CONTINUED FRACTIONS AND THE DENSITY OF GRAPHS OF SOME FUNCTIONS

Hi-joon Chae ${ }^{\dagger}$, Byungheup Jun ${ }^{\ddagger}$, and Jungyun Lee ${ }^{\perp}$
Abstract. We consider some simple periodic functions on the field of rational numbers with values in \mathbb{Q} / \mathbb{Z} which are defined in terms of lowest-term-expression of rational numbers. We prove the density of graphs of these functions by constructing explicitly points on the graphs close to a given point using continued fractions.

1. Introduction

Consider the following functions ψ_{e} for $e \in \mathbb{Z}$ of period 1 defined on \mathbb{Q} with values in \mathbb{Q} / \mathbb{Z} : for relatively prime positive integers p, q,

$$
\begin{equation*}
\psi_{e}: \frac{p}{q} \mapsto \frac{p^{e}}{q} \quad \bmod \mathbb{Z} \tag{1}
\end{equation*}
$$

where p^{-1} denotes an inverse of p modulo q when $e<0$. We will often identify \mathbb{R} / \mathbb{Z} with $[0,1)$, a set of representatives. And we have $\psi_{e}(p / q)=$ $\left\langle p^{e} / q\right\rangle$ where $\langle x\rangle=x-[x]$ denotes the fractional part of x. The goal of this paper is to show that the graphs of these functions for $e=$ $3,2,-1,-2$ are dense in $[0,1)^{2}$ by constructing explicitly points on the graph arbitrarily close to a given point.

[^0]The motivation for us to consider such problems comes from our study of Dedekind sums. The properties of the classical Dedekind sums

$$
s(p, q)=\sum_{k=1}^{q}\left(\left(\left(\frac{k}{q}\right)\right)\left(\left(\frac{p k}{q}\right)\right)\right.
$$

are well-documented in [5]. Here $((x))=\langle x\rangle-1 / 2$ if x is not an integer and $((x))=0$ if x is an integer. Using the reciprocity theorem for these sums

$$
s(p, q)+s(q, p)=-\frac{1}{4}+\frac{1}{12}\left(\frac{p}{q}+\frac{1}{p q}+\frac{q}{p}\right),
$$

Hickerson obtained an explicit formula for $s(p, q)$ in terms of continued fraction expansion of p / q and proved the density ${ }^{1}$ in \mathbb{R}^{2} of the graph of $p / q \mapsto s(p, q)$ in [4].

In [1] (and references therein), it is defined and proved some properties of generalized Dedekind sums of higher dimension. In particular, it is proved that these sums are equidistributed in \mathbb{R} / \mathbb{Z}. The equidistribution of sequences in \mathbb{R} / \mathbb{Z} (or in higher dimensional tori) is a basic ingredient in the recent development of additive number theory in conjugation with ergodic theory and combinatorics [6]. The graph of Dedekind sums would be an interesting sequence in a torus. The equidistribution of the graph is certainly stronger than the equidistribution of Dedekind sums.

The equidistribution result of [1], proved by estimating exponential sums, is quite general and can be applied to prove the equidistribution, hence the density of the graph of these sums in a suitable product of \mathbb{R} / \mathbb{Z}.

In [2], an explicit formula for 2-dimensional Dedekind sums of higher degree is obtained. This may be seen as a generalization of the above mentioned formula in [4]. But it seems to be difficult to prove the density of the graph in \mathbb{R}^{2}.

This paper is our first attempt to extend the constructive proof in [4] of the density in \mathbb{R}^{2} of the graph of the classical Dedekind sums to 2dimensional Dedekind sums of higher degree, whose fractional parts are linear combinations of the above functions ψ_{e} for $e \in \mathbb{Z}$ with explicitly calculated coefficients [1].

