jacobson radical
(simply, Ajr) if R/J(R) is an Abelian ring.

Ajr rings need not be Alnr (Aunr) as the following shows. For a ring
R, R[[x]] denote the power series ring with an indeterminate x over R.

Example 2.7. (1) There exists an Ajr ring but not Alnr. Let S be
a semiprimitive domain (e.g., Z), and construct R by the method in
Example 2.5. Then R is semiprime by the argument. Note that

J(R) = {B ∈ R | all the diagonal entries of B are zero} = N(R).

So R/J(R) is isomorphic to a subring of
∏∞

n=1 Sn, where Sn = S for all
n ≥ 1. Thus R/J(R) is a semiprimitive domain, and so R is Ajr. But
R is not Alnr by the argument in Example 2.5.

(2) There exists an Ajr ring but neither Alnr nor Aunr. Let D be a
division ring and n ≥ 2. Consider a subring

R = {
∞∑
i=0

aix
i ∈Matn(D)[[x]] | a0 ∈ Un(D) and aj ∈Matn(D) for all j ≥ 1}

of Matn(D)[[x]]. Then

J(R) = Nn(D) + xMatn(D)[[x]],

entailing R/J(R) ∼=
∏n

k=1 Sk, where Sk = D for all k. So R is Ajr.
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Set E = Matn(D). We claim N∗(R) = 0. To see that, let 0 6= f(x) =∑∞
i=m aix

i ∈ N(R) with m ≥ 0 and am 6= 0. Then am ∈ N(Matn(D)).
Compute J = Rf(x)R. Then J contains power series

{bm+2x
m+2 + bm+3x

m+3 + · · · | bm+2 ∈ EamE},
where bm+2x

m+2 + bm+3x
m+3 + · · · is obtained from (Ex)f(x)(Ex). But

EamE = E, so J contains non-nilpotent power series (e.g., xm+2 + · · · ).
This implies f(x) /∈ N∗(R). Thus N∗(R) = 0 = N∗(R) because the
nonzero nilpotent f(x) is taken arbitrarily. Consider next the idempo-
tent E11 in R. Then E11(E12x) = E12x 6= 0 = (E12x)E11, so R(∼= R/0 =
R/N∗(R) = R/N∗(R)) is non-Abelian. Therefore R is neither Alnr nor
Aunr.

Alnr (Aunr) rings need not be Ajr by the following.

Example 2.8. We apply the ring in [9, Example 3]. Let R0 be the
localization of Z at the prime ideal pZ, where p is an odd prime. We next
set R be the quaternions over R0. Then R is clearly a domain (hence
Abelian), and so R is both Alnr and Aunr because N∗(R) = N∗(R) =
N(R) = 0. But J(R) = pR, and R/J(R) is isomorphic to Mat2(Zp) by
the argument in [7, Exercise 2A]. Since Mat2(Zp) is not Abelian, R is
not Ajr.

Armendariz rings need not be Ajr by the ring R in Example 2.8,
noting that domains are clearly Armendariz.

A ring R is called (von Neumann) regular if for every a ∈ R there
exists b ∈ R such that aba = a, in [6]. Every regular ring R is clearly
semiprimitive because ab is a nonzero idempotent for all 0 6= a ∈ R. So
we have the following equivalence for regular rings.

Proposition 2.9. For a regular ring R the following conditions are
equivalent:

(1) R is Alnr;
(2) R is Aunr;
(3) R is Ajr;
(4) R is Abelian;
(5) R is reduced;
(6) R is Armendariz.

Proof. The proof follows [6, Theorem 3.2] and the fact that N∗(R) =
N∗(R) = J(R) = 0 for a regular ring R, reduced rings are Armendariz,
and Armendariz rings are Abelian.
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Following the literature, a ring R is called π-regular if for each a ∈ R
there exist a positive integer n = n(a), depending on a, and b ∈ R such
that an = anban. Regular rings are obviously π-regular, letting n(a) = 1
for all a. Let A be a division ring, then both Dn(A) and Un(A) are
π-regular by [5, Corollary 6]. They are clearly not regular when n ≥ 2
because

J(Dn(A)) = J(Un(A)) = N∗(Dn(A)) = N∗(Un(A)) = N(Dn(A))

= N(Un(A)) = Nn(A) 6= 0.

Considering Proposition 2.9, it is natural to ask whether an Ajr is
reduced if it is a π-regular ring. But the answer is negative by the
following.

Example 2.10. Let S be a division ring, and construct R by the
method in Example 2.5. Then R is Ajr by the argument in Example
2.7. But R is π-regular by [5, Corollary 6] because R = ∪∞i=1Ln, and R
is clearly not reduced.

It is easily checked that the Jacobson radicals of π-regular rings are
nil. In fact, assume on the contrary that there exists a ∈ J(R) with
a /∈ N(R). Then anban = an for some n ≥ 1 and b ∈ R. Since a /∈ N(R),
anb is a nonzero idempotent that is contained in J(R). This induces a
contradiction. So we get the following.

Proposition 2.11. Let R be a π-regular ring. Then R is Ajr if and
only if R is Aunr.

Proof. Recall that J(R) = N∗(R) for a π-regular ring R. So Ajr
coincides with Aunr.

Based on Proposition 2.11, one may conjecture that a π-regular ring is
Ajr if and only if it is Alnr. But the ring R = ∪∞i=1U2n(S) in Example 2.5
erases the possibility. R is π-regular by the argument in Example 2.10
when S is a division ring. R is Aunr (if and only if Ajr by Proposition
2.11), but R is not Alnr.

