A FEW RESULTS ON JANOWSKI FUNCTIONS ASSOCIATED WITH k-SYMMETRIC POINTS

Fuad S Al Sarari, Sridhar Latha, and Maslina Darus

Abstract

The purpose of the present paper is to introduce and study new subclasses of analytic functions which generalize the classes of Janowski functions with respect to k-symmetric points. We also study certain interesting properties like covering theorem, convolution condition, neighborhood results and argument theorem.

1. Introduction

Let \mathcal{A} denote the class of functions of form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$, and \mathcal{S} denote the subclass of \mathcal{A} consisting of all function which are univalent in \mathcal{U}.

For f and g be analytic in \mathcal{U}, we say that the function f is subordinate to g in \mathcal{U}, if there exists an analytic function w in \mathcal{U} such that $|w(z)|<1$ with $w(0)=0$, and $f(z)=g(w(z))$, and we denote this by $f(z) \prec g(z)$. If g is univalent in \mathcal{U}, then the subordination is equivalent to $f(0)=g(0)$

[^0]and $f(\mathcal{U}) \subset g(\mathcal{U})$. The convolution or Hadamard product of two analytic functions $f, g \in \mathcal{A}$ where f is defined by (1.1) and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, is
$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} .
$$

For any $f \in \mathcal{A}, \rho$-neighborhood of $f(z)$ can be defined as:

$$
\begin{equation*}
\mathcal{N}_{\rho}(f)=\left\{g \in \mathcal{A}: g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}, \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \rho\right\} . \tag{1.2}
\end{equation*}
$$

For $e(z)=z$, we can see that

$$
\begin{equation*}
\mathcal{N}_{\rho}(e)=\left\{g \in \mathcal{A}: g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}, \sum_{n=2}^{\infty} n\left|b_{n}\right| \leq \rho\right\} . \tag{1.3}
\end{equation*}
$$

The idea of neighborhoods was first introduced by Goodman [14] which was further generalized by Ruscheweyh [11]. He also proved that if $f \in \mathcal{A}, \rho>0$ and η is a complex number with $|\eta|<\rho$, and

$$
\frac{f(z)+\eta z}{1+\eta} \in \mathcal{S}^{*}
$$

then $\mathcal{N}_{\rho}(f) \subset \mathcal{S}^{*}$. Where \mathcal{S}^{*} is the class of starlike functions.
Using the principle of the subordination we define the class \mathcal{P} of functions with positive real part.

Definition 1.1. [7] Let \mathcal{P} denote the class of analytic functions of the form $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$ defined on \mathcal{U} and satisfying $p(0)=1$, $\operatorname{Re} p(z)>0, z \in \mathcal{U}$.

Any function p in \mathcal{P} has the representation $p(z)=\frac{1+w(z)}{1-w(z)}$, where $w \in \Omega$ and

$$
\begin{equation*}
\Omega=\{w \in \mathcal{A}: w(0)=0,|w(z)|<1\} . \tag{1.4}
\end{equation*}
$$

The class \mathcal{P} of functions with positive real part plays a crucial role in geometric function theory. Its significance can be seen from the fact that simple subclasses like class \mathcal{S}^{*} of starlike, class \mathcal{C} of convex functions, class of starlike functions with respect to symmetric points have been defined by using the concept of class of functions with positive real part.

Definition 1.2. [1] Let $\mathcal{P}[A, B]$, with $-1 \leq B<A \leq 1$, denote the class of analytic function p defined on \mathcal{U} with the representation $p(z)=\frac{1+A w(z)}{1+B w(z)}, z \in \mathcal{U}$, where $w \in \Omega$.

Remark: $p \in \mathcal{P}[A, B]$ if and only if $p(z) \prec \frac{1+A z}{1+B z}$.
In [6] the class $\mathcal{P}[A, B, \alpha]$ of generalized Janowski functions was introduced. For arbitrary numbers A, B, α, with $-1 \leq B<A \leq 1$, $0 \leq \alpha<1$, a function p analytic in \mathcal{U} with $p(0)=1$ is in the class $\mathcal{P}[A, B, \alpha]$ if and only if
$p(z) \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z} \Leftrightarrow p(z)=\frac{1+[(1-\alpha) A+\alpha B] w(z)}{1+B w(z)}, w \in \Omega$.
The definition of starlike functions with respect to k-symmetric points is as follows.