[^1]
2. Continued fractions

We review quickly continued fractions. All the proofs and details can be found in any standard text on number theory. The (possibly infinite) continued fraction

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

will be denoted by $\left\langle a_{0} ; a_{1}, a_{2}, a_{3}, \cdots\right\rangle$. Unless otherwise stated, $a_{0}, a_{1}, a_{2}, \cdots$ are integers with a_{1}, a_{2}, \cdots positive. The k-th convergent $C_{k}=p_{k} / q_{k}:=$ $\left\langle a_{0} ; a_{1}, \cdots, a_{k}\right\rangle$ of the above continued fraction is given by sequences $\left\{p_{k}\right\}$ and $\left\{q_{k}\right\}$ given recursively: $p_{0}=a_{0}, p_{1}=a_{0} a_{1}+1, q_{0}=1, q_{1}=a_{1}$ and

$$
p_{k}=a_{k} p_{k-1}+p_{k-2}, \quad q_{k}=a_{k} q_{k-1}+q_{k-2} .
$$

The sequence of convergents $\left\{C_{k}\right\}$ converges, whose limit will be represented by the continued fraction. Conversely, any real number can be expanded as a continued fraction. With the above notations, we have the following.

Proposition 2.1. (i) For each positive integer k, p_{k} and q_{k} are relatively prime. More precisely, we have: $p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k-1}$.
(ii) We have $q_{k} \geq f_{k}$ where $\left\{f_{k}\right\}$ is the Fibonacci sequence.
(iii) We have $q_{k-1} / q_{k}=\left\langle 0 ; a_{k}, a_{k-1}, \cdots, a_{2}, a_{1}\right\rangle$.
(iv) Let $\alpha>0$ and let $p=\alpha p_{k}+p_{k-1}, q=\alpha q_{k}+q_{k-1}$ (for a fixed k). Then

$$
\frac{p}{q}=\left\langle a_{0} ; a_{1}, \cdots, a_{k}, \alpha\right\rangle \quad \text { and } \quad \frac{p}{q}-\frac{p_{k}}{q_{k}}=\frac{(-1)^{k}}{\left(\alpha q_{k}+q_{k-1}\right) q_{k}} .
$$

3. Density of graphs

In this section we prove our main result: the graph of ψ_{e} is dense in $[0,1)^{2}$ for $e=3,2,-1,-2$. To prove the case of $e=3$, we need the following result on the distribution of quadratic (non) residues modulo a large prime in [3].

Proposition 3.1. Let H_{+}and H_{-}be the maximum numbers of consecutive quadratic residues and non-residues modulo a prime p, respectively. Then we have

$$
H_{+}=O(\sqrt{p}), \quad H_{-}=O(\sqrt{p}) .
$$

More precisely, it follows from a formula on character sums [3, Lemma 1] that $h^{3} \leq p h-h^{2}$ where $h=\left[H_{ \pm} / 2\right]$. Hence the implied constants in the above proposition can be any number greater than 2 . We also need the following simple lemma.

Lemma 3.2. Let $a, b, c, d \in \mathbb{Z}$ be with $a d-b c= \pm 1$ and let m, n be relatively prime integers. Then m^{\prime}, n^{\prime} given below are relatively prime.

$$
\binom{m^{\prime}}{n^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{m}{n} .
$$

Proof. Suppose not. Modulo the greatest common divisor of m^{\prime} and n^{\prime}, the matrix in the right side is invertible.

Theorem 3.3. Let $e=3,2,-1$ or -2 . The part of the graph of ψ_{e} is dense in $[0,1)^{2}$. More precisely, for any $(x, y) \in[0,1)^{2}$ and $\epsilon>0$, there exists a rational number p / q such that $\left\|\left(p / q, \psi_{e}(p / q)\right)-(x, y)\right\|<\epsilon$.

Proof. We may assume both x and y are irrational. Let $\left\langle 0 ; a_{1}, a_{2}, \cdots\right\rangle$ and $\left\langle 0 ; b_{1}, b_{2}, \cdots\right\rangle$ be the expansions of x and y as infinite continued fractions, respectively. Their convergents will be denoted by $C_{j}=p_{j} / q_{j}$ and $C_{j}^{\prime}=p_{j}^{\prime} / q_{j}^{\prime}(j=0,1, \cdots)$, respectively.

