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WEAK FUZZY EQUIVALENCE RELATIONS AND

WEAK FUZZY CONGRUENCES

Inheung Chon

Abstract. We define a weak fuzzy equivalence relation and a weak
fuzzy congruence and develop some properties of the weak fuzzy
equivalence relations and the weak fuzzy congruences on semigroups.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([7]).
Subsequently, many researchers ([3], [4], [5]) studied fuzzy relations in
various contexts. The standard definition of a reflexive fuzzy relation µ
on a set X is µ(x, x) = 1 for all x ∈ X and that of a symmetric fuzzy
relation µ is µ(x, y) = µ(y, x) for all x, y ∈ X. These definitions have
seemed to be too strong. We suggest a weak reflexive fuzzy relation µ
in a set X as µ(x, x) ≥ ε > 0 for all x ∈ X and inft∈X µ(t, t) ≥ µ(y, z)
for all y 6= z ∈ X and suggest a weak symmetric fuzzy relation as
min [µ(x, y), µ(y, x)] > 0 or µ(x, y) = µ(y, x) = 0 for all x, y in X such
that x 6= y. We define a weak fuzzy equivalence relation and a weak
fuzzy congruence using the weak reflexive and symmetric conditions and
develop some properties of those relations and those congruences on
semigroups.
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In section 2 we define a weak fuzzy equivalence relation and recall
some basic properties of fuzzy relations which will be used in next sec-
tions. In section 3 we discuss some properties of the weak fuzzy equiv-
alence relations, characterize the weak fuzzy equivalence relation gen-
erated by a fuzzy relation on a set, and develop some lattice theoretic
properties of the fuzzy equivalence relations. In section 4 we develop
some properties of the weak fuzzy congruences, characterize the weak
fuzzy congruence generated by the fuzzy relation on a semigroup, find
the largest weak fuzzy congruence contained in the given weak fuzzy
congruence on a group, and give some lattice theoretic properties of the
weak fuzzy congruences on semigroups.

2. Preliminaries

We define a weak fuzzy equivalence relation and recall some basic
properties of fuzzy relations, weakly reflexive fuzzy relations, and weakly
symmetric fuzzy relations, which will be used in next sections.

Definition 2.1. A function ν from a set X to the closed unit interval
[0, 1] in R is called a fuzzy set in X. A function µ from a set S × S to
[0, 1] is called a fuzzy relation in S.

The standard definition of a reflexive fuzzy relation µ in a set X is
µ(x, x) = 1 for all x ∈ X and that of a symmetric fuzzy relation µ
is µ(x, y) = µ(y, x) for all x, y ∈ X. We redefine a fuzzy equivalence
relation by weakening reflexive and symmetric conditions.

Definition 2.2. Let µ be a fuzzy relation in a setX. Then µ is weakly
reflexive (briefly, w-reflexive) iff µ(x, x) ≥ ε > 0 and inft∈X µ(t, t) ≥
µ(x, y) for all x, y ∈ X such that x 6= y. µ is weakly symmetric (briefly,
w-symmetric) iff min [µ(x, y), µ(y, x)] > 0 or µ(x, y) = µ(y, x) = 0 for all
x, y in X such that x 6= y. The composition λ ◦ µ of two fuzzy relations
λ, µ in X is the fuzzy subset of X ×X defined by

(λ ◦ µ)(x, y) = sup
z∈X

min(λ(x, z), µ(z, y)).

A fuzzy relation µ is transitive iff µ ◦ µ ⊆ µ. A fuzzy relation µ in X is
called a weak fuzzy equivalence relation iff µ is w-reflexive, w-symmetric,
and transitive.
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Definition 2.3. Let µ be a fuzzy relation in a set X. µ−1 is defined
as a fuzzy relation in X by µ−1(x, y) = µ(y, x).

It is easy to see that (µ◦ ν)−1 = ν−1 ◦µ−1 for fuzzy relations µ and ν.

Proposition 2.4. Let µ and each νi be fuzzy relations in a set X for
all i ∈ I. Then µ ◦ (∩i∈Iνi) ⊆ ∩i∈I(µ ◦ νi) and (∩i∈Iνi) ◦µ ⊆ ∩i∈I(νi ◦µ).

Proof. Straightforward.

Proposition 2.5. Let µ be a fuzzy relation on a set X. Then ∪∞n=1 µ
n

is the smallest transitive fuzzy relation on X containing µ, where µn =
µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.3 of [6].

Proposition 2.6. Let µ be a fuzzy relation on a set X. If µ is
w-reflexive, then so is ∪∞n=1 µ

n, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See the proof of Theorem 3.4 in [1].

Proposition 2.7. Let µ and ν be w-symmetric fuzzy relations on a
set X. Then µ ∩ ν and µ ∪ ν are w-symmetric fuzzy relations.