Definition 1.3. For a positive integer k, let $\varepsilon=\exp \left(\frac{2 \pi i}{k}\right)$ denote the $k^{\text {th }}$ root of unity for $f \in \mathcal{A}$, let

$$
\begin{equation*}
M_{f, k}(z)=\sum_{v=1}^{k-1} \varepsilon^{-v} f\left(\varepsilon^{v} z\right) \cdot \frac{1}{\sum_{v=1}^{k-1} \varepsilon^{-v}}, \tag{1.5}
\end{equation*}
$$

be its k-weighted mean function.
A function f in \mathcal{A} is said to belong to the class \mathcal{S}_{k}^{*} of functions starlike with respect to k-symmetric points if for every r close to $1, r<1$, the angular velocity of f about the point $M_{f_{k}\left(z_{0}\right)}$ is positive at $z=$ z_{0} as z traverses the circle $|z|=r$ in the positive direction, that is $\Re\left\{\frac{z f^{\prime}(z)}{f(z)-M_{f, k}\left(z_{0}\right)}\right\}>0$ for $z=z_{0},\left|z_{0}\right|=r$.

Definition 1.4. [12] A function f in \mathcal{S} is starlike with respect to k-symmetric points, or briefly k-starlike if,

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f_{k}(z)}\right\}>0, z \in \mathcal{U} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{k}(z)=\frac{1}{k} \sum_{v=1}^{k-1} \varepsilon^{-v} f\left(\varepsilon^{v} z\right) \tag{1.7}
\end{equation*}
$$

If $f(z)$ is defined by (1.1) then,

$$
\begin{align*}
f_{k}(z) & =z+\sum_{n=2}^{\infty} \chi_{n} a_{n} z^{n}, \quad(k=2,3, \ldots) . \tag{1.8}\\
\chi_{n} & = \begin{cases}1, & n=l k+1, \\
0, & n \neq l k+1\end{cases} \tag{1.9}
\end{align*}
$$

Using the generalization of Janowski functions and the concept of k-symmetrical functions we define the following:

Definition 1.5. A function f in \mathcal{A} is said to belong to the class $\mathcal{S}^{k}(A, B, \alpha)$,
$(-1 \leq B<A \leq 1), 0 \leq \alpha<1$ if

$$
\frac{z f^{\prime}(z)}{f_{k}(z)} \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z}, z \in \mathcal{U}
$$

where $f_{k}(z)$ is defined by (1.8).
We note that for special values of k, α, A and B yield the following classes.
$\mathcal{S}^{1}(A, B, \alpha)=\mathcal{S}(A, B, \alpha)$ is the class introduced by Polatoglu, Bolcal, Sen and Yavuz, $[6], \mathcal{S}^{k}(A, B, 0)=\mathcal{S}^{(k)}(A, B)$ is the class studied by Kwon and $\operatorname{Sim}[3], \mathcal{S}^{k}(1,-1,0)=\mathcal{S}_{k}^{*}=\mathcal{S}_{k}^{*}(1,-1)$, the class is studied by Sakaguchi [12] and etc.
Fuad Alsarari and Latha in $[5,8,13]$ studied some classes which related to Janowski type functions and symmetric points.

Definition 1.6. A function f in \mathcal{A} is said to belong to the class $\mathcal{K}^{k}(A, B, \alpha)$,
$(-1 \leq B<A \leq 1), 0 \leq \alpha<1$ if

$$
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f_{k}^{\prime}(z)} \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z}, z \in \mathcal{U} .
$$

We need the following lemmas to prove our main results.
Lemma 1.7. [6] Any function $f \in \mathcal{S}^{*}(A, B, \alpha)$ can be written in the form

$$
f(z)=\left\{\begin{array}{lll}
z(1+B w(z))^{\frac{(1-\alpha)(A-B)}{B},}, & \text { if } B \neq 0, \\
z \exp [(1-\alpha) A w(z)], & \text { if } B=0,
\end{array}\right.
$$

where $w \in \Omega$.

