SELF-DUAL CODES OVER $\mathbb{Z}_{p^{2}}$ OF SMALL LENGTHS

Whan-hyuk Choi and Young Ho Park ${ }^{\dagger}$,

Abstract

Self-dual codes of lengths less than 5 over \mathbb{Z}_{p} are completely classified by the second author [The classification of self-dual modular codes, Finite Fields Appl. 17 (2011), 442-460]. The number of such self-dual codes are also determined. In this article we will extend the results to classify self-dual codes over $\mathbb{Z}_{p^{2}}$ of length less than 5 and give the number of codes in each class. Explicit and complete classifications for small p 's are also given.

1. Introduction

A code over $\mathbb{Z}_{p^{e}}$ of length n is a $\mathbb{Z}_{p^{e}}$-submodule of $\mathbb{Z}_{p^{e}}^{n}$. Codes of length n over $\mathbb{Z}_{p^{e}}$ have generator matrices permutation equivalent to the standard form

$$
G=\left(\begin{array}{ccccccc}
I_{k_{0}} & A_{01} & A_{02} & A_{03} & \ldots & A_{0, e-1} & A_{0 e} \tag{1}\\
0 & p I_{k_{1}} & p A_{12} & p A_{13} & \ldots & p A_{1, e-1} & p A_{1 e} \\
0 & 0 & p^{2} I_{k_{2}} & p^{2} A_{23} & \ldots & p^{2} A_{2, e-1} & p^{2} A_{2 e} \\
\cdot & \cdot & . & . & \ldots & , & \cdot \\
0 & 0 & 0 & 0 & \ldots & p^{e-1} I_{k_{e-1}} & p^{e-1} A_{e-1, e}
\end{array}\right),
$$

where the columns are grouped into blocks of sizes $k_{0}, k_{1}, \cdots, k_{e}$, and the k_{i} are nonnegative integers adding to n [4]. A matrix with this standard

[^0]form is said to be of type
\[

$$
\begin{equation*}
(1)^{k_{0}}(p)^{k_{1}}\left(p^{2}\right)^{k_{2}} \cdots\left(p^{e-1}\right)^{k_{e-1}} . \tag{2}
\end{equation*}
$$

\]

The number of nonzero rows is called the rank of M and denoted by $\operatorname{rank} M . k_{0}$ is called the free rank.

The ambient space $\mathbb{Z}_{p^{e}}^{n}$ is endowed with the standard inner product

$$
\left(v_{1}, \cdots, v_{n}\right) \cdot\left(w_{1}, \cdots, w_{n}\right)=v_{1} w_{1}+\cdots+v_{n} w_{n}
$$

For a code C of length n over $\mathbb{Z}_{p^{e}}$, the dual code C^{\perp} of C is defined by

$$
C^{\perp}=\left\{\mathbf{v} \in \mathbb{Z}_{p^{e}}^{n} \mid \mathbf{v} \cdot \mathbf{w}=0 \text { for all } \mathbf{w} \in C\right\} .
$$

If C is a code of length n over $\mathbb{Z}_{p^{e}}$ with generator matrix of the form (1) then C^{\perp} has generator matrix of the form

$$
G^{\perp}=\left(\begin{array}{ccccccc}
B_{0 e} & B_{0, e-1} & \cdots & B_{03} & B_{02} & B_{01} & I_{k_{e}} \\
p B_{1 e} & p B_{1, e-1} & \cdots & p B_{13} & p B_{12} & p I_{I_{e-1}} & 0 \\
p^{2} B_{2 e} & p^{2} B_{2, e-1} & \cdots & p^{2} B_{23} & p^{e} I_{k_{e-2}} & 0 & 0 \\
\cdot & \cdot & \cdots & \cdot & \cdot & \cdot & \cdot \\
p^{e-1} B_{e-1, e} & p^{e-1} I_{k_{1}} & \cdots & 0 & 0 & 0 & 0
\end{array}\right)
$$