Proof. Let x, y ∈ X with x 6= y. If µ(x, y) > 0 and ν(x, y) > 0, then
µ(y, x) > 0 and ν(y, x) > 0, and hence min [(µ∩ν)(x, y), (µ∩ν)(y, x)] >
0. If µ(x, y) = ν(x, y) = 0, then µ(y, x) = ν(y, x) = 0, and hence
(µ ∩ ν)(x, y) = (µ ∩ ν)(y, x) = 0. If µ(x, y) > 0 and ν(x, y) = 0, then
µ(y, x) > 0 and ν(y, x) = 0, and hence (µ ∩ ν)(x, y) = (µ ∩ ν)(y, x) = 0.
Similarly, if µ(x, y) = 0 and ν(x, y) > 0, then (µ ∩ ν)(x, y) = (µ ∩
ν)(y, x) = 0. Thus µ ∩ ν is w-symmetric. Similarly we may show that
µ ∪ ν is w-symmetric.

Proposition 2.8. Let µ be a fuzzy relation on a set X. If µ is w-
symmetric, then so is ∪∞n=1 µ

n, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See the proof of Lemma 6 in [2].
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3. Weak fuzzy equivalence relations

In this section we discuss some basic properties of the weak fuzzy
equivalence relations, characterize the weak fuzzy equivalence relation
generated by a fuzzy relation on a set, and develop some lattice theoretic
properties of the weak fuzzy equivalence relations.

Proposition 3.1. Let µ and ν be weak fuzzy equivalence relations
in a set X. Then µ ∩ ν is a weak fuzzy equivalence relation.

Proof. Clearly µ ∩ ν is w-reflexive. By Proposition 2.7, µ ∩ ν is w-
symmetric. By Proposition 2.4, [(µ∩ν)◦(µ∩ν)] ⊆ [µ◦(µ∩ν)]∩ [ν ◦(µ∩
ν)] ⊆ [(µ◦µ)∩(µ◦ν)]∩[(ν◦µ)∩(ν◦ν)] ⊆ [µ∩(µ◦ν)]∩[(ν◦µ)∩ν] ⊆ µ∩ν.
That is, µ ∩ ν is transitive. Thus µ ∩ ν is a weak fuzzy equivalence
relation.

It is easy to see that even though µ and ν are weak fuzzy equivalence
relations, µ∪ ν is not necessarily a weak fuzzy equivalence relation. We
find the weak fuzzy equivalence relation generated by µ ∪ ν.

Theorem 3.2. Let µ and ν be weak fuzzy equivalence relations in a
set X. Then the weak fuzzy equivalence relation generated by µ ∪ ν is
∪∞n=1(µ ∪ ν)n.

Proof. See the proof of Theorem 7 in [2].

We now turn to the characterization of the weak fuzzy equivalence
relation generated by a fuzzy relation in a set.

Theorem 3.3. Let µ be a fuzzy relation in a set X. Then the weak
fuzzy equivalence relation in X generated by µ is ∪∞n=1(µ ∪ ρ ∪ θ)

n. Here
θ is a fuzzy relation in X such that θ(x, y) ≤ µ(x, y) for all x, y ∈ X
with x 6= y and θ(t, t) = max [ε, supx 6=y, x,y∈X µ(x, y)] for all t ∈ X, and
ρ is a fuzzy relation in X such that ρ(z, z) = 0 for all z ∈ X and for all
x, y ∈ X such that x 6= y,

(1) if µ(x, y) = µ(y, x) = 0, then ρ(x, y) = ρ(y, x) = 0,
(2) if µ(x, y) > 0 and µ(y, x) = 0, then ρ(x, y) = 0 and ρ(y, x) =

min [µ(x, y), δ] for some δ > 0,
(3) if µ(x, y) > 0 and µ(y, x) > 0, then ρ(x, y) = µ(x, y) and ρ(y, x) =

µ(y, x).
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Proof. Let µ1 = µ∪ρ∪θ. Then µ1(x, x) = max [µ(x, x), ρ(x, x), θ(x, x)]
≥ θ(x, x) ≥ ε > 0. Let x, y ∈ X with x 6= y. Since θ(x, y) ≤ µ(x, y) ≤
θ(t, t) and ρ(x, y) ≤ θ(t, t) for all t ∈ X,

inf
t∈X

µ1(t, t) ≥ inf
t∈X

θ(t, t) ≥ max[µ(x, y), ρ(x, y), θ(x, y)] = µ1(x, y).

