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L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE

CARTESIAN PRODUCT OF A PATH AND A CYCLE

Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song∗

Abstract. An L(3, 2, 1)-labeling for the graph G = (V,E) is an
assignment f of a label to each vertices of G such that |f(u)−f(v)| ≥
4 − k when dist(u, v) = k ≤ 3. The L(3, 2, 1)-labeling number,
denoted by λ3,2,1(G), for G is the smallest number N such that
there is an L(3, 2, 1)-labeling for G with span N .

In this paper, we compute the L(3, 2, 1)-labeling number λ3,2,1(G)
when G is a cylindrical grid, which is the cartesian product Pm�Cn

of the path and the cycle, when m ≥ 4 and n ≥ 138. Especially
when n is a multiple of 4, or m = 4 and n is a multiple of 6, then
we have λ3,2,1(G) = 11. Otherwise λ3,2,1(G) = 12.

1. Introduction

A channel assignment in the wireless network is an assignment of
channels to transmitters in the network. When we assign channels, there
may exist interference between the channels assigned to two closely lo-
cated transmitters. Therefore there should be proper differences between
two channels according to their distances. The goal of the channel as-
signment problem is to find an efficient channel assignment to minimize
the span of channels in order to avoid the existing interferences.
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Hale [10] and Griggs and Yeh [9] considered the channel assignment
problem on a distance two labeling problem for a graph in such a way
that the vertices of a graph represent the transmitters of the network
and two vertices are adjacent if the corresponding transmitters are very
closely located. Formally for two integers j, k, an L(j, k)-labeling prob-
lem of a graph G = (V,E) is an assignment f of nonnegative integers to
V such that |f(u)− f(v)| ≥ j if u, v are adjacent and |f(u)− f(v)| ≥ k
if u, v are of distance two. The minimum span over all L(j, k)-labelings
for a graph G is called the L(j, k)-number, λj,k(G), of G. For surveys of
λj,k(G), see [4, 5, 7, 9, 17].

The distance three labeling problem is a generalization of not only
the distance two labeling problem but also the distance three coloring
problem. For a graph G = (V,E), an L(k1, k2, k3)-labeling for the graph
G is an assignment f of a nonnegative integer to each vertices of G
such that |f(u) − f(v)| ≥ kl when dist(u, v) = k ≤ 3. There are some
results on the distance three labelings for graphs. Especially L(1, 1, 1)-
labeling problems and L(2, 1, 1)-labeling problems are computed when
G is a path, a cycle, a grid, a complete binary tree or a cube [1–3, 18].
One of the important problems on distance three labeling is to find
L(3, 2, 1)-labelings for classes of graph G [6, 8, 11–15]. The L(3, 2, 1)-
labeling number, denoted by λ3,2,1(G), for G is the smallest number
N such that there is an L(3, 2, 1)-labeling f : V → [0, N ]. Recently,
Shao and Vesel determine λ3,2,1−number for toroidal grids and triangular
grids [16].

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian
product G = G1�G2 = (V,E) of G1 and G2 is the graph such that
V = V1×V2 and two vertices (u1, u2) and (v1, v2) are adjacent if u1 = v1
and {u2, v2} ∈ E2, or u2 = v2 and {u1, v1} ∈ E1. A cylindrical grid is
the cartesian product Pm�Cn of the path Pm and the cycle Cn. Figure
1 shows the cylindrical grid P4�C8.

In [8], Chia et.al found λ3,2,1(Pm�Pn) for m,n ≥ 2. They also found
the sufficient and necessary condition such that λ3,2,1(P2�Cn) has mini-
mum value 9. When m,n ≥ 3 the minimum of λ3,2,1(Pm�Cn) is 11 and
they provided a sufficient condition under which λ3,2,1(Pm�Cn) = 11. In
this paper we show that if m ≥ 4 and n ≥ 138, then λ3,2,1(Pm �Cn) ≤ 12.
Moreover, if 4 - n and 6 - n, then λ3,2,1(Pm�Cn) = 12. We also show
that if m ≥ 5 and 4 - n, then λ3,2,1(Pm�Cn) = 12.
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Figure 1. cylindrical grid graph P4�C8.

2. Some Lemmas and Main Theorem

Let G = Pm�Cn be the Cartesian product of a path Pm and a cycle
Cn.

Definition 1. Let u = (i0, j0) with 1 ≤ i0 ≤ n − 1, then the closed
neighborhood N [u] of u is the set {(i, j) ∈ v| dist{(i, j), (i0, j0)} ≤ 1}
and the open neighborhoodN(u) of u is the set {(i, j) ∈ v| dist{(i, j), (i0, j0)}
= 1}.

For an L(3, 2, 1)-labeling f of G = Pm�Cn = (V,E) with span 11, we
have the following L(3, 2, 1)-labeling with span 11.

f1 : V → [0, 11], f1(i, j) = 11− f(i, j),

f2 : V → [0, 11], f2(i, j) = f(i,−j),

f3 : V → [0, 11], f3(i, j) = f(m− i− 1, j),

f4 : V → [0, 11], f4(i, j) = f(i, j′), with j′ ≡ j + k (mod n).

Note that f1, f2, f3 and f4 are inversion of labels, displacement by bilat-
eral symmetry, reversing the top and bottom, and horizontal translation
by k, respectively. We say that these labelings are equivalent to f .

Proposition 1. λ3,2,1(P3�P6) ≥ 11.

Proof. Suppose there is an L(3, 2, 1)-labeling f : V → [0, 10] for G
with span at most 10. Also suppose that 1 ≤ f(1, j), f(1, j + 1) ≤ 9 for
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some j = 1, 2, 3, 4. We may assume that f(1, j) < f(1, j + 1). Consider
A = N [(1, j)]∪N [(1, j+1)]. Since each two elements of A are of distance
at most three, |f(A)| = 8. Since each vertex v ∈ A different from both
(1, j) and (1, j + 1) is of distance at most two from both (1, j) and
(1, j + 1), we have |f(v) − f(1, j)| ≥ 2 and |f(v) − f(1, j + 1)| ≥ 2.
Thus f(v) 6= f(1, j) ± 1 and f(v) 6= f(1, j + 1) ± 1 for all v ∈ A with
v 6= (1, j), (1, j + 1). Since |f(1, j)− f(1, j + 1)| ≥ 3, we have

0 ≤ f(1, j)− 1 < f(1, j) + 1 < f(1, j + 1)− 1 < f(1, j + 1) + 1 ≤ 10.

Hence

11 = |[0, 10]| ≥ |f(A) ∪ {f(1, j)± 1, f(1, j + 1)± 1}| = |f(A)|+ 4 = 12.