Lemma 1.8. [6] Let $p \in \mathcal{P}[A, B, \alpha]$, then the set of the values of p is in the closed disc with center at $C(r)$ and having the radius $\rho(r)$, where

$$
\begin{cases}C(r)=\left(\frac{1-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}, 0\right), \rho(r)=\frac{(1-\alpha)(A-B) r}{1-B^{2} r^{2}} & \text { if } B \neq 0, \\ C(r)=(1,0), \rho(r)=(1-\alpha)|A| r & \text { if } B=0,\end{cases}
$$

2. Main results

Lemma 2.1. Let $p \in \mathcal{P}[A, B, \alpha]$. Then

$$
p(r) \leq|p(z)| \leq q(r),
$$

where

$$
p(r)= \begin{cases}\frac{1-(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}, & \text { if } B \neq 0 \tag{2.1}\\ 1-(1-\alpha) A r, & \text { if } B=0\end{cases}
$$

and

$$
q(r)= \begin{cases}\frac{1+(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}, & \text { if } B \neq 0 \\ 1+(1-\alpha) A r, & \text { if } B=0\end{cases}
$$

Proof. The set of the values of p is in the closed disc with center at $C(r)=\frac{1-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}$ and having the radius $\rho(r)=\frac{(1-\alpha)(A-B) r}{1-B^{2} r^{2}}$ using Lemma 1.8, that is

$$
\begin{equation*}
\left|p-\frac{1-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(1-\alpha)(A-B) r}{1-B^{2} r^{2}} \tag{2.2}
\end{equation*}
$$

Simplifying (2.2) we get the required result.

Theorem 2.2. If $f \in \mathcal{S}^{k}(A, B, \alpha)$, then

$$
f_{k}(z)= \begin{cases}z(1+B w(z))^{\frac{(1-\alpha)(A-B)}{B}}, & \text { if } B \neq 0, \tag{2.3}\\ z \exp [(1-\alpha) A w(z)], & \text { if } B=0\end{cases}
$$

for some $w \in \Omega$, where f_{k} are defined by (1.7).

Proof. Suppose that $f \in \mathcal{S}^{k}(A, B, \alpha)$, we can get

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f_{k}(z)} \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z} . \tag{2.4}
\end{equation*}
$$

Replacing z by $\varepsilon^{\nu} z$ in (2.4), it follows that

$$
\frac{\varepsilon^{\nu} z f^{\prime}\left(\varepsilon^{v} z\right)}{f_{k}\left(\varepsilon^{\nu} z\right)} \prec \frac{1+[(1-\alpha) A+\alpha B] \varepsilon^{\nu} z}{1+B \varepsilon^{\nu} z} \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z} .
$$

Since $f_{k}\left(\varepsilon^{\nu} z\right)=\varepsilon^{\nu} f_{k}(z)$,

$$
\begin{equation*}
\frac{z f^{\prime}\left(\varepsilon^{\nu} z\right)}{f_{k}(z)} \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z}, \tag{2.5}
\end{equation*}
$$

Letting $\nu=0,1,2, \ldots, k-1$ in (2.5) and using the fact that $\mathcal{P}[A, B, \alpha]$ is a convex set, we deduce that

$$
\frac{z \frac{1}{k} \sum_{\nu=0}^{k-1} f^{\prime}\left(\varepsilon^{\nu} z\right)}{f_{k}(z)} \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z},
$$

or equivalently

$$
\frac{z f_{k}^{\prime}(z)}{f_{k}(z)} \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z},
$$

that is $f_{k} \in \mathcal{S}(A, B, \alpha)$, and by Lemma 1.7 we obtain our result.
Theorem 2.3. If $f \in \mathcal{S}^{k}(A, B, \alpha)$, then
$|f(z)| \leq\left\{\begin{array}{l}\int_{0}^{r} \frac{1+(1-\alpha)(A-B) \rho-B[(1-\alpha) A+\alpha B] \rho^{2}}{1-B^{2} \rho^{2}}(1+B \rho)^{\frac{(1-\alpha)(A-B)}{B}} d \rho, \\ \quad \text { if } B \neq 0, \\ \int_{0}^{r}[1+(1-\alpha) A \rho] \exp [(1-\alpha) A \rho] d \rho, \\ \quad \text { if } \quad B=0,\end{array}\right.$
where $|z| \leq r<1$.
Proof. Integrating the function f^{\prime} along the close segment connecting the origin with an arbitrary $z \in \mathcal{U}$, and observing that a point on this segment is of the form $\zeta=\rho e^{i \theta}$, with $\rho \in[0, r]$, where $\theta=\arg z$ and $r=|z|$, we get

$$
f(z)=\int_{0}^{z} f^{\prime}(\zeta) d \zeta, z=r e^{i \theta}
$$

hence

$$
|f(z)|=\left|\int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} d \rho\right| \leq \int_{0}^{r}\left|f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta}\right| d \rho
$$