Thus µ1 is w-reflexive. By Proposition 2.6, ∪∞n=1µ
n
1 is w-reflexive. Let ν

be a weak fuzzy equivalence relation containing µ.
(i) We consider the case of µ(x, y) = 0 and µ(y, x) = 0. Since θ(x, y) ≤
µ(x, y), θ(x, y) = θ(y, x) = 0. Since ρ(y, x) = ρ(x, y) = 0, µ1(x, y) =
µ1(y, x) = 0. That is, µ1 is w-symmetric. Since µ1(x, y) = µ1(y, x) = 0,
µ1(x, y) ≤ ν(x, y) and µ1(y, x) ≤ ν(y, x).
(ii) We consider the case of µ(x, y) > 0 and µ(y, x) = 0. Since µ(x, y) ≤
ν(x, y), ν(x, y) > 0. Since ν is w-symmetric, ν(y, x) > 0. That is, there
exists δ ∈ R such that ν(y, x) > δ > 0. Since ρ(x, y) = 0 and θ(x, y) ≤
µ(x, y), µ1(x, y) = µ(x, y) > 0. Since ρ(y, x) = min [µ(x, y), δ] and
θ(y, x) ≤ µ(y, x), µ1(y, x) = ρ(y, x) > 0. Thus min [µ1(x, y), µ1(y, x)] >
0. That is, µ1 is w-symmetric. Clearly µ1(x, y) = µ(x, y) ≤ ν(x, y) and
µ1(y, x) = ρ(y, x) ≤ δ < ν(y, x).
(iii) We consider the case of µ(x, y) > 0 and µ(y, x) > 0. Since ρ(x, y) =
µ(x, y) and θ(x, y) ≤ µ(x, y), µ1(x, y) = µ(x, y) > 0. Since ρ(y, x) =
µ(y, x) and θ(y, x) ≤ µ(y, x), µ1(y, x) = µ(y, x) > 0. Thus min [µ1(x, y),
µ1(y, x)] > 0. That is, µ1 is w-symmetric. Clearly µ1(x, y) = µ(x, y) ≤
ν(x, y) and µ1(y, x) = µ(y, x) ≤ ν(y, x).
From (i), (ii), and (iii), µ1 is w-symmetric. By Proposition 2.8, ∪∞n=1µ

n
1

is w-symmetric. By Proposition 2.5, ∪∞n=1µ
n
1 is transitive. Thus ∪∞n=1µ

n
1

is a weak fuzzy equivalence relation containing µ. From (i), (ii), and
(iii), µ1(x, y) ≤ ν(x, y) for all x, y ∈ X such that x 6= y. Since µ(x, y) ≤
ν(x, y) ≤ ν(t, t), supx 6=y, x,y∈X µ(x, y) ≤ ν(t, t) for all t ∈ X, and hence
θ(t, t) ≤ ν(t, t). Clearly ρ(t, t) ≤ ν(t, t). That is, µ1(t, t) ≤ ν(t, t). Thus
µ1 ⊆ ν. Suppose that µk

1 ⊆ ν. Then

µk+1
1 (a, b) = (µ1 ◦ µk

1)(a, b) = sup
z∈X

min[µ1(a, z), µ
k
1(z, b)]

≤ sup
z∈X

min[ν(a, z), ν(z, b)] = (ν ◦ ν)(a, b).

Since ν is transitive, µk+1
1 ⊆ ν ◦ ν ⊆ ν. By the mathematical induction,

µn
1 ⊆ ν for all natural numbers n. Thus ∪∞n=1 µ

n
1 = µ1 ∪ (µ1 ◦ µ1)∪ (µ1 ◦

µ1 ◦ µ1) · · · ⊆ ν. Thus ∪∞n=1µ
n
1 is the weak fuzzy equivalence relation

generated by µ.
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We now turn to the lattice theoretic properties of weak fuzzy equiva-
lence relations. Let E(X) be the collection of all weak fuzzy equivalence
relations on a set X.

Theorem 3.4. (E(X),≤) is a complete lattice, where ≤ is a relation
on the set of all weak fuzzy equivalence relations on X defined by µ ≤ ν
iff µ(x, y) ≤ ν(x, y) for all x, y ∈ X.

Proof. See the proof of Theorem 9 in [2].

We define an addition on E(X) by µ + ν =< µ ∪ ν > and a mul-
tiplication on E(X) by µ · ν = µ ∩ ν, where < µ ∪ ν > is the weak
fuzzy equivalence relation generated by µ ∪ ν. Then for µ, ν ∈ E(X),
µ · ν ∈ E(X) by Proposition 3.1 and µ+ ν ∈ E(X) by Theorem 3.2.

Theorem 3.5. Let Ek(X) = {µ ∈ E(X) : µ = µ−1 and µ(c, c) =
k for all c ∈ X}. Then Ek(X) is a sublattice of (E(X),+, ·) for 0 <
ε ≤ k ≤ 1.

Proof. Let µ, ν ∈ Ek(X). Since µ = µ−1 and ν = ν−1, (µ ∩ ν)−1 =
µ−1 ∩ ν−1 = µ ∩ ν. Clearly (µ ∩ ν)(c, c) = k. Thus µ · ν ∈ Ek(X). The
weak fuzzy equivalence relation generated by µ ∪ ν is ∪∞n=1(µ ∪ ν)n by
Theorem 3.2. That is, µ+ν is ∪∞n=1(µ∪ν)n. Since µ = µ−1 and ν = ν−1,
(µ ∪ ν)−1 = µ−1 ∪ ν−1 = µ ∪ ν. Let ζ = µ ∪ ν. Then ζ = ζ−1. Suppose
(ζk)−1 = (ζ−1)k. Then

(ζ−1)k+1(x, y) = [ζ−1 ◦ (ζ−1)k](x, y) = sup
z∈X

min [ζ−1(x, z), (ζ−1)k(z, y)]

= sup
z∈X

min [ζ(z, x), (ζk)−1(z, y)] = sup
z∈X

min [ζk(y, z), ζ(z, x)]

= (ζk ◦ ζ)(y, x) = ζk+1(y, x) = (ζk+1)−1(x, y).