Given $0<\epsilon<1$, choose $k \in \mathbb{Z}$ large enough so that $\left|C_{k}-x\right|<\epsilon$ and $q_{k}>1 / \epsilon$. (Of course, the second condition implies $\left|C_{k}-x\right|<\epsilon^{2}$ by the well-known property of continued fractions.) We may suppose k is sufficiently large that the similar conditions are also satisfied for convergents of the continued fraction of y.
$(\mathbf{e}=\mathbf{2})$ Let $\alpha>0$, which we will take as a variable, and let $p=\alpha p_{k}+$ $p_{k-1}, q=\alpha q_{k}+q_{k-1}$ so that $p / q=\left\langle 0 ; a_{1}, a_{2}, \cdots, a_{k}, \alpha\right\rangle$. Then we have by Proposition 2.1 (iv) as $\alpha \rightarrow \infty$

$$
\begin{equation*}
\frac{p^{2}}{q} \approx \frac{p_{k}^{2}}{q_{k}} \alpha+\frac{p_{k} p_{k-1}}{q_{k}}+(-1)^{k} \frac{p_{k}}{q_{k}^{2}}, \tag{2}
\end{equation*}
$$

which means that the difference of both sides tends to zero as α tends to the infinity. As a function of $\alpha \in \mathbb{Z}$ (actually a function of $\alpha \in \mathbb{Z} / q_{k} \mathbb{Z}$) with values in \mathbb{R} / \mathbb{Z}, the right side of (2) takes q_{k} distinct values since p_{k} is relatively prime to q_{k}. Since these values (in \mathbb{R} / \mathbb{Z}) are evenly spaced,
one of these values corresponding to, say, α_{0} is within the distance of $1 / q_{k}$ from y. Choose $\alpha \in \mathbb{Z}$ with $\alpha \equiv \alpha_{0} \bmod q_{k}$ which is sufficiently large that the difference of two sides of (2) is less than ϵ. Then we have
$\left\|\left(\frac{p}{q}, \psi_{2}\left(\frac{p}{q}\right)\right)-(x, y)\right\| \leq\left|\frac{p}{q}-\frac{p_{k}}{q_{k}}\right|+\left|\frac{p_{k}}{q_{k}}-x\right|+\left|\left(\left(\frac{p^{2}}{q}\right)\right)-R\right|+|R-y| \leq 4 \epsilon$,
where R denote the right side of (2) modulo \mathbb{Z}. This completes the proof for $e=2$.
$(\mathbf{e}=\mathbf{3})$ By Dirichlet's theorem on primes in an arithmetic progression, there exists a (sufficiently large) positive integer a such that the denominator $s=a q_{k}+q_{k-1}$ of $r / s=\left\langle 0 ; a_{1}, \cdots, a_{k}, a\right\rangle$ is a prime. We may suppose that $s>1 / \epsilon^{2}$ and the maximum number of consecutive quadratic residues (and non-residues, respectively) modulo s is less than $3 \sqrt{s}$ by Proposition 3.1. Let $r^{\prime} / s^{\prime}=p_{k} / q_{k}=\left\langle 0 ; a_{1}, \cdots, a_{k}\right\rangle$ and let $p=\alpha r+r^{\prime}, q=\alpha s+s^{\prime}$ so that $p / q=\left\langle 0 ; a_{1}, \cdots, a_{k}, a, \alpha\right\rangle$ where α is a positive integer which we will take as a variable as in the last paragraph. Then we have as $\alpha \rightarrow \infty$ with other choices fixed

$$
\begin{equation*}
\frac{p^{3}}{q} \approx \frac{r^{3}}{s} \alpha^{2}+\frac{2 r^{2} r^{\prime}}{s} \alpha+D+(-1)^{k+1} \frac{r^{2}}{s^{2}} \alpha \tag{3}
\end{equation*}
$$