For an arbitrary function $f \in \mathcal{S}^{k}(A, B, \alpha)$, we have

$$
\frac{z f^{\prime}(z)}{f_{k}(z)}=p(z), \quad p \in \mathcal{P}[A, B, \alpha]
$$

we need to study the following cases:
(i) If $B \neq 0$, then there exists a function $w \in \Omega$, such that $f_{k}(z)=z(1+B w(z))^{\frac{(1-\alpha)(A-B)}{B}}$, and therefore (2.6)

$$
\begin{aligned}
& \left|f^{\prime}(z)\right| \\
& \leq \frac{1+(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}|1+B w(z)|^{\frac{(1-\alpha)(A-B)}{B}}, \\
& |z| \leq r<1 .
\end{aligned}
$$

Since $w \in \Omega$, we have

$$
|1+B w(z)| \leq 1+|B| r,|z| \leq r<1 .
$$

Case 1. If $B>0$, using the fact that $-1 \leq B<A \leq 1$ and $0 \leq \alpha<1$, we have

$$
|1+B w(z)|^{\frac{(1-\alpha)(A-B)}{B}} \leq(1+|B| r)^{\frac{(1-\alpha)(A-B)}{B}},|z| \leq r<1,
$$

and from (2.6) we obtain

$$
\begin{align*}
& \left|f^{\prime}(z)\right| \tag{2.7}\\
& \leq \frac{1+(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}(1+|B| r)^{\frac{(1-\alpha)(A-B)}{B}}, \\
& |z| \leq r<1
\end{align*}
$$

Case 2. If $B<0$, from the fact that $-1 \leq B<A \leq 1$ and $0 \leq \alpha<1$, we have

$$
(1-|B| r)^{\frac{(1-\alpha)(A-B)}{B}} \geq|1+B w(z)| \frac{(1-\alpha)(A-B)}{B},|z| \leq r<1,
$$

and from (2.6) we obtain

$$
\begin{align*}
& \frac{1+(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}(1-|B| r)^{\frac{(1-\alpha)(A-B)}{B}} \tag{2.8}\\
& \geq\left|f^{\prime}(z)\right|, \quad|z| \leq r<1 .
\end{align*}
$$

Now, combining the inequalities (2.7) and (2.8), we finally conclude that

$$
\begin{align*}
& \left|f^{\prime}(z)\right| \leq \frac{1+(1-\alpha)(A-B) r-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}(1+B r)^{\frac{(1-\alpha)(A-B)}{B}}, \tag{2.9}\\
& |z| \leq r<1 .
\end{align*}
$$

then

$$
\begin{aligned}
& |f(z)| \\
& \leq \int_{0}^{r}\left|f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta}\right| d \rho \\
& \leq \int_{0}^{r} \frac{1+(1-\alpha)(A-B) \rho-B[(1-\alpha) A+\alpha B] \rho^{2}}{1-B^{2} \rho^{2}}(1+B \rho)^{\frac{(1-\alpha)(A-B)}{B}} d \rho,
\end{aligned}
$$

that is

$$
|f(z)|
$$

$$
\leq \int_{0}^{r} \frac{1+(1-\alpha)(A-B) \rho-B[(1-\alpha) A+\alpha B] \rho^{2}}{1-B^{2} \rho^{2}}(1+B \rho)^{\frac{(1-\alpha)(A-B)}{B}} d \rho,
$$

$$
|z| \leq r<1
$$

(ii) If $B=0$, there exists a function $w \in \Omega$, such that $f_{k}(z)=$ $z \exp [(1-\alpha) A w(z)]$, and therefore

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq[1+(1-\alpha) A r]|\exp [(1-\alpha) A w(z)]|,|z| \leq r<1 \tag{2.10}
\end{equation*}
$$

Since $|\exp [(1-\alpha) A w(z)]|=\exp [(1-\alpha) A \operatorname{Re} w(z)], z \in \mathcal{U}$, using a similar computation as in the previous case, we deduce

$$
|\exp [(1-\alpha) A w(z)]| \leq \exp [(1-\alpha) A r],|z| \leq r<1
$$

Thus, (2.10) yields

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq[1+(1-\alpha) A r] \exp [(1-\alpha) A r],|z| \leq r<1 \tag{2.11}
\end{equation*}
$$

and hence

$$
|f(z)| \leq \int_{0}^{r}\left|f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta}\right| d \rho \leq \int_{0}^{r}[1+(1-\alpha)|A| \rho] \exp [(1-\alpha) A \rho] d \rho,
$$

that is

$$
|f(z)| \leq \int_{0}^{r}[1+(1-\alpha) A \rho] \exp [(1-\alpha) A \rho] d \rho,|z| \leq r<1
$$