By the mathematical induction, (ζn)−1 = (ζ−1)n for all natural numbers
n. Thus

[∪∞n=1ζ
n]−1(x, y) = [∪∞n=1ζ

n](y, x) = [∪∞n=1(ζ
−1)n](y, x)

= [∪∞n=1(ζ
n)−1](y, x) = [∪∞n=1ζ

n](x, y).

That is, µ + ν = ∪∞n=1(µ ∪ ν)n = [∪∞n=1(µ ∪ ν)n)]−1 = (µ + ν)−1.
Clearly ζ(c, c) = k for all c ∈ X and ζ(a, b) ≤ k for all a, b ∈ X
such that a 6= b. Suppose ζp(a, b) ≤ k for all a, b ∈ X such that a 6= b.
Then ζp+1(a, b) = supz∈X min [ζp(a, z), ζ(z, b)] ≤ k. By the math-
ematical induction, ζn(a, b) ≤ k for all natural numbers n. Suppose
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ζm(c, c) = k. Since ζ(c, c) ≥ ζ(a, b) and ζm(c, c) = k ≥ ζm(a, b) for all
a, b, c ∈ X such that a 6= b, ζm+1(c, c) = supz∈X min [ζm(c, z), ζ(z, c)] =
min [ζm(c, c), ζ(c, c)] = k. By the mathematical induction, ζn(c, c) = k
for all natural numbers n. Thus (µ+ν)(c, c) = [∪∞n=1ζ

n](c, c) = k. Hence
µ+ ν ∈ Ek(X).

Definition 3.6. A lattice (L,+, ·) is called modular if (x + y) · z ≤
x+ (y · z) for all x, y, z ∈ L with x ≤ z.

Theorem 3.7. Let µ and ν be weak fuzzy equivalence relations in a
set X. Suppose that µ(c, c) = ν(c, c) for all c ∈ X and µ ◦ ν = ν ◦ µ.
Then µ ◦ ν is a weak fuzzy equivalence relation.

Proof. We may show that µ◦ν is w-reflexive (see the proof of Theorem
4.3 in [1]). Suppose that (µ◦ν)(x, y) = 0. Then supz∈X min [µ(x, z), ν(z, y)]
= 0. That is, min[µ(x, z), ν(z, y)] = 0 for all z ∈ X. Thus µ(x, z) = 0 or
ν(z, y) = 0 for all z ∈ X. Since µ and ν are w-symmetric, µ(z, x) = 0 or
ν(y, z) = 0 for all z ∈ X. Since µ◦ν = ν◦µ, (µ◦ν)(y, x) = (ν◦µ)(y, x) =
supz∈S min [ν(y, z), µ(z, x)] = 0. That is,

if (µ ◦ ν)(x, y) = 0, then min [(µ ◦ ν)(x, y), (µ ◦ ν)(y, x)] = 0.

Suppose that (µ◦ν)(x, y) > 0. Let (µ◦ν)(x, y) = supz∈X min [µ(x, z), ν(z, y)]
= p > 0. Then for any α > 0, there exists v ∈ X such that min [µ(x, v), ν(v, y)]
> p− α. Since p

2
> 0, there exists u ∈ X such that

min [µ(x, u), ν(u, y)] > p− p

2
=
p

2
> 0.

That is, µ(x, u) > 0 and ν(u, y) > 0. Since µ and ν are w-symmetric,
µ(u, x) > 0 and ν(y, u) > 0. Thus
(µ◦ν)(y, x) = (ν◦µ)(y, x) = supz∈X min [ν(y, z), µ(z, x)] ≥ min [ν(y, u), µ(u, x)]
> 0.
That is,

if (µ ◦ ν)(x, y) > 0, then min [(µ ◦ ν)(x, y), (µ ◦ ν)(y, x)] > 0.

Thus µ◦ν is w-symmetric. Since µ and ν are transitive and the operation
◦ is associative,

(µ◦ ν)◦ (µ◦ ν) = µ◦ (ν ◦µ)◦ ν = µ◦ (µ◦ ν)◦ ν = (µ◦µ)◦ (ν ◦ ν) ⊆ µ◦ ν.

Hence µ ◦ ν is a weak fuzzy equivalence relation.
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Lemma 3.8. Let µ and ν be weak fuzzy equivalence relations in a set
X such that µ(c, c) = ν(c, c) for all c ∈ X. If µ ◦ ν = ν ◦ µ, then µ ◦ ν is
the weak fuzzy equivalence relation in X generated by µ ∪ ν.

Proof. By Theorem 3.7, µ ◦ ν is a weak fuzzy equivalence relation.
We may show that µ ∪ ν ⊆ µ ◦ ν (see the proof of Lemma 4.3 in [1]).
That is, µ ◦ ν is a weak fuzzy equivalence relation containing µ∪ ν. Let
λ be a weak fuzzy equivalence relation in X containing µ∪ ν. Since λ is
transitive, µ ◦ ν ⊆ (µ ∪ ν) ◦ (µ ∪ ν) ⊆ λ ◦ λ ⊆ λ. Thus µ ◦ ν is the weak
fuzzy equivalence relation generated by µ ∪ ν.