where D is a rational number independent of α.
As in the proof for $e=2$, consider the right side of (3) modulo \mathbb{Z} as a function of $\alpha \in \mathbb{Z} / s^{2} \mathbb{Z}$. We claim that there exists $\alpha_{1} \in \mathbb{Z} / s^{2} \mathbb{Z}$ such that the value at α_{1} is within the distance of 4ϵ from y in \mathbb{R} / \mathbb{Z} (or in $[0,1)$, to be more precise). Once this is proven, we can see as in the proof for $e=2$ that for sufficiently large $\alpha \in \mathbb{Z}$ with $\alpha \equiv \alpha_{1} \bmod s^{2}$, $\left\|\left(p / q, \psi_{3}(p / q)\right)-(x, y)\right\|<7 \epsilon$.

It remains to prove the claim. First, consider the first three terms of the right side of (3) modulo \mathbb{Z} as a function of $\alpha \in \mathbb{Z} / s \mathbb{Z}$. In this case, the set of values of this function is not evenly spaced by $1 / s$ in \mathbb{R} / \mathbb{Z}. But by completing the square in $r^{3} \alpha^{2}+2 r^{2} r^{\prime} \alpha$ modulo s and applying Proposition 3.1 (recall our choice of s above), we can see that there exists α_{0} such that the value at α_{0} is within the distance of $3 / \sqrt{s}$ from y in \mathbb{R} / \mathbb{Z}. Fix α_{0} and let $\alpha=\alpha_{0}+s \alpha^{\prime}$ in (3). By varying $\alpha^{\prime} \in \mathbb{Z} / s \mathbb{Z}$, the last term of (3) can be made smaller than $1 / s$ in \mathbb{R} / \mathbb{Z} (in $[0,1$), to be more precise). Suppose the minimum of the value is obtained at $\alpha^{\prime}=\alpha_{0}^{\prime}$. Then we can take $\alpha_{1}=\alpha_{0}+s \alpha_{0}^{\prime}$. This completes the proof of the theorem for $e=3$.
$(\mathbf{e}=-\mathbf{1})$ Let β be a positive integer and let $r_{i} / s_{i}(i=1, \cdots, 2 k+1)$ be the convergents of the finite continued fraction

$$
\frac{p}{q}=\left\langle 0 ; a_{1}, a_{2}, \cdots, a_{k}, \beta, b_{k}, b_{k-1}, \cdots, b_{1}\right\rangle .
$$

By Proposition 2.1 (i) and (iii), $s_{2 k}$ is an inverse of $p=r_{2 k+1}$ modulo $q=s_{2 k+1}$ and $p^{-1} / q=s_{2 k} / q=\left\langle 0 ; b_{1}, b_{2}, \cdots, b_{k}, \beta, a_{k}, a_{k-1}, \cdots, a_{1}\right\rangle$. By the choice of k and Proposition 2.1 (iv) with $\left\langle\beta ; b_{k}, \cdots, b_{1}\right\rangle$ and $\left\langle\beta ; a_{k}, \cdots, a_{1}\right\rangle$ in place of α, respectively, we have (for any positive integer β) both $|p / q-x|$ and $\left|p^{-1} / q-y\right|$ are less than 2ϵ. This complete the proof for $e=-1$.
$(\mathbf{e}=-\mathbf{2})$ By Dirichlet's theorem on primes in an arithmetic progression, there exists a positive integer a such that the denominator $a q_{k}+q_{k-1}$ of $\left\langle 0 ; a_{1}, \cdots, a_{k}, a\right\rangle$ is a prime. There also exits a positive integer b such that the denominator of $\left\langle 0 ; b_{1}, \cdots, b_{k}, b\right\rangle$ is a prime distinct from $a q_{k}+q_{k-1}$.