This is a contradiction. Thus {f(1, j), f(1, j + 1)} contains 0 or 10 for
all j = 1, 2, 3, 4.
We may assume that f(1, 1) < f(1, 2). Then f(1, 1) = 0 or f(1, 2) = 10.
If f(1, 1) = 0 and f(1, 2) = 10, then since f is an L(3, 2, 1)-labeling, 1 ≤
f(1, 3) < f(1, 4) ≤ 9. This is a contradiction. Thus if f(1, 1) = 0, then
1 ≤ f(1, 2) ≤ 9. If f(1, 3) 6= 10, then 1 ≤ f(1, 2) < f(1, 3) ≤ 9. This
is a contradiction. Thus f(1, 3) = 10. Consider the open neighborhood
N(1, 2) of the vertex (1, 2). Let f(N(1, 2)) = {a1, a2, a3, a4} with a1 <
a2 < a3 < a4. Since each two elements of N(1, 2) are of distance two,
ai+1 − ai ≥ 2 for all i = 1, 2, 3. For all v ∈ N(1, 2), since v is of
distance one or three from (1, 1), f(v) 6= 0 = f(1, 1). As a result,
1 ≤ a1 < a2 < a3 < a4 ≤ 7. Thus a1 = 1, a2 = 3, a3 = 5 and
a4 = 7. Since 3 ≤ f(1, 2) ≤ 7, f(1, 2) is 3, 5 or 7. If f(1, 2) = 3, then
from the constraints {f(0, 2), f(2, 2)} = {6, 8}. We may assume that
f(0, 2) = 6 and f(2, 2) = 8. Since f(0, 3) satisfies |f(0, 3) − f(0, 2)| =
|f(0, 3)−6| ≥ 3, |f(0, 3)−f(1, 3)| = |f(0, 3)−10| ≥ 3, |f(0, 3)−f(1, 2)| =
|f(0, 3)−3| ≥ 2 and f(0, 3) 6= f(1, 1) = 0, we have f(0, 3) = 1. Similarly
f(2, 3) = 5. Then there is no number that satisfies all constraints for
f(2, 1). This is a contradiction. If f(1, 2) = 5, then from the constraints
we have {f(0, 2), f(2, 2)} = {2, 8}. We may assume that f(0, 2) = 2 and
f(2, 2) = 8. Then we have f(0, 3) = 7. It follows that f(0, 1) = 9,
f(2, 1) = 3, f(2, 3) = 1, f(1, 4) = 3, f(0, 4) = 0, f(2, 4) = 6, f(1, 5) = 8
and f(0, 5) = 5. Then there is no number that satisfies all constraints for
f(2, 5). This is a contradiction. Similarly we can obtain a contradiction
for f(1, 2) = 7. If 1 ≤ f(1, 1) ≤ 9 and f(1, 2) = 10, then we have
f(1, 4) = 0. By the same method as above f(1, 3) is 3, 5 or 7. Also
we have a contradiction in each case by a similar way. Hence there is
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no L(3, 2, 1)-labeling for G with span at most 10 and thus λ3,2,1(G) ≥
11.

From Proposition 1, we have λ3,2,1(G) ≥ 11 when G = Pm�Pn for
m ≥ 3, n ≥ 6 or G = Pm�Cn for m,n ≥ 3. Proposition 1 was first
proved by Chia et.al [8] in a different way, They also obtained λ3,2,1(G)
for G = Pm�Cn when m ≥ 3 and 4|n.

Proposition 2. [8] If m,n ≥ 3 and n is a multiple of 4, then
λ3,2,1(Pm�Cn) = 11.

Proposition 3. If n is a multiple of 6, then λ3,2,1(P4�Cn) = 11.

Proof. Two patterns A and B in Table 1 are L(3, 2, 1)-labeling of
P4�C6 with span 11. Thus if n is the multiple of 6, then we can obtain
an L(3, 2, 1)-labeling of P4�Cn with span 11 by using one of the two
patterns in Table 1 several times.

3 8 5 10 1 6
0 11 2 7 4 9
7 4 9 0 11 2
10 1 6 3 8 5

3 10 5 8 1 6
0 7 2 11 4 9
11 4 9 0 7 2
8 1 6 3 10 5

A B

Table 1. Two patterns of L(3, 2, 1)−labelings for P4�C6 with span 11.

Proposition 4. If m ≥ 4 and n ≥ 138, then λ3,2,1(Pm�Cn) ≤ 12.

Proof. It is known that if relatively prime positive integers a, b are
given, then for all positive integer n larger than ab−a−b, the Frobenius
number of a and b, there are non-negative integers x and y such that
n = ax + by. Thus if n > 59, then n = 6x + 13y for some integers
x, y ≥ 0. It follows that if n is even and n ≥ 120, then n = 12x+ 26y for
some integers x, y ≥ 0. If n is odd and n ≥ 139, then since n−19 ≥ 120,
n = 12x + 19 · 1 + 26y for some integers x, y ≥ 0. As a consequence if
n ≥ 138, then n = 12x + 19y + 26z for some integers x, y, z ≥ 0. In
Table 2, a 4 × 12, a 4 × 19 and a 4 × 26 patterns of L(3, 2, 1)-labelings
for P4�Cn where n = 12, 19, 26, are given. In fact these patterns are
L(3, 2, 1)-labelings of C4 × Ck for k = 12, 19, 26 respectively. The span
s of these labelings are at most 12. Since the first two columns and last
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two columns of these three patterns are same, it is possible to expand
these patterns in arbitrary order to construct an L(3, 2, 1)-labeling of
C4 × Cl for some l. We obtain an L(3, 2, 1)-labeling of C4 × Cn by
repeatedly using the 4× 12 pattern x times, the 4× 19 pattern y times
and the 4 × 26 pattern z times. An L(3, 2, 1)-labeling of G = P4k × Cn

for 4k ≥ m is obtained by repeatedly using this labeling vertically and
an L(3, 2, 1)-labeling of G = Pm×Cn is thus obtained. As a consequence
λ3,2,1(G) ≤ 12.

Lemma 1. Suppose there is an L(3, 2, 1)-labeling of G = P4�Cn such
that the span of f is 11 and there are two adjacent vertices v and w of
G satisfying f(v) = 0 and f(w) = 11. Then n is a multiple of 6 and f
is equivalent to the labeling obtained by expanding one of two patterns
given in Table 1 horizontally.