where the column blocks have the same size as in G [4]. If C has type $1^{k_{0}}(p)^{k_{1}} \cdots\left(p^{e-1}\right)^{k_{e-1}}$ then the dual code has type $1^{k_{e}} p^{k_{e-1}}\left(p^{2}\right)^{k_{e-2}} \cdots\left(p^{e-1}\right)^{k_{1}}$, where $k_{e}=n-\sum_{i=0}^{e-1} k_{i}$.
C is self-orthogonal if $C \subset C^{\perp} . C$ is self-dual if $C=C^{\perp}$. If C is self-dual with type $1^{k_{0}}(p)^{k_{1}} \cdots\left(p^{e-1}\right)^{k_{e-1}}$, then $k_{i}=k_{e-i}$ for all i. For any code C of length n over $\mathbb{Z}_{p^{e}}|C|\left|C^{\perp}\right|=p^{e n}$. If C is a self-orthogonal code of length n and $|C|=p^{e n / 2}$, then C is self-dual.

Next we discuss the equivalence of self-dual codes. Let

$$
\mathbb{D}=\mathbb{D}_{m}^{n}=\left\{\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right) \mid \gamma_{i} \in \mathbb{Z}_{m}, \gamma_{i}^{2}=1\right\} .
$$

and let $\mathbb{T}_{m}=\mathbb{T}_{m}^{n}$ be the group of all monomial transformations on \mathbb{Z}_{m}^{n} defined by

$$
\mathbb{T}_{m}=\left\{\gamma \sigma \mid \gamma \in \mathbb{D}, \sigma \in S_{n}\right\}
$$

as in [8]. We will use the same notations and terminology as in [8]. The group \mathbb{T}_{m} acts on the set of all self-dual codes of length n over \mathbb{Z}_{m} by $C t=\{c t \mid c \in C\}$. Two self-dual codes C and C^{\prime} are equivalent (denoted $C \sim C^{\prime}$) if there exists an element $t \in \mathbb{T}_{m}^{n}$ such that $C t=C^{\prime}$. The group of all automorphisms of C will be denoted by $\operatorname{Aut}(C)$.

Self-dual codes of lengths less than 5 over \mathbb{Z}_{p} are completely classified in [8]. The number of such self-dual codes are also determined. In this article we will classify self-dual codes over $\mathbb{Z}_{p^{2}}$ of length less than 5 .

2. Self-dual codes over $\mathbb{Z}_{p^{2}}$

For codes over $\mathbb{Z}_{p^{2}}$, every code C over $\mathbb{Z}_{p^{2}}$ is permutation equivalent to a code with generator matrix in standard form:

$$
G=\left(\begin{array}{ccc}
I_{k_{1}} & A_{1} & B_{1}+p B_{2} \\
0 & p I_{k_{2}} & p C_{1}
\end{array}\right)
$$

where $A_{1}, B_{1}, B_{2}, C_{1}$ are matrices with entries from $\{0,1, \cdots, p-1\}$. Associated with C there are two codes over \mathbb{Z}_{p}, the residue code

$$
R(C)=\left\{x \in \mathbb{Z}_{p}^{n}: \exists y \in \mathbb{Z}_{p}^{n} \text { such that } x+p y \in C\right\}
$$

and the torsion code $\operatorname{Tor}(C)=\left\{y \in \mathbb{Z}_{p}^{n}: p y \in C\right\}$ which have generator matrices

$$
R(C)=\left(\begin{array}{lll}
I_{k_{1}} & A_{1} & B_{1}
\end{array}\right), \quad \operatorname{Tor}(C)=\left(\begin{array}{ccc}
I_{k_{1}} & A_{1} & B_{1} \\
0 & I_{k_{2}} & C_{1}
\end{array}\right)
$$

respectively. If C is self-dual, then $R(C)$ is self-orthogonal.
Theorem 2.1. Let p be an odd prime. There is a one-one correspondence between self-dual codes C of free rank 1 over $\mathbb{Z}_{p^{2}}$

$$
C:\left(\begin{array}{ccccc}
1 & a_{2} & a_{3} & \cdots & a_{n-1} \\
& p & & & \\
a_{n}+p b_{1} \\
& & p & & \\
& & & \ddots & \\
& & & & \\
& & & & \\
& & & & \\
& & & \\
b_{n-1}
\end{array}\right)
$$

where n is the length of the code, $0 \leq a_{i}, b_{j}<p$, and self-orthogonal codes $R(C)=\left(\begin{array}{lllll}1 & a_{2} & \cdots & a_{n-1} & a_{n}\end{array}\right)$ over \mathbb{Z}_{p}.