Theorem 2.4. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, be analytic in \mathcal{U}, for $-1 \leq$ $B<A \leq 1$, and $0 \leq \alpha<1$, if

$$
\sum_{n=2}^{\infty}\left\{\left(n-\chi_{n}\right)+\left|[(1-\alpha) A+\alpha B] \chi_{n}-B n\right|\right\}\left|a_{n}\right| \leq(A-B)(1-\alpha) .
$$

Then $f(z) \in \mathcal{S}^{k}(A, B, \alpha)$.
Proof. For the proof of Theorem 2.4, it suffices to show that the values for $\frac{z f^{\prime}(z)}{f_{k}(z)}$, satisfy

$$
\left|\frac{z f^{\prime}(z)-f_{k}(z)}{[(1-\alpha) A+\alpha B] f_{k}(z)-B z f^{\prime}(z)}\right| \leq 1 .
$$

Consider

$$
\begin{aligned}
& \left|\frac{z f^{\prime}(z)-f_{k}(z)}{[(1-\alpha) A+\alpha B] f_{k}(z)-B z f^{\prime}(z)}\right| \\
= & \left|\frac{\sum_{n=2}^{\infty}\left(n-\chi_{n}\right) a_{n} z^{n-1}}{[(1-\alpha) A+\alpha B]-B+\sum_{n=2}^{\infty}\left\{[(1-\alpha) A+\alpha B] \chi_{n}-B n\right\} a_{n} z^{n-1}}\right| \\
\leq & \frac{\sum_{n=2}^{\infty}\left(n-\chi_{n}\right)\left|a_{n}\right||z|^{n-1}}{(1-\alpha)(A-B)-\sum_{n=2}^{\infty}\left|[(1-\alpha) A+\alpha B] \chi_{n}-B n\right|\left|a_{n}\right||z|^{n-1}} \\
\leq & \frac{\sum_{n=2}^{\infty}\left(n-\chi_{n}\right)\left|a_{n}\right|}{(1-\alpha)(A-B)-\sum_{n=2}^{\infty}\left|[(1-\alpha) A+\alpha B] \chi_{n}-B n\right|\left|a_{n}\right|} .
\end{aligned}
$$

This last expression is bounded above by 1 if

$$
\sum_{n=2}^{\infty}\left\{\left(n-\chi_{n}\right)+\left|[(1-\alpha) A+\alpha B] \chi_{n}-B n\right|\right\}\left|a_{n}\right| \leq(1-\alpha)(A-B),
$$

hence $\left|\frac{z f^{\prime}(z)-f_{k}(z)}{[(1-\alpha) A+\alpha B] f_{k}(z)-B z f^{\prime}(z)}\right| \leq 1$, and Theorem 2.4 is proved.
Theorem 2.5. A function $f \in \mathcal{S}^{k}(A, B, \alpha)$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[f *\left\{\frac{z}{(1-z)^{2}}\left(1+B e^{i \phi}\right)-q(z)\left(1+[(1-\alpha) A+\alpha B] e^{i \phi}\right)\right\}\right] \neq 0 \tag{2.12}
\end{equation*}
$$

where
$-1 \leq B<A \leq 1,0 \leq \alpha<10 \leq \phi<2 \pi$ and $q(z)$ is given by (2.17).

Proof. Suppose that $f \in \mathcal{S}^{k}(A, B, \alpha)$, then

$$
\frac{z f^{\prime}(z)}{f_{k}(z)} \prec \frac{1+[(1-\alpha) A+\alpha B] z}{1+B z},
$$

if and only if

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f_{k}(z)} \neq \frac{1+[(1-\alpha) A+\alpha B] e^{i \phi}}{1+B e^{i \phi}} \tag{2.13}
\end{equation*}
$$