0 5 10 3 8 1 6 11 4 9 2 7
3 8 1 6 11 4 9 2 7 0 5 10
6 11 4 9 2 7 0 5 10 3 8 1
9 2 7 0 5 10 3 8 1 6 11 4

4× 12 pattern

0 5 11 3 9 1 7 12 5 10 3 8 1 6 11 4 9 2 7
3 8 1 6 12 4 10 2 8 0 6 11 4 9 2 7 0 5 10
6 12 4 10 2 8 0 6 11 4 9 2 7 0 5 10 3 8 1
9 2 7 0 5 11 3 9 1 7 12 5 10 3 8 1 6 11 4

4× 19 pattern

0 5 11 3 9 1 7 12 5 10 3 8 1 6 12 4 10 2
3 8 1 6 12 4 10 2 8 0 6 11 4 9 2 7 0 5
6 12 4 10 2 8 0 6 11 4 9 2 7 0 5 11 3 9
9 2 7 0 5 11 3 9 1 7 12 5 10 3 8 1 6 12

8 0 6 11 3 9 2 7
11 3 9 1 7 12 5 10
1 7 12 5 10 2 8 1
4 10 2 8 0 6 11 4

4× 26 pattern

Table 2. Three patterns of L(3, 2, 1)−labelings with span 11 or 12.

Proof. By taking a labeling equivalent to f if necessary we may as-
sume that v = (i0, 0) such that i0 is 0 or 1. Also we may assume that
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w is (i0, 1) or (i0 + 1, 0). Let u = (i0 + 1, 1) and N [u] be the closed
neighborhood of u. If f(N [u]) = {a1, a2, · · · , a5} with ai < ai+1 for all
i ∈ [0, 4], since every vertex in N [u] is of distance at most three from v,
1 ≤ a1 < a2 < · · · < a5 ≤ 11. Let ah = f(u). Then at+1 − at ≥ 3 if t is
h or h− 1 and otherwise at+1 − at ≥ 2. If h 6= 1, then since

10 = 11− 1 ≥ a5 − a1 =
4∑

t=1

(at+1 − at) ≥ 2 · 2 + 2 · 3 = 10,

we have a1 = 1, at+1 − at = 3 if t is h or h − 1 and at+1 − at = 2 if
t 6= h, h − 1. Thus f(N [u]) is one of {1, 4, 7, 9, 11}, {1, 3, 6, 9, 11} and
{1, 3, 5, 8, 11}. If h = 1, then a1 ≥ 2. Since

9 = 11− 2 ≥ a5 − a1 =
4∑

t=1

(at+1 − at) ≥ 3 · 2 + 3 = 9,

we have a1 = 2, a2 = 5, a3 = 7, a4 = 9 and a5 = 11. Assume w = (i0, 1).
Thus we have

(2.1)

 f(v) = f(i0, 0) = 0
f(w) = f(i0, 1) = 11
f(N [u]) = {2, 5, 7, 9, 11}.

For x ∈ {v}∪N [u], there are 18 cases which satisfying (2.1). We present
them as (1)-(18) in Table 3.

We prove that the only possible cases are the patterns in Table 1 by
a case by case consideration. We summarize the procedure of proof by
tables of f(i, j) for m0 ≤ i ≤ m1, n0 ≤ j ≤ n1 using some symbols
since it is very lengthy and complicated to state all the proof. In each
case we indicate the assumptions by numbers, and the numbers without
marks are consequences of the deductions from the distance conditions
and assumptions. We mark ∗ and # at the place where the label is not
uniquely determined from given assumptions. We use another tables to
consider each case for possible ∗ and #, where the labels determined on
previous tables are indicated by italic numbers. We use the notation
”
⊗

” at which it is impossible to find an adequate label satisfying dis-
tance conditions. It is indicated that i0 = 0 or i0 = 1 when it is needed.
The sequence of decisions are given below the corresponding tables.
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We also consider the case w0 = (i0 + 1, 0). In this case, we have

(2.2)

 f(v) = f(i0, 0) = 0
f(w) = f(i0 + 1, 0) = 11
f(N [u]) = {2, 5, 7, 9, 11}.

The possible cases for f(x), x ∈ {v} ∪ N [u] are transposes of (1)-(18).
The cases (1)-(18) of Table 3 are considered in (1-1)-(18-1) of the Ap-
pendix A respectively, and the transposes of (1)-(18) of Table 3 are
considered in (1-2)-(18-2) of the Appendix A respectively. The cases
(5-2), (7-2), (9-2), (10-2), (11-2), (12-2), (13-2), (18-2) are omitted since
they are simply transposes of the patterns already considered.

(1) (2) (3) (4) (5) (6)
0 11
7 4 1

9

0 11
7 4 9

1

0 11
9 4 1

7

0 11
9 4 7

1

0 11
3 6 1

9

0 11
3 6 9

1

(7) (8) (9) (10) (11) (12)
0 11
9 6 1

3

0 11
9 6 3

1

0 11
3 8 1

5

0 11
3 8 5

1

0 11
5 8 1

3

0 11
5 8 3

1

(13) (14) (15) (16) (17) (18)
0 11
5 2 7

9

0 11
5 2 9

7

0 11
7 2 5

9

0 11
7 2 9

5

0 11
9 2 5

7

0 11
9 2 7

5

Table 3. Cases in Lemma 1.

We explain the procedure of the proof in case (1-1) of the Appendix
A with i0 = 1 as an example. It is assumed that f(1, 0) = 0, f(1, 1) =
11, f(2, 0) = 7, f(2, 1) = 4, f(2, 2) = 1 and f(3, 1) = 9. Since

|f(2, 0)− f(3, 0)| = |7− f(3, 0)| ≥ 3,

|f(3, 1)− f(3, 0)| = |9− f(3, 0)| ≥ 3,

|f(1, 0)− f(3, 0)| = |0− f(3, 0)| ≥ 2

and
|f(2, 1)− f(3, 0)| = |4− f(3, 0)| ≥ 2,

we have f(3, 0) = 2. Similarly f(3, 2) = 6. As a consequence f(1, 2) =
8. Since f(2, 3) = 1, f(1, 3) = 8, f(3, 3) = 6 and f(1, 2) = 11, we
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have f(2, 4) = 10. Similarly f(3, 4) = 3, f(1, 4) = 5, f(0, 3) = 3 and
f(0, 2) = 6. Also we have f(0, 1) = 9, f(2, 0) = 10, f(3, 0) = 5 and
f(1, 0) = 3. Then there is no x such that 0 ≤ x ≤ 11 and |9 − x| ≥
3, |3− x| ≥ 3, |0− x| ≥ 2 and |6− x| ≥ 2. Thus there is no x such that
f(−1, 0) = x. This is a contradiction as indicated in the table (1-1) of
the Appendix A. The sequence of decision of this table is given below
the corresponding table. Other cases are similar. The result of these
lengthy consideration is that we have contradictions for all cases except
four cases. They are

(1-2) with i0 = 1, ∗ = 4,
(2-1) with i0 = 1, ∗ = 8,
(8-2) with i0 = 0,
(17-2) with i0 = 1, ∗ = 1,# = 2.