Theorem 2.2. If C is a self-dual code of free rank 1 over $\mathbb{Z}_{p^{2}}$, then $\operatorname{Aut}(C)=\operatorname{Aut}(R(C))$.

Theorem 2.3. [9] Let $\sigma_{p}(n . k)$ be the number of self-orthogonal codes of length n and dimension k over \mathbb{Z}_{p}, where p is odd prime. Then

1. If n is odd,

$$
\sigma_{p}(n, k)=\frac{\prod_{i=0}^{k-1}\left(p^{(n-1-2 i)}-1\right)}{\prod_{i=1}^{k}\left(p^{i}-1\right)} .
$$

2. If n is even and $k \geq 2$,

$$
\sigma_{p}(n, k)=\frac{\left(p^{n-k}+\eta\left((-1)^{\frac{n}{2}}\right)\left(p^{k}-1\right) p^{\frac{n}{2}-k}\right) \prod_{i=1}^{k-1}\left(p^{n-2 i}-1\right)}{\prod_{i=1}^{k}\left(p^{i}-1\right)} .
$$

Here η is the quadratic character of \mathbb{Z}_{p}.
Theorem 2.4. [1] Let p be an odd prime. Given a self-orthogonal code C_{p} of dimension k over \mathbb{Z}_{p}, there are $p^{k(k-1) / 2}$ self-dual codes over $\mathbb{Z}_{p^{2}}$ whose residue code is C_{p}. Therefore, the number of self-dual codes of length n over $\mathbb{Z}_{p^{2}}$ is $N_{p^{2}}(n)=\sum_{0 \leq k \leq[n / 2]} \sigma_{p}(n, k) p^{k(k-1) / 2}$.

Theorem 2.5. If n is even, $\sigma_{p}(n, 1)=\frac{p^{n-1}+\eta\left((-1)^{\frac{n}{2}}\right)(p-1) p^{\frac{n}{2}-1}-1}{p-1}$.
Proof. The number of solutions of $x_{1}^{2}+\cdots+x_{n}^{2}=0$ in \mathbb{Z}_{p} is given by $p^{n-1}+\eta\left((-1)^{n / 2}\right)(p-1) p^{\frac{n}{2}-1}[5]$.

3. Classification

There is a unique self-dual codes (p) of length 1 over $\mathbb{Z}_{p^{2}}$ and there is a (unique) inequivalent self-dual code $\left(\begin{array}{ll}1 & a\end{array}\right)$ over $\mathbb{Z}_{p^{2}}$ of length 2 if and only if $p \equiv 1(\bmod 4)$. It is clear that $\left({ }^{p}{ }_{p}\right)$ is a self-dual code over $\mathbb{Z}_{p^{2}}$.

The types of self-dual codes of length 3 are $1^{e_{0}} p^{e_{1}}$, where $2 e_{0}+e_{1}=3$. Thus any self-dual code C of length 3 over $\mathbb{Z}_{p^{2}}$ is equivalent to

$$
\left(\begin{array}{ll}
{ }^{p} & \\
& \\
& p
\end{array}\right) \text { or } C_{a, b}:\left(\begin{array}{ccc}
1 & a & b+p b_{1} \\
p & p c
\end{array}\right)
$$

where $0 \leq a, b, b_{1}<p$ and $b \neq 0$.
For binary case, $(2) \oplus(2) \oplus(2)$ is the only self-dual code over \mathbb{Z}_{4} of length 3 , and for ternary case there are two classes of self-dual codes over \mathbb{Z}_{9} of length 3:

$$
(3) \oplus(3) \oplus(3), \quad\left(\begin{array}{lll}
1 & 2 & 2 \\
3 & 6
\end{array}\right) .
$$

Theorem 3.1. Let $p \neq 2,3$. Then the non-trivial self-dual code over $\mathbb{Z}_{p^{2}}$ of length 3 is equivalent to one of the following classes of inequivalent codes:

Class	$C_{a, b}$	$\operatorname{Aut}\left(C_{a, b}\right)$
(i)	$a=0$	$4 .\{(1),(13)\}$
(ii)	$a^{6}=1, a \neq \pm 1$	$2 .\langle(123)\rangle$
(iii)	$a^{2}=1, b^{2}+2=0$	$2 .\{(12)\}$
(iv)	else	$2 .(1)$

Theorem 3.2. For $p \neq 2,3$, let $N_{1}, N_{2}, N_{3}, N_{4}$ be the number of class (i), (ii), (iii), (iv) self-dual codes over $\mathbb{Z}_{p^{2}}$ of length 3, respectively. These numbers are determined as follows.