It is well known that if µ and ν are equivalence relations on a set X
and µ ◦ ν = ν ◦ µ, then µ ◦ ν is the equivalence relation on X generated
by µ ∪ ν. Lemma 3.8 may be considered as a generalization of this in
the weak fuzzy equivalence relations.

Theorem 3.9. LetX be a set and letH be a sublattice of (Ek(X),+, ·)
such that µ ◦ ν = ν ◦ µ for all µ, ν ∈ H. Then H is a modular lattice for
k such that 0 < ε ≤ k ≤ 1.

Proof. Let µ, ν, ρ ∈ H with µ ≤ ρ. We may show that (µ ◦ ν) · ρ ≤
µ ◦ (ν · ρ) (see the proof of Theorem 4.4 in [1]). Since µ, ν ∈ Ek(X),
µ(c, c) = ν(c, c) = k for all c ∈ X. By Lemma 3.8, µ ◦ ν is the weak
fuzzy equivalence relation generated by µ ∪ ν. That is, µ + ν = µ ◦ ν.
Since µ, ν ·ρ ∈ H, µ◦ (ν ·ρ) = (ν ·ρ)◦µ. Clearly µ(c, c) = (ν ·ρ)(c, c) = k
for all c ∈ X. By Lemma 3.8, µ ◦ (ν · ρ) is the weak fuzzy equivalence
relation generated by µ ∪ (ν · ρ). That is, µ+ (ν · ρ) = µ ◦ (ν · ρ). Thus
(µ+ ν) · ρ ≤ µ+ (ν · ρ). Hence H is modular.

Corollary 3.10. IfX is a group and 0 < ε ≤ k ≤ 1, then (Ek(X),+, ·)
is a modular lattice.

Proof. It is easy to see that µ ◦ ν = ν ◦ µ for all µ, ν ∈ Ek(X) since
X is a group (see the proof of Proposition 4.3 in [6]). By Theorem 3.9,
(Ek(X),+, ·) is modular.
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4. Weak fuzzy congruences on semigroups

In this section we recall some basic properties of the weak fuzzy con-
gruences, characterize the weak fuzzy congruence generated by a fuzzy
relation on a semigroup, find the largest weak fuzzy congruence con-
tained in the given weak fuzzy congruence on a group, and develop some
lattice theoretic properties of the weak fuzzy congruences on semigroups.

Definition 4.1. Let µ be a fuzzy relation in a set X. µ is called
fuzzy left (right) compatible if µ(x, y) ≤ µ(zx, zy) (µ(x, y) ≤ µ(xz, yz))
for all x, y, z ∈ X. A weak fuzzy equivalence relation on X is called a
weak fuzzy left congruence (right congruence) if it is fuzzy left compatible
(right compatible). A weak fuzzy equivalence relation on X is called a
weak fuzzy congruence if it is a weak fuzzy left and right congruence.

Proposition 4.2. If µ is a fuzzy relation on a semigroup S that is
fuzzy left and right compatible, then so is ∪∞n=1 µ

n, where µn = µ ◦ µ ◦
· · · ◦ µ.

Proof. See Proposition 3.6 of [6].

Proposition 4.3. Let µ and ν be weak fuzzy congruences in a set
X. Then µ ∩ ν is a weak fuzzy congruence.

Proof. Clearly µ∩ν is fuzzy left and right compatible. By Proposition
3.1, µ ∩ ν is a weak fuzzy congruence.

It is easy to see that even though µ and ν are weak fuzzy congruences,
µ∪ν is not necessarily a weak fuzzy congruence. We find the weak fuzzy
congruence generated by µ ∪ ν in the following proposition.

Proposition 4.4. Let µ and ν be weak fuzzy congruences on a semi-
group S. Then the weak fuzzy congruence generated by µ ∪ ν in S is
∪∞n=1(µ ∪ ν)n.

Proof. It is easy to see that µ ∪ ν is fuzzy left and right compatible.
By Proposition 4.2, ∪∞n=1(µ∪ ν)n is fuzzy left and right compatible. We
may show that ∪∞n=1(µ∪ ν)n is the weak fuzzy congruence generated by
µ ∪ ν by the same way as shown in Theorem 3.2.

We now turn to the characterization of the weak fuzzy congruence
generated by a fuzzy relation on a semigroup.
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Definition 4.5. Let µ be a fuzzy relation on a semigroup S and let
S1 = S ∪ {e}, where e is the identity of S. We define the fuzzy relation
µ∗ on S as

µ∗(x, y) =
⋃

c,d∈S1,cad=x,cbd=y

µ(a, b) for all x, y ∈ S.

Proposition 4.6. Let µ and ν be two fuzzy relations on a semigroup
S. Then

(1) µ ⊆ µ∗

(2) (µ∗)−1 = (µ−1)∗

(3) If µ ⊆ ν, then µ∗ ⊆ ν∗

(4) (µ ∪ ν)∗ = µ∗ ∪ ν∗
(5) µ = µ∗ if and only if µ is fuzzy left and right compatible
(6) (µ∗)∗ = µ∗

Proof. See Proposition 3.5 of [6].