In (8-2) with i0 = 0, we obtain the same labels, indicated also bold
faced numbers, as in the case (8-2) with i0 = 1, in which case there
is a contradiction. Thus (8-2) with i0 = 0 has a contradiction. In the
other cases, we obtain the labels same to the labels f(x), x ∈ {v}∪N [u]
satisfying f(i, j) = f(3 − i, j + 3). They are also indicated by the bold
faced numbers. Let S = {f(x)|x ∈ {v} ∪ N [u]}. By the same method
we also have a copy of these labels satisfying f(i′, j′) = f(3 − i′, j′ + 3)
for all (i′, j′) ∈ S. As a consequence for all x ∈ {v} ∪ N [u], we have
f(i, j) = f(3− i, j + 3) = f(3− (3− i), j + 3 + 3) = f(i, j + 6). Thus we
have an L(3, 2, 1)-labeling of P4�C6. It is the pattern B of Table 1. By
the same method we have (3, 2, 1)-labelings from other two cases. From
(2-1) with i0 = 1, ∗ = 8, we have the pattern A in Table 1, and from
(17-2) with i0 = 1, ∗ = 7,# = 2, we have an L(3, 2, 1)-labeling of P4�C6

isomorphic to the pattern B in Table 1. Thus n is a multiple of 6 and
f is equivalent to a labeling obtained by expanding the patterns A or B
in Table 1 horizontally.

Lemma 2. Let m ≥ 5, f be an L(3, 2, 1)-labeling of Pm�Cn with
span 11 and f(v) = 0 and f(w) = 11, then v and w are not adjacent.

Proof. Suppose there is an L(3, 2, 1)-labeling f of Pm�Cn satisfying
the conditions in the statement of this lemma. From Lemma 1, n is
a multiple of 6 and the restriction of f to the subset V0 = {(i, j)|0 ≤
i ≤ 3, 0 ≤ j ≤ 5} of V is isomorphic to the pattern A or pattern B in
Table 1. We may assume that the restriction of f to V0 is the pattern
A, the pattern B or one of patterns obtained by reversing the top and
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bottom. Assume the restriction of f to the subset V0 is the pattern A.
Then, f(0, 0) = 3, f(0, 1) = 8, · · · ,f(3, 5) = 5. Since f is an L(3, 2, 1)-
labeling, we have f(4, 2) = 11 and f(4, 3) = 10, which is a contradiction.
Thus it is impossible to extend this patterns to V . We can prove that
it is also impossible to extend other patterns to V by a similar method.
This is a contradiction.

Lemma 3. Let m ≥ 3 and f be an L(3, 2, 1)-labeling of Pm�Cn with
span 11, then there are no adjacent vertices v and w such that f(v) = 0
and f(w) = 10.

Let f be an L(3, 2, 1)-labeling of Pm�Cn with span 11. Ifm ≥ 3, then
there are no adjacent vertices whose labels are 0 and 10 respectively.

Proof. We may assume m = 3. Let v and w be adjacent vertices in
V such that f(v) = 0 and f(w) = 10. Suppose that there is j such
that the vertex u = (1, j) ∈ V is adjacent to w and not adjacent to v.
Let N [u] = {u1, u2, u3, u4, u5} such that f(u1) ≤ f(u2) ≤ · · · ≤ f(u5).
If u1 = u, then since u and v are of distance two, f(u1) ≥ 2. Since
f(u2)− f(u1) ≥ 3 and f(ut+1)− f(ut) ≥ 2 for all t = 2, 3, 4, we have

8 = 10− 2 ≥ f(u5)− f(u1) =
4∑

t=1

(f(ut+1)− f(ut)) ≥ 3 + 2 · 3 = 9.

This is a contradiction. Thus u1 6= u. Since u1 and v are of distance 1
or 3, f(u1) ≥ 1. Since f(uh+1) − f(uh) ≥ 3 and f(uh) − f(uh−1) ≥ 3
where u = uh, we have

9 = 10− 1 ≥ f(u5)− f(u1) =
4∑

t=1

(f(ut+1)− f(ut)) ≥ 2 · 3 + 2 · 2 = 10.

This is a contradiction.
Suppose that there is no j such that a vertex u = (1, j) ∈ V is adjacent

to w and not adjacent to v. Then either v = (1, s) and w = (0, s) for
some s or v = (1, s) and w = (2, s) for some s. We may assume that
v = (1, 0) and w = (0, 0). Let x = (1, 1) and N [x] = {x1, x2, x3, x4, x5}
such that f(x1) ≤ f(x2) ≤ · · · ≤ f(x5). Since v ∈ N [x] and f(v) = 0,
we have x1 = v. We also have f(xt+1) − f(xt) ≥ 2 for all t = 1, 2, 3, 4
and f(xt+1)− f(xt) ≥ 3 when xt = x or xt+1 = x. If x5 = x, then

f(x5)− f(x1) =
4∑

t=1

(f(xt+1)− f(xt)) ≥ 3 + 2 · 3 = 9.
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But w and x are of distance two and |f(w) − f(x)| = |10 − f(x)| ≤ 1.
This is a contradiction. Thus x5 6= x. Since

f(x5)− f(x1) =
4∑

t=1

(f(xt+1)− f(xt)) ≥ 3 · 2 + 2 · 2 = 10

and f(x5) 6= f(w) = 10, we have f(x5) = 11. It follows that x5 and w
are of distance two, and thus x5 is (1, 2) or (2, 1). Hence f(1, 2) = 11
or f(2, 1) = 11. Let x′ = (1, n − 1). By a similar method, we have
f(1, n − 2) = 11 or f(2, n − 1) = 11. Since (2, 1) and (2, n − 1) are
of distance two, we have f(2, 1) 6= f(2, n − 1). Thus f(1, 2) = 11 or
f(1, n − 2) = 11. We may assume that f(1, 2) = 11. Let y = (1, 2). If
f(1, 3) = 1, then (1, 4) is adjacent to (1, 3) and not adjacent to (1, 2).

Let f̃ = 11− f. Then f̃ is an L(3, 2, 1)-labeling of Pm�Cn, f̃(1, 2) = 0,

f̃(1, 3) = 10, and there is a vertex (1, 4) that is adjacent to (1, 3) and not
adjacent to (1, 2). We have already a contradiction in this case. Thus
f(1, 4) 6= 1. If f(0, 2) = 1, then 4 ≤ f(0, 1) ≤ 7. If f(0, 1) = 4, then
f(1, 1) is 7 or 8. It follows that f(2, 1) = 2. Therefore f(0, 2) is 5 or 6.
Then there is no suitable label f(2, 2) of (2, 2) satisfying all constraints.
Similarly we have a contradiction when f(0, 1) is 5, 6 or 7 respectively.
We summarize these procedures in case 1 of Table 4. Basic assumptions
f(0, 0) = 0, f(1, 0) = 0, f(1, 2) = 11 and f(0, 2) = 1 are indicated by
bold faced letters. For numbers a and b, we use the notation a(b) when
the corresponding label to given vertex is a or b. As in Lemma 2,