$p(\bmod 24)$	N_{1}	N_{2}	N_{3}	N_{4}
1	1	1	1	$\frac{p-25}{24}$
5	1	0	0	$\frac{p-5}{24}$
7	0	1	0	$\frac{p-7}{24}$
11	0	0	1	$\frac{p-11}{24}$
13	1	1	0	$\frac{p-13}{24}$
17	1	0	1	$\frac{p-17}{24}$
19	0	1	1	$\frac{p-19}{24}$
23	0	0	0	$\frac{p+1}{24}$

Proof. We have the one-to-one correspondence between the set of selfdual codes over \mathbb{Z}_{p}, the set of self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ and the set of self-dual codes over $\mathbb{Z}_{p^{2}}$ as follows:

$$
\left(\begin{array}{cccc}
1 & & a & b \\
& 1 & -b & a
\end{array}\right) \leftrightarrow\left(\begin{array}{lll}
1 & a & b
\end{array}\right) \leftrightarrow\left(\begin{array}{ccc}
1 & a & b+p b_{1} \\
& p & p c
\end{array}\right)
$$

where $1+a^{2}+b^{2}=0(\bmod p)$.
For $5 \leq p \leq 67$, we give the classification in the following table. Here (a, b) denotes the code $C_{a, b}$.

p^{2}	(i)	(ii)	(iii)	(iv)
5^{2}	$(0,7)$			
7^{2}		$(2,32)$		
11^{2}			$(1,19)$	
13^{2}	$(0,70)$	$(3,126)$		
17^{2}	$(0,38)$		$(1,24)$	
19^{2}		$(7,315)$	$(1,63)$	
23^{2}				$(2,169)$
29^{2}	$(0,41)$			$(2,71)$
31^{2}		$(5,800)$		$(4,142)$
37^{2}	$(0,117)$	$(10,248)$		$(3,510)$
41^{2}	$(0,378)$		$(1,71)$	$(2,703)$
43^{2}		$(36,49)$	$(1,801)$	$(2,826)$
47^{2}				$(2,1052),(3,361)$
53^{2}	$(0,500)$			$(3,231),(4,1172)$
59^{2}			$(1,1275)$	$(3,1246),(6,776)$
61^{2}	$(0,682)$	$(13,1328)$		$(2,774),(8,1259)$
67^{2}		$(29,1645)$	$(1,2030)$	$(2,2091),(12,1626)$

Next, we consider the codes of length 4 . The types of self-dual codes of length 4 are $1^{e_{0}} p^{e_{1}}$, where $2 e_{0}+e_{1}=4$. Thus any self-dual code C of length 4 over $\mathbb{Z}_{p^{2}}$ is equivalent to one of

1. $(p)^{4}$,
2. $C_{a, b}^{2}:\left(\begin{array}{lll}1 & a & b \\ & 1 & -b\end{array}\right)$
3. $C_{a, b, c}^{1}:\left(\begin{array}{ccc}1 & a & b \\ p & c+p c_{1} \\ & p & p c_{1} \\ p & p c_{3}\end{array}\right)$ where $0 \leq a, b, c<p$ and $c \neq 0$.

There are two classes of self-dual codes over \mathbb{Z}_{4} of length 4:

$$
(2) \oplus(2) \oplus(2) \oplus(2), \quad\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
& 2 & 2
\end{array}\right)
$$

and there are three classes of self-dual codes over \mathbb{Z}_{9} of length 4 :

$$
(3) \oplus(3) \oplus(3), \quad\left(\begin{array}{llll}
1 & 1 & 4 \\
& 1 & 5 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 1 & 4 \\
& 3 & 4 & 4 \\
& 3 & 6
\end{array}\right)
$$

Theorem 3.3. Let $p \neq 2,3$. Then the self-dual code

$$
C_{a, b}^{2}:\left(\begin{array}{ccc}
1 & a & b \\
& 1 & b \\
1 & -b & a
\end{array}\right)
$$

over $\mathbb{Z}_{p^{2}}$ is one of the following four classes of inequivalent codes:

Class	$C_{a, b}^{2}$	$\operatorname{Aut}\left(C_{a, b}^{2}\right)$
(i)	$a^{2}+1=0, b=0$	$4 . B_{8}$
(ii)	$a^{6}=1, a \neq \pm 1$	$2 . A_{4}$
(iii)	$a^{2}=1, b^{2}+2=0$	$2 . B_{8}$
(iv)	else	$2 . B_{4}$

Codes from classes (i),(ii),(iii) are unique, if exist, up to equivalence.
Theorem 3.4. For $p \neq 2,3$, let $N_{1}, N_{2}, N_{3}, N_{4}$ be the number of class (i)), (iii), (iv) self-dual codes over $\mathbb{Z}_{p^{2}}$ of length 4 and free rank 2, respectively. These numbers are determined as follows.

$p(\bmod 24)$	N_{1}	N_{2}	N_{3}	N_{4}
1	1	1	1	$\frac{p^{2}+p-26}{24}$
5	1	0	0	$\frac{p^{2}+p-6}{24}$
7	0	1	0	$\frac{p^{2}+p-8}{24}$
11	0	0	1	$\frac{p^{2}+p-12}{24}$
13	1	1	0	$\frac{p^{2}+p-14}{24}$
17	1	0	1	$\frac{p^{2}+p-18}{24}$
19	0	1	1	$\frac{p^{2}+p-20}{24}$
23	0	0	0	$\frac{p^{2}+p}{24}$

Proof. The number of self-dual codes over $\mathbb{Z}_{p^{2}}$ of length 4 and free rank 2 is given by $\sigma_{p}(4,2) p=2(p+1) p$. By the mass formula

$$
N_{4}=\frac{1}{48}\left(2(p+1) p-12 N_{1}-16 N_{2}-24 N_{3}\right)
$$

Here $48=\frac{2^{4} \cdot 4!}{\left|2 \cdot B_{4}\right|}, 12=\frac{2^{4} \cdot 4!}{\left|4 \cdot B_{8}\right|}$, etc.
Theorem 3.5. Let $p \neq 2,3$. Then any self-dual code $C_{a, b, c}^{1}$ of rank 3 is equivalent to one of the following inequivalent codes:

Class	$C_{a, b, c}^{1}$	$\operatorname{Aut}\left(C_{a, b, c}^{1}\right)$
(i)	$a=b=0$	$8 .\langle(14),(23)\rangle$
(ii)	$b=0, a^{6}=1, a^{2} \neq 1, c^{2} \neq 1$	$4 .\langle(124)\rangle$
(iii)	$b=0, a^{2}=1$	$4 . S_{2}$
(iv)	$b=0, a \neq 0, a^{6} \neq 1, c^{6} \neq 1, a^{2} \neq c^{2}$	$4 .(1)$
(v)	$a^{2}=1 \neq b^{2}=c^{2}$	$2 .\langle(1324),(12)\rangle$
(vi)	$a^{2}=b^{2}=1$	$2 . S_{3}$
(vii)	$1=a^{2}, b^{2}, c^{2}$ distinct	$2 . S_{2}$
(viii)	$a^{2}=-1, b^{2} \neq \pm 1, b^{4} \neq-1$	$2 .\{(1),(14)(23)\}$
(ix)	$a^{2}=-1, b^{2} \neq \pm 1, b^{4}=-1$	$2 .\langle(1243)\rangle$
(x)	$1, a^{2}, b^{2}, c^{2}$ are all distinct, $a^{2}, b^{2}, c^{2} \neq-1$	$2 .(1)$

Proof. It is enough to classify $R(C)=\langle(1, a, b, c)\rangle$ over \mathbb{Z}_{p}. When $b=0$, the classification goes back to the case of $C_{a, c}^{2}$. Suppose $b \neq 0$. For $t=\gamma \sigma \in \mathbb{T}, \sigma \in S_{4}, k \in \mathbb{Z}_{p}$, we have that

$$
(1, a, b, c) \gamma \sigma=k(1, a, b, c) \Longleftrightarrow\left(1, a^{2}, b^{2}, c^{2}\right) \sigma=k^{2}\left(1, a^{2}, b^{2}, c^{2}\right)
$$