Theorem 4.7. Let µ be a fuzzy relation on a semigroup S. Then the
weak fuzzy congruence in S generated by µ is ∪∞n=1(µ

∗ ∪ ρ∗ ∪ θ∗)n, where
θ is a fuzzy relation in S such that θ(x, y) ≤ µ(x, y) for all x, y ∈ S with
x 6= y and θ(t, t) = max [ε, supx 6=y, x,y∈S µ(x, y)] for all t ∈ S, and ρ is a
fuzzy relation in S such that ρ(z, z) = 0 for all z ∈ S and for all x, y ∈ S
such that x 6= y,

(1) if µ(x, y) = µ(y, x) = 0, then ρ(x, y) = ρ(y, x) = 0,
(2) if µ(x, y) > 0 and µ(y, x) = 0, then ρ(x, y) = 0 and ρ(y, x) =

min [µ(x, y), δ] for some δ > 0,
(3) if µ(x, y) > 0 and µ(y, x) > 0, then ρ(x, y) = µ(x, y) and ρ(y, x) =

µ(y, x).

Here µ∗, ρ∗, θ∗ are fuzzy relations defined in Definition 4.5.

Proof. Let µ1 = µ ∪ ρ ∪ θ. By (4) of Proposition 4.6,

µ∗1 = (µ ∪ ρ ∪ θ)∗ = µ∗ ∪ ρ∗ ∪ θ∗.

Since µ1(x, x) ≥ θ(x, x) ≥ ε > 0, µ∗1(x, x) ≥ ε by (1) of Proposition 4.6.
Let x, y ∈ X with x 6= y and let S1 = S ∪ {e}, where e is the identity of
S. Since x 6= y implies a 6= b in Definition 4.5,

µ∗(x, y) ≤ sup
x6=y∈S

µ(x, y) ≤ θ(t, t)
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for all t ∈ S. Since θ(x, y) ≤ µ(x, y), θ∗(x, y) ≤ µ∗(x, y) by (3) of Propo-
sition 4.6. That is, θ∗(x, y) ≤ θ(t, t). Since ρ(a, b) ≤ supx 6=y∈S µ(x, y)
for all a, b ∈ S,

ρ∗(x, y) ≤ sup
x 6=y∈S

µ(x, y) ≤ θ(t, t)

for all t ∈ S. Thus µ∗1(x, y) ≤ θ(t, t), and hence

inf
z∈S

µ∗1(z, z) ≥ inf
z∈S

θ∗(z, z) ≥ θ(t, t) ≥ µ∗1(x, y).

Thus µ∗1 is w-reflexive. By Proposition 2.6, ∪∞n=1 (µ∗1)
n is w-reflexive.

(i) Suppose that µ∗1(x, y) = max[µ∗(x, y), ρ∗(x, y), θ∗(x, y)] = 0. Then
µ∗(x, y) = 0 and ρ∗(x, y) = 0. Since ρ∗(x, y) = 0, ρ(α, β) = 0 for
every α, β ∈ S such that cαd = x and cβd = y for c, d ∈ S1. Since
µ∗(x, y) = 0, µ(α, β) = 0 for every α, β ∈ S such that cαd = x and
cβd = y for c, d ∈ S1. By the hypothesis, µ(β, α) = ρ(β, α) = 0 for
every α, β ∈ S such that cαd = x and cβd = y for c, d ∈ S1. That is,
µ∗(y, x) = ρ∗(y, x) = 0. Since θ∗(y, x) ≤ µ∗(y, x), µ∗1(y, x) = 0. Thus
min [µ∗1(x, y), µ∗1(y, x)] = 0.
(ii) Suppose that µ∗1(x, y) > 0. Since θ∗(x, y) ≤ µ∗(x, y), max [µ∗(x, y),
ρ∗(x, y)] > 0. Thus µ∗(x, y) > 0 or ρ∗(x, y) > 0. If µ∗(x, y) > 0, then
µ(α, β) > 0 for some α, β ∈ S such that cαd = x and cβd = y for
c, d ∈ S1. By the hypothesis, ρ(β, α) > 0 for some α, β ∈ S such that
cαd = x and cβd = y for c, d ∈ S1. That is, ρ∗(y, x) > 0, and hence
µ∗1(y, x) > 0. If ρ∗(x, y) > 0, then ρ(α, β) > 0 for some α, β ∈ S such
that cαd = x and cβd = y for c, d ∈ S1. By the hypothesis, µ(β, α) > 0
for some α, β ∈ S such that cαd = x and cβd = y for c, d ∈ S1. That is,
µ∗(y, x) > 0, and hence µ∗1(y, x) > 0. Thus min [µ∗1(x, y), µ∗1(y, x)] > 0.
From (i) and (ii), µ∗1 is w-symmetric, and hence ∪∞n=1(µ

∗
1)

n is w-symmetric
by Proposition 2.8. By Proposition 2.5, ∪∞n=1(µ

∗
1)

n is transitive. Thus
∪∞n=1(µ

∗
1)

n is a weak fuzzy equivalence relation containing µ. By (4) and
(6) of Proposition 4.6,

(µ∗1)
∗ = (µ∗ ∪ ρ∗ ∪ θ∗)∗ = (µ∗)∗ ∪ (ρ∗)∗ ∪ (θ∗)∗ = µ∗ ∪ ρ∗ ∪ θ∗ = µ∗1.