⊗
means a contradiction, or means that there is no suitable label in this
vertex. If f(2, 2) = 1, then 3 ≤ f(1, 1) ≤ 8. We have a contradiction in
each case. These procedures are also summarized in case 2 of Table 4.
If f(0, 2) 6= 1 and f(12, 2) 6= 1, then the labels of four vertices adjacent
to y = (1, 2) are all at least 2. Thus the labels of these four vertices are
2, 4, 6 and 8. It follows that f(0, 1) 6= 2, 4, 6, 8 since (0, 1) is of distance
at most three from these vertices. Also f(2, 1) 6= 2, 4, 6, 8 by the same
reason. Since f(1, 0) = 0, f(1, 1) is 4, 6 or 8. If f(1, 1) = 8, then f(0, 1)
is 3 or 5. We have a contradiction in each case. These procedures are
summarized in case 3 of Table 4. As a consequence there is no L(3, 2, 1)-
labeling of Pm�Cn with span 11 when there are adjacent vertices whose
labels are 0 and 10 respectively.

By Lemma 3, we also have that if there is an L(3, 2, 1)-labeling f of
Pm�Cn such that m ≥ 3 and the span of f is at most 11, then there are
no adjacent vertices whose labels are 1 and 11 respectively.
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10 4 1
0 7(8) 11

5(6) 2
⊗ 10 5 1

0 8 11
6 2(3)

⊗ 10 6 1
0 3 11
5 8(9)

⊗ 10 7 1
0 3(4) 11

5(6) 9
⊗

(4,7(8),2,5(6)) (5,8,2(3),6)

Case1) When f(0, 2) = 1 and f(0, 1) is 4,5,6 or 7.

10 6(7)
⊗

0 3 11
8(9) 1

10 7
⊗

0 4 11
9 1

10 2 7 0

0 5 11 3 8
′
(9

′
)

8(9) 1 6
⊗

(3,6(7),8(9)) (4,7,9) (5,2,8(9),7,3,0,6,8
′
(9

′
)

10 2(3) 8 0
0 6 11 3(4) 9

9 1 7
⊗ 10

0 7 11⊗
4 1

10
0 8 11⊗

4(5) 1

(6,9,2(3),8,3(4),0,7,9) (7,4) (8,4(5))

Case2) When f(2, 2) = 1 and f(1, 1) is 3,4,5,6,7 or 8.

10 7
0 4 11⊗

9 6

10 3 8 0(1)

0 6 11 4
′

9
′

4 9 2 7
⊗ 10 3

0 8 11⊗
5

10 5
0 8 11
6 2(3)

⊗
(4,7,9) (6,3,9,4,2,8,4

′
,7,0(1),9

′
) (8,3,5) (8,5,2(3),6)

Case3) When f(0, 2), f(2, 2) ≥ 2 with f(1, 1) is 4,6 or 8.

Table 4. Labeling procedure when f(0, 0) = 10, f(1, 2) = 11 and f(1, 0) = 0.

Lemma 4. Let f be an L(3, 2, 1)-labeling of P3�Cm such that the
span of f is 11 and |f(x) − f(y)| ≤ 9 for each two adjacent vertices
x, y ∈ V . Then, we have

(2.3)

{
f(1, j)− f(1, j + 1) ≡ 3, 5, 7, 9 (mod 12), if 0 ≤ j ≤ m− 2
f(1,m− 1)− f(1, 0) ≡ 3, 5, 7, 9 (mod 12).

Proof. Let v = (1, j) and w = (1, j+1). Let f(N(v)) = {a1, a2, a3, a4}
such that a1 < a2 < a3 < a4. Since f is an L(3, 2, 1)-labeling, ai+1−ai ≥
2 for all i = 1, 2, 3. Thus a4−a1 ≥ 6 and if a4−a1 = 6, then ai+1 = ai+2
for all i = 1, 2, 3. If f(v) = 0, then from the assumption, we have
3 ≤ a1 < a2 < a3 < a4 ≤ 9. Thus a1 = 3, a2 = 5, a3 = 7 and
a4 = 9. Hence f(w) is 3, 5, 7 or 9. It follows that (2.3) holds for the case
f(v) = 0. If f(v) = 1, then since |f(v) − a4| ≤ 9, 4 ≤ a1 < a4 ≤ 10.
Since f(w) is 4, 6, 8 or 10, (2.3) holds for the cases f(v) = 1. Similarly
we can prove (2.3) holds when f(v) or f(w) is 0, 1, 2, 9, 10 or 11.
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If f(v) = 4, then 0 ≤ a1 ≤ 1 and 7 ≤ a2 < a3 < a4 ≤ 11. Thus
a2 = 7, a3 = 9 and a4 = 11. If f(w) = 0, then by this lemma for
f(w) = 0, f(v) is 3, 5, 7 or 9. This is a contradiction. Thus a1 = 1.
As a result, (2.3) holds for f(v) = 4. Similarly, (2.3) holds for f(v)
or f(w) is 4 or 7. Suppose f(v) = 3. If f(w) = 11, then it is already
verified that the labels of four vertices adjacent to w is 2, 4, 6 and 8.
This is a contradiction. Thus f(w) 6= 11. Similarly f(w) 6= 7, 9. Hence
f(w) is 0, 6, 8 or 10. As a consequence, the lemma is true for f(v) = 3.
Similarly (2.3) holds for f(v) = 8. If f(v) = 5, then 0 ≤ a1 < a2 ≤ 2
and 8 ≤ a4 < a4 ≤ 11. Thus a1 = 0, a2 = 2. it follows that f(w) 6= 1. If
f(w) = 11, then since v is adjacent to w, f(v) is 2, 4, 6 or 8. This is a
contradiction. Thus f(w) 6= 11. Similarly f(w) 6= 9. Thus f(w) is 0, 2, 8
or 11. Thus (2.3) holds for f(v) = 5, and thus also for f(v) = 6.

Lemma 5. Let G = P3�Cn. Suppose that there is an L(3, 2, 1)-
labeling f of G satisfying the following.

1) The span of f is 11.
2) f(1, j) = 0 for some j.
3) |f(v)− f(w)| ≤ 9 for each adjacent vertices v, w of G.

Then n is a multiple of 4.

Proof. We will summarize the procedure of the proof in a similar way
as in Lemma 1. We may assume that j = 0, or equivalently f(1, 0) =
0. Since |f(v) − f(1, 0)| = |f(v)| ≤ 9 for all v ∈ N(1, 0), we have
f(N(1, 0)) = {3, 5, 7, 9}. Thus it suffices to consider the six cases of
f(v) for v ∈ N [(1, 0)] given in Table 5.

(1) (2) (3) (4) (5) (6)
3

7 0 9
5

3
5 0 9

7

3
5 0 7

9

7
3 0 5

9

5
3 0 7

9

5
3 0 9

7

Table 5. Cases in Lemma 5.