Let β a positive integer and let

$$
\frac{p}{q}=\left\langle 0 ; a_{1}, a_{2}, \cdots, a_{k}, a, \beta, b, b_{k}, b_{k-1}, \cdots, b_{1}\right\rangle .
$$

Then as in the proof for $e=-1$, we have

$$
\frac{p^{-1}}{q}=\left\langle 0 ; b_{1}, \cdots, b_{k}, b, \beta, a, a_{k}, \cdots, a_{1}\right\rangle
$$

We will vary β with other components fixed. Let $m / n=\left\langle 0 ; a, a_{k}, \cdots, a_{1}\right\rangle$. By Proposition 2.1 (iii) we have $n=a q_{k}+q_{k-1}$, which is a prime by the choice of a. Let $r / s=\left\langle 0 ; b_{1}, \cdots, b_{k}, b\right\rangle$ and $r^{\prime} / s^{\prime}=p_{k}^{\prime} / q_{k}^{\prime}=$ $\left\langle 0 ; b_{1}, \cdots, b_{k}\right\rangle$. Recall b was chosen so that s is a prime distinct from n. We have

$$
\frac{p^{-1}}{q}=\left\langle 0 ; b_{1}, \cdots, b_{k}, b, \beta+\frac{m}{n}\right\rangle=\frac{(n \beta+m) r+n r^{\prime}}{(n \beta+m) s+n s^{\prime}} .
$$

The numerator and the denominator of the last quotient are relatively prime by Lemma 3.2. Hence,

$$
\frac{p^{-2}}{q}=\frac{\left((n \beta+m) r+n r^{\prime}\right)^{2}}{(n \beta+m) s+n s^{\prime}}
$$

As functions of $\beta \in \mathbb{Z}$ with values in \mathbb{R}, we have as $\beta \rightarrow \infty$

$$
\begin{equation*}
\frac{p^{-2}}{q} \approx \frac{n r^{2}}{s} \beta+\frac{r\left(m r+n r^{\prime}\right)}{s}+(-1)^{k+1} \frac{n r}{s^{2}} . \tag{4}
\end{equation*}
$$

Since $n r^{2}$ and s are relatively prime, we can argue as in the proof for $e=2$. There exists β_{0} such that the right side of (4) with $\beta=\beta_{0}$ is within the distance of $1 / s$ from y modulo \mathbb{Z}. Choose $\beta \in \mathbb{Z}$ with $\beta \equiv \beta_{0}$ $\bmod s$ which is sufficiently large that the difference of the two sides of (4) is less than ϵ. Then we have $\left\|\left(p / q,\left(\left(p^{-2} / q\right)\right)\right)-(x, y)\right\|<4 \epsilon$ as before. This completes the proof for $e=-2$.

4. Remarks and examples

We hope to extend the constructive proof of this paper to other values of e. For $e \geq 4$, it may be proved by similar arguments as for $e=3$ together with more precise estimate on the distribution of higher residues modulo a large prime.

In the following we give a simple example, in which we construct points on the graph of ψ_{2} approximating arbitrary points (x, y) on the line $x=(\sqrt{5}-1) / 2$ with $0 \leq y<1$. Recall that the Fibonacci sequence $\left\{f_{n}\right\}_{n=0,1,2, \ldots}$ is given by $f_{0}=0, f_{1}=1, f_{k}=f_{k-1}+f_{k-2}$.

Example 4.1. The k-th convergent of $\langle 0 ; 1,1,1, \cdots\rangle=(\sqrt{5}-1) / 2$ is f_{k} / f_{k+1}. The sequence $\psi_{2}\left(f_{k} / f_{k+1}\right)=f_{k}^{2} / f_{k+1} \bmod \mathbb{Z}$ of values of ψ_{2} converges to 0 .

The first assertion is clear. The second one follows from the formula $f_{k}^{2}-f_{k-1} f_{k+1}=(-1)^{k-1}$, which is a special case of Proposition 2.1 (i).