By (5) of Proposition 4.6, µ∗1 is fuzzy left and right compatible. By
Proposition 4.2, ∪∞n=1(µ

∗
1)

n is fuzzy left and right compatible. Thus
∪∞n=1(µ

∗
1)

n is a weak fuzzy congruence containing µ. Let ν be a weak
fuzzy congruence containing µ.
(i)′ We consider the case of µ(x, y) = µ(y, x) = 0. Since ρ(x, y) =
ρ(y, x) = 0, µ1(x, y) ≤ ν(x, y) for all x, y ∈ S such that x 6= y.
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(ii)′ We consider the case of µ(x, y) > 0 and µ(y, x) = 0. Since µ(x, y) >
0, ν(x, y) > 0. Since ν is w-symmetric, ν(y, x) > 0. Thus ν(y, x) >
δ > 0 for some δ > 0. Since ρ(x, y) = 0 and ρ(y, x) = min [µ(x, y), δ],
ρ(y, x) < ν(y, x), and hence µ1(x, y) ≤ ν(x, y) for all x, y ∈ S such that
x 6= y.
(iii)′ We consider the case of µ(x, y) > 0 and µ(y, x) > 0. Since ρ(x, y) =
µ(x, y) and ρ(y, x) = µ(y, x), µ1(x, y) ≤ ν(x, y) for all x, y ∈ S such that
x 6= y.
From (i)′, (ii)′, and (iii)′, µ1(x, y) ≤ ν(x, y) for all x, y ∈ S such that
x 6= y. Since µ(x, y) ≤ ν(x, y) ≤ ν(t, t), supx 6=y, x,y∈X µ(x, y) ≤ ν(t, t)
for all t ∈ X, and hence θ(t, t) ≤ ν(t, t). Clearly ρ(t, t) ≤ ν(t, t). That
is, µ1(t, t) ≤ ν(t, t). Thus µ1 ⊆ ν. By (3) of Proposition 4.6, µ∗1 ⊆ ν∗.
Since ν is fuzzy left and right compatible, ν∗ = ν by (5) of Proposition
4.6. That is, µ∗1 ⊆ ν. Suppose that (µ∗1)

k ⊆ ν. Then

(µ∗1)
k+1(x, y) = (µ∗1 ◦ (µ∗1)

k)(x, y) = sup
z∈X

min[µ∗1(x, z), (µ
∗
1)

k(z, y)]

≤ sup
z∈X

min[ν(x, z), ν(z, y)] = (ν ◦ ν)(x, y).

Since ν is transitive, (µ∗1)
k+1 ⊆ ν◦ν ⊆ ν. By the mathematical induction,

(µ∗1)
n ⊆ ν for all natural numbers n. Thus

∪∞n=1 (µ∗1)
n = µ∗1 ∪ (µ∗1 ◦ µ∗1) ∪ (µ∗1 ◦ µ∗1 ◦ µ∗1) · · · ⊆ ν.

In next theorem, we find the largest weak fuzzy congruence contained
in the given weak fuzzy congruence on a group.

Theorem 4.8. Let µ be a weak fuzzy congruence on a group S. Then
the function ν : S × S → R defined by ν(a, b) = infx,y∈S µ(xay, xby) is
the largest weak fuzzy congruence on S contained in µ.

Proof. Let ν(a, b) = infx,y∈S µ(xay, xby). Clearly ν(a, a) ≥ ε > 0.
Since S is a group, c 6= d implies xcy 6= xdy for c, d, x, y ∈ S. Thus
inft∈S ν(t, t) = inft∈S infx,y∈S µ(xty, xty) = infx,y∈S inft∈S µ(xty, xty) ≥
infx,y∈S µ(xcy, xdy) = ν(c, d) for c, d ∈ S such that c 6= d. That is, ν is
weakly reflexive. Since µ is weakly symmetric,

min [ν(a, b), ν(b, a)] = min[ inf
x,y∈S

µ(xay, xby), inf
x,y∈S

µ(xby, xay)] > 0
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or ν(a, b) = ν(b, a) = 0. That is, ν is weakly symmetric. Since

sup
c∈S

min[ inf
x,y∈S

µ(xay, xcy), inf
x,y∈S

µ(xcy, xby)]

is a lower bound for the set { supc∈S min [µ(xay, xcy), µ(xcy, xby)] :
x, y ∈ S},

sup
c∈S

min [ inf
x,y∈S

µ(xay, xcy), inf
x,y∈S

µ(xcy, xby)]

≤ inf
x,y∈S

sup
c∈S

min [µ(xay, xcy), µ(xcy, xby)].

Since µ is transitive,

(ν ◦ ν)(a, b) ≤ inf
x,y∈S

sup
c∈S

min [µ(xay, xcy), µ(xcy, xby)]

≤ inf
x,y∈S

µ(xay, xby) = ν(a, b).