In Table 6, these cases are considered. In each of (1), (2), (4), (5)
we have a contradiction. In cases (3) and (6), we have the identities
f(i, j) = f(i, j + 12) and f(i, j) = f(i, j + 4) respectively by achieving
the same condition boldfaced label as the assumptions. As a consequence
n is 4 or 12, and thus n is a multiple of 4.



292 Byeong Moon Kim, Woonjae Hwang, and Byung Chul Song

(1)
10 3 6
7 0 9
2 5

⊗

(2)

3 6
5 0 9

7 ∗

11 8 3 6
2 5 0 9⊗

10 7 2

3 6 11
5 0 9 2

7 4
⊗

∗ = 2 ∗ = 4

(3)
8 3 10 5 0 7 2 9 4 11 6 1 8 3
5 0 7 2 9 4 11 6 1 8 3 10 5 0 7
2 9 4 11 6 1 8 3 10 5 0 7 2 9

(4)
10 7 2
3 0 5
6 9

⊗

(5)

∗ 5
3 0 7
6 9

⊗
8 5

10 3 0 7
1 6 9

10 5 2
⊗

3 0 7 10
6 9 4 1

∗ = 8 ∗ = 10

(6)
8 5 2 11 8 5
3 0 9 6 3 0 9
10 7 4 1 10 7

Table 6. Labeling Procedure.

Lemma 6. Let G = (V,E) = P4�Cn. If there is an L(3, 2, 1)-labeling
f of G such that |f(v) − f(w)| ≤ 9 for all adjacent vertices v and w of
G, then n is a multiple of 4.

Proof. If f(1, j) = 0 or f(2, j) = 0 for some j = 0, 1, · · ·n−1, then by
Lemma 6, n is a multiple of 4. If f(1, j) = 11 or f(2, j) = 11 for some j,

then since the inversion f̂ = 11− f of f is also an L(3, 2, 1)-labeling and

|f̂(v)− f̂(w)| ≤ 9 for all adjacent vertices v and w of G, n is a multiple
of 4. We want to show that f(i, j) = 0 or f(i, j) = 11 for some (i, j) ∈ V
such that i = 1, 2. The proposition follows from this claim.
Since λ3,2,1(G) ≥ 11 = span(f), these is v ∈ V such that f(v) = f(i, j) =
0. If i = 1, 2, then our claim is already satisfied. By reversing the top and
bottom, the case i = 3 is reduced to the case i = 0. We may assume that
v = (0, 0). Since f is an L(3, 2, 1)-labeling, we have 3 ≤ f(1, 0) ≤ 9.
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If f(1, 0) is 4, 6 or 8, then f(w) = 11 for some vertex w adjacent to
(0, 1). Since w 6= v = (0, 0), w ∈ {(1,−1), (1, 1), (2, 0)}. Therefore our
claim is proved when f(1, 0) = 4, 6, 8, 10. The cases f(1, 0) = 3, 5, 7, 9
are considered in Table 7 by the same manner as in Lemma 1. We can
see that in any case there exist (i, j) ∈ V such that f(i, j) = 0, 11 and
i = 1, 2. Thus our claim is proved.

(1) (2) (2-1) (2-2)
5 0 7
8 3 10
11 6 1

9 0
6 3 10
∗ 8

9 0
11 6 3 10

1 8

0
6 3 10
11 8

∗ = 1 ∗ = 11
(3) (4) (5) (6)

9 0 5
6 3 8
1 10

⊗ 3 0 7
8 5 10
11 2

0
2 5 10
11 8

0 3
2 5 8 11

10 1

(7) (8) (8-1) (8-2)
9 0
4 7 10
11 2

0 ∗
2 7 10

4 1

0 3 8
2 7 10 5 0

4 1 2

0 5 8
2 7 10 3 0

4 1 6

∗ = 3 ∗ = 5
(9) (10) (11) (11-1)

5 0 9
2 7 4⊗

10

7 0
4 9 6
11 2

0 3
2 9 6

4 ∗

0 3
2 9 6 11

4 1

∗ = 1
(11-2) (12)

0 3
2 9 6

4 11

5 0 7
2 9 4
11 6

∗ = 11
Table 7. Labeling Procedure.

Proposition 5. If n is neither a multiple of 4 nor a multiple of 6,
then λ3,2,1(P4�Cn) ≥ 12.

Proof. Let f be an L(3, 2, 1)−labeling of G with span 11. If there are
adjacent vertices v and w of G such that |f(v) − f(w)| ≥ 10, then by
Lemmas 1 and 3, n is a multiple of 6. If each pair of adjacent vertices v
and w of G satisfies |f(v)−f(w)| ≤ 9, then by Lemma 6, n is a multiple
of 4.
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Proposition 6. If m ≥ 5 and 3 is not a multiple of 4, then we have
λ3,2,1(Pm�Cn) ≥ 12.

Proof. Let f be an L(3, 2, 1)−labeling ofG with span 11. Sincem ≥ s,
by Lemmas 2 and 3, there are no adjacent vertices v and w of such
that |f(v) − f(w)| ≥ 10. By Lemma 6, n is a multiple of 4. Hence
λ3,2,1(Pm�Cn) ≥ 12 for m ≥ 5 and n ≡ 0 (mod 4).

From Propositions 1 ∼ 6, we have the following theorem.

Theorem 1.

1. If m ≥ 3 and n is a multiple of 4, then λ3,2,1(Pm�Cn) = 11.
2. If n is a multiple of 6, then λ3,2,1(P4�Cn) = 11.
3. If n is neither a multiple of 4 nor a multiple of 6, then λ3,2,1(P4�Cm) ≥

12. The equality holds when n ≥ 138.
4. If m ≥ 5 and n is not a multiple of 4, then λ3,2,1(Pm�Cn) ≥ 12.

The equality holds when n ≥ 138.

Appendix A.

In each table of Appendix A, the numbers and symbols obey the fol-
lowing rules.

(1) The bold faced numbers are used to indicate the basic assumptions
(1)− (18) in Table 3.

(2) The italic numbers and symbols are used to indicate the labels
deduced from the previous assumptions. The sequences of decisions
are given below the corresponding tables. When a specific number a is
repeated in a sequence of decisions, we indicate that in the order of a,
a′ and a′′.

(3) If there are two choices of decision, a, b, c or a1, b1, c1, then we
use a(a1), b(b1), c(c1). When it becomes more complicated, we use ∗ and
# and then those cases are handled in the subsequent tables.