For all $z \in \mathcal{U}$ and $0 \leq \phi<2 \pi$. It is easy to know the condition (2.13) can be written as

$$
\begin{equation*}
\frac{1}{z}\left[z f^{\prime}(z)\left(1+B e^{i \phi}\right)-f_{k}(z)\left(1+[(1-\alpha) A+\alpha B] e^{i \phi}\right)\right] \neq 0 \tag{2.14}
\end{equation*}
$$

on the other hand, it well known that

$$
\begin{equation*}
z f^{\prime}(z)=f(z) * \frac{z}{(1-z)^{2}} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(z)=f(z) * q(z) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
q(z)=\frac{1}{k} \sum_{v=0}^{k-1} \frac{z}{1-\varepsilon^{v} z} . \tag{2.17}
\end{equation*}
$$

Substituting (2.15) and (2.16) into (2.14) we get (2.12).
To find some neighborhood results for the class $f \in \mathcal{S}^{k}(A, B, \alpha)$ analogous to those obtained by Ruschewegh [11], we introduce the following concept of neighborhood

Definition 2.6. For $-1 \leq B<A \leq 1,0 \leq \alpha<1,0 \leq \phi<2 \pi$ and $\rho \geq 0$ we define $\mathcal{N}^{k}(A, B, \alpha ; f, \rho)$ the neighborhood of a function $f \in \mathcal{A}$ as
$\mathcal{N}^{k}(A, B, \alpha ; f, \rho)=$

$$
\begin{aligned}
\{g \in \mathcal{A}: g(z) & =z+\sum_{n=2}^{\infty} b_{n} z^{n}, d(f, g) \\
& \left.=\sum_{n=2}^{\infty} \frac{\left(n-\chi_{n}\right)+\left|[(1-\alpha) A+\alpha B] \chi_{n}-B n\right|}{(1-\alpha)(A-B)}\left|b_{n}-a_{n}\right| \leq \rho\right\},
\end{aligned}
$$

where $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and χ_{n} is defined by (1.9).
Remark 2.7. For parametric values $k=A=-B=1$, and $\alpha=0$ (2.18) reduces to (1.2).

Theorem 2.8. Let $f \in \mathcal{A}$, and for all complex number η, with $|\mu|<$ ρ, if

$$
\begin{equation*}
\frac{f(z)+\eta z}{1+\eta} \in \mathcal{S}^{k}(A, B, \alpha) . \tag{2.19}
\end{equation*}
$$

Then

$$
\mathcal{N}^{k}(A, B, \alpha ; f, \rho) \subset \mathcal{S}^{k}(A, B, \alpha)
$$

Proof. We assume that a function g defined by $g(z)=\sum_{n=2}^{\infty} b_{n} z^{n}$ is in the class $\mathcal{N}^{k}(A, B, \alpha ; f, \rho)$. In order to prove the theorem, we only need to prove that $g \in \mathcal{S}^{k}(A, B, \alpha)$. We would prove this claim in next three steps.
We first note that Theorem 2.5 is equivalent to

$$
\begin{equation*}
f \in \mathcal{S}^{k}(A, B, \alpha) \Leftrightarrow \frac{1}{z}\left[\left(f * t_{\phi}\right)(z)\right] \neq 0, \quad z \in \mathcal{U} \tag{2.20}
\end{equation*}
$$

where

$$
t_{\phi}(z)=\frac{\frac{z}{(1-z)^{2}}\left(1+B e^{i \phi}\right)-q(z)\left(1+[(1-\alpha) A+\alpha B] e^{i \phi}\right)}{(1-\alpha)(B-A) e^{i \phi}},
$$

where $0 \leq \phi<2 \pi,-1 \leq B<A \leq 1,0 \leq \alpha<1$ and q is given by (2.17). We can write $t_{\phi}(z)=z+\sum_{n=2}^{\infty} t_{n} z^{n}$,
where

$$
\begin{equation*}
t_{n}=\frac{\left(n-\chi_{n}\right)+\left|[(1-\alpha) A+\alpha B] \chi_{n}-B n\right|}{(1-\alpha)(B-A) e^{i \phi}}, \tag{2.21}
\end{equation*}
$$

and where χ_{n} is defined by (1.9). Secondly we obtain that (2.19) is equivalent to

$$
\begin{equation*}
\left|\frac{f(z) * t_{\phi}(z)}{z}\right| \geq \rho, \tag{2.22}
\end{equation*}
$$

because, if $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{A}$ and satisfy (2.19), then (2.20) is equivalent to

$$
t_{\phi} \in \mathcal{S}^{k}(A, B, \alpha, \sigma) \Leftrightarrow \frac{1}{z}\left[\frac{f(z) * t_{\phi}(z)}{1+\eta}\right] \neq 0, \quad|\eta|<\rho .
$$