But if R/J(R) is a regular ring then we get the following equivalence.

Proposition 2.12. Let R be a ring such that R/J(R) is a regular
ring. Then the following conditions are equivalent:

(1) R is Ajr;
(2) R/J(R) is reduced.
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Proof. It suffices to show (1) implying (2). If R is Ajr then R/J(R)
is an Abelian ring. So R/J(R) is reduced by [6, Theorem 3.2].

Recall that Aunr rings need not be Alnr. But, in fact, we do not know
any example of an Alnr ring that is not Aunr.

Question. Are Alur rings Aunr?

3. Polynomial rings concerning Alnr, Aunr, and Ajr

In this section we study the structure of polynomial rings concerning
Alnr, Aunr, and Ajr rings. We observe first the equivalence of R being
Alnr and R[x] being Alnr.

Theorem 3.1. A ring R is Alnr if and only if so is R[x].

Proof. For any ring R, we have N∗(R[x]) = N∗(R)[x] by [1, Theorem
3]. Let R be an Alnr ring. Then R/N∗(R) is an Abelian ring. So R

N∗(R)
[x]

is also an Abelian ring by [15, Lemma 8(1)]. But R
N∗(R)

[x] is isomorphic

to R[x]
N∗(R)[x]

, and recall N∗(R[x]) = N∗(R)[x]. Thus we have that

R[x]

N∗(R[x])
=

R[x]

N∗(R)[x]
is Abelian,

proving that R[x] is Alnr.
Conversely suppose that R[x] is Alnr. Then R[x]/N∗(R[x]) is an

Abelian ring. So, both R[x]/N∗(R)[x] and (R/N∗(R))[x] are Abelian
by the argument above. This implies that R/N∗(R) is Abelian because
the class of Abelian rings is closed under subrings. Thus R is Alnr.

Corollary 3.2. If R is an Abelian ring then R[x] is an Alnr ring.

Proof. Let R be an Abelian ring. Then R is Alnr by Proposition
1.3(2), so we obtain the corollary by Theorem 3.1.

Recall that a ring is called right Goldie if it has no infinite direct sum of
right ideals and has the ascending chain condition on right annihilators.

Proposition 3.3. For a right Goldie ring R the following conditions
are equivalent:

(1) R[x] is an Alnr ring;
(2) R[x] is an Aunr ring;
(3) R[x] is an Ajr ring.
(4) R is an Alnr ring.
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Proof. Note first that J(R[x]) = N [x] for some nil ideal N of R by [1,
Theorem 1]. Since R is right Goldie, N is nilpotent by [19], entailing
that N [x] is also nilpotent. So N [x] ⊆ N∗(R[x]), and this yields

J(R[x]) = N [x] = N∗(R[x]) = N∗(R[x]).

Therefore the proof is complete by help of Theorem 3.1.

If given rings are Armendariz then we get more results as the following
shows.

Proposition 3.4. If R is an Armendariz ring then we have the fol-
lowing results:

(1) R is an Alnr ring;
(2) R is an Aunr ring;
(3) R[x] is an Alnr ring;
(4) R[x] is an Aunr ring;
(5) R[x] is an Ajr ring.

Proof. Let R be an Armendariz ring. Then R is both Alnr and Aunr
by Proposition 1.3(3). So R[x] is Alnr by Theorem 3.1. Moreover we
have

J(R[x]) = N∗(R[x]) = N∗(R[x]) = N∗(R)[x] = N∗(R)[x]

by [16, Theorem 1.3] because R is Armendariz. This yields

R[x]/J(R[x]) = R[x]/N∗(R[x]) = R[x]/N∗(R[x]),

completing the proof because R[x]/N∗(R[x]) is an Abelian ring.

The fact “if R is an Armendariz ring then R[x] is an Ajr ring” in
Proposition 3.4 can be shown also by the following.

Proposition 3.5. If R is an Abelian ring then R[x] is an Ajr ring.

Proof. Let R be an Abelian ring. Note that J(R[x]) = N [x] for some
nil ideal N of R by [1, Theorem 1]. So we have

R[x]/J(R[x]) = R[x]/N [x] ∼= (R/N)[x].

But R/N is Abelian by Proposition 1.3(2), and so (R/N)[x] is Abelian
by [15, Lemma 8(1)]. This implies that R[x] is Ajr.
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The converse of Proposition 3.5 need not hold as the following shows.
Let K be a field and R = Un(K) (n ≥ 2). Consider R[x] and note
R[x] ∼= Un(K[x]). Since

J(Un(K[x])) = {(aij) ∈ Un(K[x]) | aii = 0 for all i},
we have that R[x]/J(R[x]) is isomorphic to the n-copies of K[x], through
Un(K[x])/J(Un(K[x])). R[x]/J(R[x]) is a reduced ring. So R[x] is Ajr,
however R is non-Abelian.

In Proposition 3.4, one may ask whether R being an Ajr ring. But the
answer is negative by the ring R in Example 2.8. In fact, R is a domain
(hence Armendariz), but it is not Ajr in spite of R[x] being a domain
(hence Ajr). However we have an affirmative situation in relation to
power series rings, comparing this with Theorem 3.1.

Proposition 3.6. A ring R is Ajr if and only if so is R[[x]].

Proof. Note that J(R[[x]]) = J(R)+xR[[x]] for any ring R, so R/J(R)
∼= R[[x]]/J(R[[x]]). This fact completes the proof.
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