(1-1)

0 11 8⊗
7 4 1 10

11 ′ 2 9 6 3

5 0 11

⊗
9 6 ′ 3 ′

3 ′′ 0 11 8 5
10 ′ 7 4 1 10

5′ 2 9 6 3

(2, 6, 8, 10, 3, 11, 0, 5, 11′) (2, 6, 8, 10, 3, 5, 3′, 6′, 9, 10′, 5′, 3′′)
i0 = 0 i0 = 1
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(1-2)

0 7 2 5

11 4 9 0 ∗
8 1 6 11

10 3

0 7 2 5

11 4 9 0 3

8 1 6 11 8
10 3

⊗
0 7 2 5 10

11 4 9 0 7

8 1 6 11 #
10 3

(2, 6, 8, 10, 3, 11, 0, 5) (3, 8) (10)

i0 = 0 i0 = 0, ∗ = 3 i0 = 0, ∗ = 7

0 7 2 5 10 1 8 ′

11 4 9 0 7 4 11
⊗

8 1 6 11 2 9 6 1 ′

10 3 8 5 0 3

0 7 2 5 10
⊗

11 4 9 0 7 2
8 1 6 11 4 9

10 3 8 1

(8, 5, 9, 4, 1, 11, 0, 6, 8′, 3, 1′) (8, 1, 9, 2)

i0 = 0, ∗ = 7,# = 2 i0 = 0, ∗ = 7,# = 4

10 5 8

0 7 2 11 ∗
11 4 9 0

1 6

10 5 8

0 7 2 11 6
11 4 9 0 3

1 6
⊗

10 5 8 1

0 7 2 11 4 9
11 4 9 0 7

1 6 3 10

(2, 10, 5, 11, 6, 0, 8) (3) (7, 3, 10, 1, 9)

i0 = 1 i0 = 1, ∗ = 6 i0 = 1, ∗ = 4

(2-1)

0 11 2

7 4 9 0
10 1 6 3 (11 )

8 11 (3 )
⊗

∗
0 11 2
7 4 9

1 6

6
⊗

0 11 2
7 4 9

1 6

8 5 10 1

0 11 2 7 4 9
7 4 9 0 11

1 6

(10, 6, 8, 2, 0, 11(3), 3(11)) (6, 2) (5, 7, 0, 10, 4, 11, 1, 9)

i0 = 0 i0 = 1 i0 = 1, ∗ = 6 i0 = 1, ∗ = 8

(2-2)

0 7 10

11 4 1 8
2 9 6 11 (3 )

0 3 (11 )
⊗

2 5 0

0 7 10 3 6
′

11 4 1 8 11
9 6

⊗
(10, 6, 8, 2, 0, 11(3), 3(11)) (10, 2, 5, 3, 6, 8, 0, 6′, 11)

i0 = 0 i0 = 1

(3-1)

0 11 ∗
9 4 1

7 10

0 11 8 3
9 4 1 6

7 10
⊗

0 11 6 3
9 4 1 8

7 10 5⊗
3 ′ 0

9 0
0 11 6 3 10

9 4 1 8 5
7 10

⊗
(10) (6, 3) (8, 3, 5, 3′, 0) (8, 3, 9, 0, 10, 5)

∗ = 8 i0 = 0, ∗ = 6 i0 = 1, ∗ = 6

(3-2)

0 9
11 4 7
∗ 1 10

0 9
11 4 7
8 1 10
3 6

⊗
0 9

11 4 7
⊗

6 1 10 3 ′

3 8 5 0

6 11 8

0 9 2 5 10
′

11 4 7 0 3

1 10
⊗

(10) (6, 3) (8, 3, 5, 3′, 0) (2, 6, 11, 5, 10, 0, 8, 10′, 3)
i0 = 0 i0 = 0, ∗ = 8 i0 = 0, ∗ = 6 i0 = 1
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(4-1)

0 11 2

9 4 7 0

6 1 10 3 (5 )
8 5(3)

⊗
9 (5 )

⊗
0 11 2 5 (9 )

9 4 7 0
6 1 10

(2, 10, 0, 6, 8, 3(5), 5(3)) (6, 10, 2, 0, 5(9), 9(5))

i0 = 0 i0 = 1

(4-2)

0 9 6
11 4 1 8

2 7 10 5 (3 )

0 3 (5 )
⊗

2 11 0
0 9 6 3

⊗
11 4 1 8 11′

7 10 5

(2, 10, 0, 6, 8, 3(5), 5(3)) (6, 2, 11, 3, 10, 8, 0, 5, 11′)
i0 = 0 i0 = 1

(5-1)
0 11
3 6 1⊗

9

0 3
⊗

11 6 9
1

(6-1)

0 11
3 6 9
∗ 1

7 0 11
1 10 3 6 9⊗

5 8 1

⊗
0 11

8 3 6 9
5 10 1

(10, 5, 7, 1) (8, 5)
∗ = 8 ∗ = 10

(6-2)

0 3
11 6 1
2 9 4
∗ 0

9 0 3

1 4 11 6 1⊗
7 2 9 4

10 5 0

⊗
0 3

8 11 6 1
5 2 9 4
10 7 0

10(8) 5

0 3 8(10) 11(7)
11 6 1

⊗
9 4

(4, 2, 0) (7, 10, 4, 9, 1) (7, 2, 10, 8, 5, 3, 0) (4, 8(10), 10(8), 5, 11(7))
i0 = 0 i0 = 0, ∗ = 5 i0 = 0, ∗ = 7 i0 = 1

(7-1)
0 11
9 6 1⊗

3

0 9
⊗

11 6 3
1

(8-1)

5 0 11 8
11 ′ 2 9 6 3⊗

7 4 1 10

0 11 8 ′

∗ 10 ′ 7 4 ′ 1

8
′

5 ′ 0 11 8 5
2 9 6 3 0

4 1 10

(8, 10, 4, 8′, 11, 7, 2, 0, 5, 11′) (4, 8.10, 0, 5, 1, 4′, 7, 2, 5′, 10′, 8′)
i0 = 0 i0 = 1⊗

1 10 7 4 1

3 8 5 0 11 8 5
6 11 2 9 6 3 0

0 7 4 1 10

⊗
6 3 10 7 4 1

10 1 8 5 0 11 8 5
4 11 2 9 6 3 0

4 1 10

(11, 7, 0, 3, 6) (11, 1, 6, 4, 10)
i0 = 1, ∗ = 1 i0 = 1, ∗ = 3
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(8-2)

0 9

∗ 11 6 1
8 3

8 1 10⊗
11 4 7 0 9

1 ′ 6 9 2 11 6 1
3 0 5 8 3

(8) (5, 7, 9, 0, 4, 10, 1, 11, 6, 8, 3, 1′)
i0 = 1 i0 = 1, ∗ = 2

5 10 3
⊗

2 7 0 9
9 4 11 6 1

6 1 8 3

2 7 0 9

0′ 9 4 11 6 1
11 6 1 8 3 10

3 10 ′ 5 0

(1, 7, 9, 6, 2, 10, 5, 3) (8, 10, 0, 5, 1, 10′, 4, 7, 9, 6, 3, 11, 2, 0′)
i0 = 1, ∗ = 4 i0 = 0