Thirdly letting $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ we notice that

$$
\begin{aligned}
\left|\frac{g(z) * t_{\phi}(z)}{z}\right| & =\left|\frac{f(z) * t_{\phi}(z)}{z}+\frac{(g(z)-f(z)) * t_{\phi}(z)}{z}\right| \\
& \geq \rho-\left|\frac{(g(z)-f(z)) * t_{\phi}(z)}{z}\right|, \quad(\text { by using }(2.22)) \\
& =\rho-\left|\sum_{n=2}^{\infty}\left(b_{n}-a_{n}\right) t_{n} z^{n}\right|, \\
& \geq|z| \sum_{n=2}^{\infty}\left[\frac{\left(n-\chi_{n}\right)+\left|[(1-\alpha) A+\alpha B] \chi_{n}-B n\right|}{(1-\alpha)(B-A) e^{i \phi}}\right]\left|b_{n}-a_{n}\right|
\end{aligned}
$$

$$
\geq \rho-\rho=0, \quad \text { by applying (2.21). }
$$

This prove that

$$
\frac{g(z) * t_{\phi}(z)}{z} \neq 0, \quad z \in \mathcal{U} .
$$

In view of our observations (2.20), it follows that $g \in \mathcal{S}^{k}(A, B, \alpha)$. This completes the proof of the theorem.

When $k=A=-B=1$ and $\alpha=0$ in the above theorem we get (1.3) proved by Ruschewyh in [11].

Corollary 2.9. Let \mathcal{S}^{*} be the class of starlike functions. Let $f \in \mathcal{A}$ and for all complex number η, with $|\mu|<\rho$, if

$$
\begin{equation*}
\frac{f(z)+\eta z}{1+\eta} \in \mathcal{S}^{*} \tag{2.23}
\end{equation*}
$$

then $\mathcal{N}_{\sigma}(f) \subset \mathcal{S}^{*}$.
Theorem 2.10. Let $f \in \mathcal{S}^{k}(A, B, \alpha)$. Then
$\left|\arg f^{\prime}(z)\right| \leq\left\{\begin{aligned} & \frac{(A-B)(1-\alpha)}{B} \arcsin (B r) \\ &+\arcsin \left(\frac{(A-B)(1-\alpha)}{1-B[(1-\alpha) A+\alpha B] r^{2}}\right), \text { if } \quad B \neq 0, \\ &(1-\alpha) A r+\arcsin ((1-\alpha) A r), \text { if } \quad B=0,\end{aligned}\right.$
where
Proof. Suppose that $f \in \mathcal{S}^{k}(A, B, \alpha)$, then

$$
\begin{equation*}
\left|\arg f^{\prime}(z)\right| \leq\left|\arg \frac{f_{k}(z)}{z}\right|+|\arg p(z)| \tag{2.24}
\end{equation*}
$$

where $p \in P[A, B, \alpha]$, using Theorem 2.2 for $B \neq 0$, we have

$$
\frac{f_{k}(z)}{z}=(1+B w(z))^{\frac{(1-\alpha)(A-B)}{B}},
$$

we discuss the following cases Case (1), $B>0$.

$$
\begin{aligned}
& \left|(1+B w(z))^{\frac{[(1-\alpha) A+\alpha B]-B}{B}}\right| \\
& =\left|\exp \left\{\frac{[(1-\alpha) A+\alpha B]-B}{B} \log (1+B w(z))\right\}\right| \\
& =\exp \left\{\frac{[(1-\alpha) A+\alpha B]-B}{B} \log |(1+B w(z))|\right\} \\
& =|(1+B w(z))|^{\frac{[(1-\alpha) A+\alpha B]-B}{B}} \\
& \leq(1+B r)^{\frac{[(1-\alpha) A+\alpha B]-B}{B}} .
\end{aligned}
$$

Case (2) $B<0$.
Let $B=-C, C>0$. Then

$$
\begin{aligned}
\left|(1+B w(z))^{\frac{[(1-\alpha) A+\alpha B]-B}{B}}\right| & =\left|\left\{(1-C w(z))^{-1}\right\}^{\frac{[1-\alpha) A-\alpha C]+C}{C}}\right| \\
& =\left|(1-C w(z))^{-1}\right|^{\frac{[(1-\alpha) A-\alpha C]+C}{C}} \\
\leq & \left(\frac{1}{1-C r}\right)^{\frac{[(1-\alpha) A-\alpha C]+C}{C}} \\
& =(1+B r)^{\frac{[(1-\alpha) A+\alpha B]-B}{B}} .
\end{aligned}
$$