Thus $k^{2}=1, a^{2}, b^{2}, c^{2}$ and σ can be determined once we know the equalities among $1, a^{2}, b^{2}, c^{2}$. For example, suppose that $1=a^{2}, b^{2}, c^{2}$ are distinct. Now $\left(1,1, b^{2}, c^{2}\right) \sigma=\left(k^{2}, k^{2}, k^{2} b^{2}, k^{2} c^{2}\right)$ implies that $k^{2}=1$, $\sigma(1)=1,2$ and $\sigma(3)=3, \sigma(4)=4$. Next, for $\gamma \in \mathbb{D},(1,1, b, c) \gamma=$ $k(1,1, b, c)$ implies $\gamma= \pm(1,1,1,1)$.

Theorem 3.6. For $p \neq 2,3$, let $N_{1}, N_{2}, \cdots, N_{10}$ be the number of class (i), (ii), $\cdots,(\mathrm{x})$ self-dual codes over $\mathbb{Z}_{p^{2}}$ of length 4 and free rank 1, respectively. These numbers are determined as follows.

$p(24)$	N_{1}	N_{2}	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}	N_{9}	N_{10}
1	1	1	1	$\frac{p-25}{24}$	1	1	$\frac{p-17}{8}$	$\frac{p-9}{8}$	1	$\frac{(p+1)^{2}-28 p+216}{8}$
5	1	0	0	$\frac{p-5}{24}$	1	0	$\frac{p-5}{8}$	$\frac{p-5}{8}$	0	$\frac{(p+1)^{2}-28 p+104}{192}$
7	0	1	0	$\frac{p-7}{24}$	0	1	$\frac{p-7}{8}$	0	0	$\frac{(p+1)^{2}-16 p+48}{8}$
11	0	0	1	$\frac{p-11}{24}$	0	0	$\frac{p-3}{8}$	0	0	$\frac{(p+1)^{2}-1216 p+32}{192}$
13	1	1	0	$\frac{p-13}{24}$	1	1	$\frac{p-13}{8}$	$\frac{p-5}{8}$	0	$\frac{(p+1)^{2}-28 p+168}{8}$
17	1	0	1	$\frac{p-17}{24}$	1	0	$\frac{p-9}{8}$	$\frac{p-9}{8}$	1	$\frac{(p+1)^{2}-28 p+152}{192}$
19	0	1	1	$\frac{p-19}{24}$	0	1	$\frac{p-11}{8}$	0	0	$\frac{(p+1)^{2}-16 p+96}{192}$
23	0	0	0	$\frac{p+1}{24}$	0	0	$\frac{p+1}{8}$	0	0	$\frac{(p+1)^{2}-16 p-16}{192}$

Proof. We consider the classes (viii) and (ix). In these cases $\left\{1, a^{2}, b^{2}, c^{2}\right\}=$ $\left\{1,-1, b^{2},-b^{2}\right\}$, where $b^{2} \neq 0, \pm 1, p \equiv 1(\bmod 4)$. There exists b with $b^{4}=-1$ if and only if $p \equiv 1(\bmod 8)$, and in that case, $(1, a, b, c)=$ $(1, i, \pm b, \pm i b)$ or $(1, i, \pm b i, \pm b)$ with $i^{2}=-1$, and hence $N_{9}=1$.

Now $\left(1, a^{2}, b^{2}, c^{2}\right) \sim\left(1,-1, \pm b^{2}, \mp b^{2}\right) \sim\left(1,-1, \pm 1 / b^{2}, \mp 1 / b^{2}\right)$. These four are distinct iff $b^{4} \neq-1$. Thus $4 N_{8}+2 N_{9}=\frac{(p-1)}{2}-2$.

Once N_{1}, \cdots, N_{9} is determined, N_{10} can be computed by the mass formula:

$$
\sum_{i} \frac{2^{4} \cdot 4!}{\left|\operatorname{Aut}\left(C_{i}\right)\right|}=3 p^{2}+4 p+2,
$$

where C_{i} runs through the representatives of inequivalent self-dual codes.