(9-1)

0 11
3 8 1
10 5

⊗ 0 3 10
11 8 5

1
⊗

(10) (10)

(10-1)

(10-1) (10-2)

0 11

10 ′ 3 8 5⊗
6 1 10

0 3 6
11 8 1 4
2 5 10 7

0 3
⊗

10 ′ ⊗
0 3 6
11 8 1

5 10
(10, 6, 10′) (2, 10, 0, 6, 4, 7, 3) (10, 6, 10′)

i0 = 0 i0 = 1

(11-1)

(11-1) (11-2)

0 11 4

5 8 1 10 ′

10 3 6
⊗

0 5 10
11 8 3
4 1 6

10 ′ ⊗
2 7

0 5 10
⊗

11 8 3 0

1 6

(10, 6, 4, 10′) (10, 6, 4, 10′) (10, 2, 7, 6, 0)

i0 = 0 i0 = 1

(12-1)

0 11
⊗

5 8 3
10 1 6

0 5 10
11 8 1⊗

3 6
(10, 6) (10, 6)

(13-1)
0 11
5 2 7⊗

9

0 5
⊗

11 2 9
7
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(14-1)

3 0 11 6

8 5 2 9 0 ′

1 10 7 4 11
3 ′ 0

⊗
10 ′ 7 4 1 ′ ∗

6 3 0 11 6 ′ 3 ′

11 8 5 2 9
1 10 7

(10, 8, 3, 1, 3′, 0, 4, 6, 0′, 11) (10, 8, 3, 1, 11, 6, 10′, 7, 4, 6′, 1′, 3′)
i0 = 0 i0 = 1

10 7 4 1 8 5
⊗

6 3 0 11 6 3 10 1

11 8 5 2 9 0 7

1 10 7

10 7 4 1 10 5
6 3 0 11 6 3 8

11 8 5 2 9 0 11

1 10 7
⊗

5 ′

(0, 10, 5, 7) (0, 8, 5, 11, 5′)
i0 = 1, ∗ = 8 i0 = 1, ∗ = 10

(14-2)

0 5
11 2 7
∗ 9

0 5 10⊗
11 2 7

7 4 9 0

1 6

0 5
11 2 7
6 9 #

⊗
0 5 10

8 11 2 7
3 6 9 0

1 4

(0, 6, 1, 7) (4, 1, 3, 8)

i0 = 0 i0 = 0, ∗ = 4 i0 = 0, ∗ = 6 i0 = 0, ∗ = 6,# = 0

0 5 10
11 2 7

⊗
6 9 4 1

0 11

3 8
∗ 0 5 10

11 2 7

9

3 8
7 0 5 10

9 4 11 2 7⊗
1 6 9

(0, 11, 1, 10) (10, 8, 3) (4, 6, 1, 9)

i0 = 0, ∗ = 6,# = 4 i0 = 1 i0 = 1, ∗ = 7

8 11 6 3 8
10 ′ 5 2 9 0 5 10⊗

0 7 4 11 2 7

3 10 1 6 9

(6, 4, 6′, 1, 7, 10, 2, 11, 5, 0, 3, 8, 10′)
i0 = 1, ∗ = 9

(15-1)

0 11 8

10 7 2 5 10 ′

1 4 9 0 7
11 6 3

⊗ 0 11 8 ∗
7 2 5 10

9 0

⊗
3 6

0 11 8 1

7 2 5 10
9 0

1 6

0 11 8 3 0

7 2 5 10
⊗

9 0

(8, 0, 4, 10, 1, 11, 6, 3, 10′, 7) (8, 0, 10) (3, 6) (1, 6, 0)

i0 = 0 i0 = 1 i0 = 1, ∗ = 1 i0 = 1, ∗ = 3

(15-2)

0 7
11 2 9
8 5 0
∗ 10

0 7⊗
11 2 9

3 8 5 0
6 1 10

0 7

4 11 2 9

10 1 8 5 0⊗
6 3 10

10 1 8

0 7 4 11
⊗

11 2 9 6 1 ′

5 0 3

(8, 0, 10) (3, 6) (1, 6, 4, 10) (4, 0, 6, 10, 1, 11, 8, 3, 1′)
i0 = 0 i0 = 0, ∗ = 1 i0 = 0, ∗ = 3 i0 = 1
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(16-1)

9 0 11

11 4 7 2 9

8 ′ 1 10 5 0⊗
6 3 8

⊗
6(2)

2(6) 9 0 11

11 4 7 2 9
1 10 5 0

(0, 10, 4, 9, 1, 3, 8, 6, 8′11) (0, 10, 4, 9, 1, 11, 2(6), 6(2))

i0 = 0 i0 = 1

(16-2)

0 7 10
11 2 5
∗ 9 0

0 7 10⊗
11 2 5

7 4 9 0
1 6

5 0 7 10⊗
8 11 2 5

0 3 6 9 0
10 1 4

4 1 6
0 7 10 3 0 ′

11 2 5 8
⊗

9 0 11

(10, 0) (6, 1, 7) (4, 1, 3, 8, 5, 10, 0) (10, 4, 1, 3, 0, 8, 6, 0′, 11)
i0 = 0 i0 = 0, ∗ = 4 i0 = 0, ∗ = 6 i0 = 1

(17-1)

0 11 8
9 2 5

7 ∗

0 11 8 1
9 2 5 10 7

7 0 3
⊗ 0 11 8 3

9 2 5 0
7 10

⊗
(8) (10, 3, 1, 7) (0, 3)

∗ = 0 ∗ = 10

(17-2)

0 9
11 2 7
8 5 ∗

0 9 4

6 11 2 7
3 ′ 8 5 0⊗

1 10 3

0 9
11 2 7
8 5 10
3 0

⊗
6 ∗

0 9 4
11 2 7

5
(8) (10, 3, 1, 3′, 6) (0, 3) (4, 6)

i0 = 0 i0 = 0, ∗ = 0 i0 = 0, ∗ = 10 i0 = 1

6 1 8

0 9 4 11 #

11 2 7 0
5 10 3

6 1 8 5

0 9 4 11 2 7

11 2 7 0 9
5 10 3

6 1 8 3

0 9 4 11 6

11 2 7 0 9
5 10 3

⊗
(11, 8, 0, 10, 3) (5, 9, 7) (3, 9)

i0 = 1, ∗ = 1 i0 = 1, ∗ = 1,# = 2 i0 = 1, ∗ = 1,# = 6

6 11 8

0 9 4 1 6

11 2 7 10
⊗

5 0 3

(1, 8, 10, 0, 3, 6)

i0 = 1, ∗ = 11

(18-1)
0 11
9 2 7⊗

5

0 9
⊗

11 2 5
7
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