Combining the cases (1) and (2), we get

$$
\begin{aligned}
& \left|\arg \left(\frac{f_{k}(z)}{z}\right)\right| \\
& \leq \frac{[(1-\alpha) A+\alpha B]-B}{B}|\arg (1+B r)| \\
& \leq \frac{[(1-\alpha) A+\alpha B]-B}{B} \arcsin (B r) .
\end{aligned}
$$

For $B=0$ it is clear

$$
\begin{equation*}
\left|\arg \left(\frac{f_{k}(z)}{z}\right)\right| \leq(1-\alpha) A r . \tag{2.26}
\end{equation*}
$$

Now using (2.2) in Lemma 2.1 for $p \in P[A, B, \alpha]$, we have

$$
\begin{equation*}
\left|p-\frac{1-B[(1-\alpha) A+\alpha B] r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(1-\alpha)(A-B) r}{1-B^{2} r^{2}}, \tag{2.27}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
|\arg p(z)| \leq \arcsin \left(\frac{(1-\alpha)(A-B) r}{1-B[(1-\alpha) A+\alpha B] r^{2}}\right) \tag{2.28}
\end{equation*}
$$

For $B=0$, directly we get

$$
\begin{equation*}
|\arg p(z)| \leq \arcsin ((1-\alpha) A r) \tag{2.29}
\end{equation*}
$$

From (2.25), (2.26), (2.28) and (2.29) we get the proof.
Conflict of Interest: The authors declare no conflict of interest.

References

[1] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (3), (1973), 297-326.
[2] M. Haji Mohd and M. Darus, On a class of spiral-like functions with respect to a boundary point related to subordination, Journal of Inequalities and Applications 1, (2013), 274.
[3] O. Kwon and Y. Sim, A certain subclass of Janowski type functions associated with k-symmetic points, Commun. Korean. Math. Soc. 28 (1), (2013), 143-154.
[4] S. Miller, And P. T. Mocanu, Differential Subordinations Theory and Applications Marcel Dekker, New and York-Basel, 2000.
[5] F. Al-Sarari and S.Latha, Conic regions and symmetric points, Int. J. Pure. Appl. Math, 97 (3), (2014), 273-285.
[6] Y. Polatoglu, M. Bolcal, A. Sen and E. Yavuz, A study on the generalization of Janowski functions in the unit disc, Acta Mathematica. Academiae Paedagogicae Nyregyhziensis. 22 (2006), 27-31.
[7] P. L. Duren, Univalent Functions, Springer-Verlag, 1983.
[8] F. Al Sarari and S. Latha, A few results on functions that are Janowski starlike related to (j, k)-symmetric points, Octagon Mathematical Magazine. 21 (2), (2013), 556-563.
[9] R. Singh and M. Tygel, On some univalent functions in the unit disc, Indian. J. Pure. Appl. Math. 12 (1981), 513-520.
[10] S. Ponnusamy, Some applications of differential subordination and convolution techniques to univalent functions theory, Ph. D. thesis, I. I. T. Kanpur, India. (1988).
[11] S. Ruschewyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527.
[12] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1), (1959), 72-75.
[13] F. Al-Sarari and S. Latha, A note on Janowski functions with respect to $(2 j, k)$ symmetric conjugate points, IOSR-JRME. (Mar-Apr.2014), 39-47.
[14] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.

Fuad S Al Sarari
Department of Mathematics
College of Sciences
Taibah University
Yanbu, Saudi Arabia
E-mail: alsrary@yahoo.com

Sridhar Latha

Department of Mathematics
Yuvaraja's College
University of Mysore
Mysore 570 005, India
E-mail: drlatha@gmail.com

Maslina Darus

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
UKM Bangi 43600, Selangor, Malaysia
E-mail: maslina@ukm.edu.my

[^0]: Received July 23, 2017. Revised September 4, 2017. Accepted September 12, 2017.

 2010 Mathematics Subject Classification: 30C45.
 Key words and phrases: Janowski functions, Subordination, Starlike functions, Convex functions, k-Symmetric points.

 The work is partly supported by MOHE grant: FRGS/1/2016/STG06/UKM/ 01/1.
 (c) The Kangwon-Kyungki Mathematical Society, 2017.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