Finally we give the complete classification for small p 's in the following table. Here (a, b, c) denotes the codes $C_{a, b, c}^{1}$.

p^{2}	i	ii	iii	iv	v
5^{2}	$(0,0,7)$				$(1,2,12)$
7^{2}		$(2,0,17)$			
11^{2}			$(1,0,19)$		
13^{2}	$(0,0,70)$	$(3,0,43)$			$(1,5,34)$
17^{2}	$(0,0,38)$		$(1,0,24)$		$(1,4,72)$
19^{2}		$(7,0,46)$	$(1,0,63)$		
23^{2}				$(2,0,169)$	
29^{2}	$(0,0,41)$			$(2,0,71)$	$(1,12,70)$
31^{2}		$(5,0,161)$		$(4,0,142)$	
37^{2}	$(0,0,117)$	$(10,0,248)$		$(3,0,510)$	$(1,6,228)$

p^{2}	vi	vii	viii	ix	x
5^{2}					
7^{2}	$(1,1,12)$				
11^{2}		$(1,2,29)$			
13^{2}	$(1,1,45)$		$(5,6,48)$		
17^{2}		$(1,6,110)$	$(4,5,139)$	$(4,8,53)$	
19^{2}	$(1,1,137)$	$(1,5,50)$			$(2,3,104)$
23^{2}		$(1,3,239)$			
		$(1,6,56)$		$(2,4,212)$	
		$(1,7,100)$			
29^{2}		$(1,2,136)$	$(12,13,47)$		
		$(1,6,181)$	$(12,14,325)$		$(3,5,96)$
		$(1,11,333)$	$(12,19,149)$		
31^{2}	$(1,1,82)$	$(1,2,98)$			$(2,44,234)$
		$(1,3,446)$			$(3,9,289)$
		$(1,9,107)$			$(2,53)$
37^{2}	$(1,1,206)$	$(1,3,64)$	$(6,7,618)$	$(6,8,248)$	
		$(1,9,425)$	$(6,9,609)$		$(2,13,97)$
			$(6,12,298)$		$(3,4,495)$

Remark. Many of the results in this article reappear in [3] with more details.

References

[1] J.M.P. Balmaceda, R.A.L. Betty and F.R. Nemenzo, Mass formula for self-dual codes over $\mathbb{Z}_{p^{2}}$, Discrete Math. 308 (2009), 2984-3002
[2] K. Betsumiya, S. Georgiou, T.A. Gulliver, M. Harada, and C. Kououvinos, On self-dual codes over some prime fields, Discrete Math. 262 (2009), 37-58.
[3] W. Choi, The classification of self-dual codes over Galois rings of length 4, Ph.D thesis, Kangwon National University, 2017.
[4] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Comin. Theory Ser. A 62 (1993), 30-45.
[5] R. Lidl and H. Neiderreiter, "Finite fields" in Encyclop. Math. Its Applic. vol. 20. 2nd ed., Cambridge University Press, Cambridge, 1997
[6] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
[7] G. Nebe, E. Rains and N.J.A. Sloane, Self-dual codes and invariant theory, Springer-Verlag, 2006
[8] Y. H. Park, The classification of self-dual modular codes, Finite Fields Appl. 17 (2011), 442-460
[9] V.S. Pless, The number of isotropic subspaces in a finite geometry, Atti. Accad. Naz. Lincei Rend. 39 (1965) 418-421
[10] V.S. Pless, On the uniqueness of the Golay codes, J. Combin. Theory 5 (1968) 215-228
[11] E. Rains and N.J.A. Sloane, Self-dual codes, in the Handbook of Coding Theory, V.S. Pless and W.C. Huffman, eds., Elsevier, Amsterdam, 1998, 177-294.

Whan-hyuk Choi

Department of Mathematics
Kangwon National University
Chuncheon, Korea
E-mail: whchoi@kangwon.ac.kr

Young Ho Park

Department of Mathematics
Kangwon National University
Chuncheon, Korea
E-mail: yhpark@kangwon.ac.kr

[^0]: Received August 9, 2017. Revised August 30, 2017. Accepted September 13, 2017.

 2010 Mathematics Subject Classification: 11T71, 94B60.
 Key words and phrases: self-dual code, modular codes.
 \dagger This research is supported by 2015 Research Grant from Kangwon National University (No. 520150414).

 * Corresponding author.
 (c) The Kangwon-Kyungki Mathematical Society, 2017.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