Example 4.2. For each positive integer n, let $\left\{x_{k}^{(n)}\right\}_{k=1,2, \ldots}$ be the sequence of rational numbers given by $x_{k}^{(n)}=\left\langle 0 ; 1, \cdots, 1, n f_{k}\right\rangle$ where the number of 1's is k. Then we have
$\lim _{k \rightarrow \infty} x_{k}^{(n)}=\frac{\sqrt{5}-1}{2}, \lim _{k \rightarrow \infty} \psi_{2}\left(x_{2 k}^{(n)}\right)=n \frac{1-\sqrt{5}}{2}, \lim _{k \rightarrow \infty} \psi_{2}\left(x_{2 k+1}^{(n)}\right)=n \frac{\sqrt{5}-1}{2}$
where the values of last two equations are taken in \mathbb{R} / \mathbb{Z} as usual. Recall that if γ is an irrational number, then the sequence $\{n \gamma\}_{n=1,2, \ldots}$ is equidistributed in \mathbb{R} / \mathbb{Z}. Hence we can choose n so that the limit of the sequence $\left\{\psi_{2}\left(x_{2 k}^{(n)}\right)\right\}$ is arbitrarily close to any given number in \mathbb{R} / \mathbb{Z}.

The first equation is clear from Proposition 2.1 (iv). As for the others, we have

$$
\begin{aligned}
\psi_{2}\left(x_{k}^{(n)}\right) & =\frac{\left(n f_{k}^{2}+f_{k-1}\right)^{2}}{n f_{k} f_{k+1}+f_{k}}=\frac{\left(f_{k-1}\left(n f_{k+1}+1\right)+(-1)^{k-1} n\right)^{2}}{f_{k}\left(n f_{k+1}+1\right)} \\
& =n \frac{f_{k-1}^{2} f_{k+1}}{f_{k}}+\frac{f_{k-1}^{2}}{f_{k}}+(-1)^{k-1} 2 n \frac{f_{k-1}}{f_{k}}+\frac{n^{2}}{f_{k}\left(n f_{k+1}+1\right)} \\
& =n f_{k-1} f_{k}+(-1)^{k} n \frac{f_{k-1}}{f_{k}}+\frac{f_{k-1}^{2}}{f_{k}}+(-1)^{k-1} 2 n \frac{f_{k-1}}{f_{k}}+\frac{n^{2}}{f_{k}\left(n f_{k+1}+1\right)}
\end{aligned}
$$

where we have used the identity $f_{k}^{2}-f_{k-1} f_{k+1}=(-1)^{k-1}$ twice. Taking the limit (in \mathbb{R} / \mathbb{Z}), we obtain the desired result.

References

[1] H. Chae, B. Jun and J. Lee, Equidistribution of higher dimensional generalized Dedekind sums and exponential sums, Submitted.
[2] J. Lee, B. Jun and H. Chae, Higher Hickerson formula, J. Number Theory 170 (2017), 191-210.
[3] H. Davenport and P. Erdös, The distribution of quadratic and higher residues, Publ. Math. Debrecen 2 (1952), 252-265.
[4] D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113-116.
[5] H. Rademacher and E. Grosswald, Dedekind sums, Carus Math. Monogr. 16, Math. Assoc. Amer., 1972.
[6] T. Tao, Higher order Fourier analysis, Graduate Studies in Mathematics 142, Amer. Math. Soc., 2012.

Hi-joon Chae
Department of Mathematics Education
Hongik University
Seoul 04066, Republic of Korea
E-mail: hchae@hongik.ac.kr
Byungheup Jun
Department of Mathematical Sciences
UNIST
Ulsan 44919, Republic of Korea
E-mail: bhjun@unist.ac.kr
Jungyun Lee
Department of Mathematics
Ewha Womans University
Seoul 03760, Republic of Korea
E-mail: lee9311@kias.re.kr

[^0]: Received January 17, 2017. Revised March 27, 2017. Accepted March 30, 2017.
 2010 Mathematics Subject Classification: 11B05, 11J70, 11J71.
 Key words and phrases: continued fractions, Dedekind sums.
 \dagger This work was supported by 2014 Hongik University Research Fund.
 \ddagger This work was supported by NRF-2015R1D1A1A09059083.
 \perp This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2009-0093827).
 (c) The Kangwon-Kyungki Mathematical Society, 2017.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

[^1]: ${ }^{1}$ In this paper, we have used the term density for denseness, i.e. something being dense. We apologize for any confusion caused by this choice of words.