That is, ν is transitive. Thus ν is a weak fuzzy equivalence relation in
S. Since µ is compatible,

µ(a, b) ≤ µ(pa, pb) ≤ inf
y∈S

µ(pay, pby)

≤ inf
x,y∈S

µ(xpay, xpby) = ν(pa, pb).

It is easy to see that ν(a, b) = infx,y∈S µ(xay, xby) ≤ µ(a, b). Thus
ν(a, b) ≤ ν(pa, pb). Similarly ν(ap, bp) ≥ ν(a, b). That is, ν is a weak
fuzzy congruence on S. Let λ be a weak fuzzy congruence on S such
that λ ⊆ µ. Then λ(a, b) ≤ λ(xa, xb) ≤ λ(xay, xby) ≤ µ(xay, xby) for
all x, y ∈ S. That is, λ(a, b) ≤ infx,y∈S µ(xay, xby) = ν(a, b). Clearly
ν ⊆ µ. Thus ν is the largest weak fuzzy congruence on S contained in
µ.

We now turn to the lattice theoretic properties of the weak fuzzy
congruences on semigroups. Let C(S) be the collection of all weak fuzzy
congruences on a semigroup S. Then it is easy to see that (C(S),≤)
is a complete lattice, where ≤ is a relation on the set of all weak fuzzy
congruences on S defined by µ ≤ ν iff µ(x, y) ≤ ν(x, y) for all x, y ∈ S.
We define an addition on C(S) by µ+ν =< µ∪ν > and a multiplication
on C(S) by µ · ν = µ∩ ν, where < µ∪ ν > is the weak fuzzy congruence
generated by µ∪ν. Then for µ, ν ∈ C(S), µ ·ν ∈ C(S) and µ+ν ∈ C(S)
by Proposition 4.3 and Proposition 4.4, respectively. Let Ck(S) = {µ ∈
C(S) : µ = µ−1 and µ(c, c) = k for all c ∈ S}.

Theorem 4.9. Ck(S) is a sublattice of (C(S),+, ·) for 0 < ε ≤ k ≤ 1.
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Proof. We may show that Ck(S) is a sublattice of (C(S),+, ·) for
0 < ε ≤ k ≤ 1 by the same way as shown in the proof of Theorem
3.5.

Lemma 4.10. Let µ and ν be weak fuzzy congruences on a semigroup
S such that µ(c, c) = ν(c, c) for all c ∈ S. If µ ◦ ν = ν ◦ µ, then µ ◦ ν is
the weak fuzzy congruence on S generated by µ ∪ ν.

Proof. By Theorem 3.7, µ ◦ ν is a weak fuzzy equivalence relation.
Since S is a semigroup,

(µ ◦ ν)(x, y) = sup
a∈S

min[µ(x, a), ν(a, y)] ≤ sup
za∈S

min[µ(zx, za), ν(za, zy)]

≤ sup
t∈S

min[µ(zx, t), ν(t, zy)] = (µ ◦ ν)(zx, zy).

Thus µ◦ ν is fuzzy left compatible. Similarly we may show µ◦ ν is fuzzy
right compatible. Hence µ◦ ν is a weak fuzzy congruence on S. We may
show that µ ◦ ν is the weak fuzzy congruence generated by µ ∪ ν by the
same way as shown in the proof of Lemma 3.8.

It is well known that if µ and ν are congruences on a semigroup S
and µ ◦ ν = ν ◦ µ, then µ ◦ ν is the congruence on S generated by µ∪ ν.
Lemma 4.10 may be considered as a generalization of this in the weak
fuzzy congruences.

Theorem 4.11. Let S be a semigroup and let H be a sublattice of
(Ck(S),+, ·) such that µ ◦ ν = ν ◦ µ for all µ, ν ∈ H. Then H is a
modular lattice for 0 < ε ≤ k ≤ 1.

Proof. Let µ, ν, ρ ∈ H with µ ≤ ρ. Then we may show that (µ◦ν)·ρ ≤
µ ◦ (ν · ρ) by the same way as shown in the proof of Theorem 3.9. Since
µ, ν ∈ Ck(S), µ(c, c) = ν(c, c) = k for all c ∈ S. By Lemma 4.10, µ ◦ ν is
the fuzzy congruence generated by µ ∪ ν. That is, µ+ ν = µ ◦ ν. Since
µ, ν ·ρ ∈ H, µ◦(ν ·ρ) = (ν ·ρ)◦µ. Clearly µ(c, c) = (ν ·ρ)(c, c) = k for all
c ∈ S. By Lemma 4.10, µ◦(ν ·ρ) is the weak fuzzy congruence generated
by µ∪(ν ·ρ). That is, µ+(ν ·ρ) = µ◦(ν ·ρ). Thus (µ+ν) ·ρ ≤ µ+(ν ·ρ).
Hence H is modular.

Corollary 4.12. If S is a group and 0 < ε ≤ k ≤ 1, then (Ck(S),+, ·)
is a modular lattice.
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Proof. It is easy to see that µ ◦ ν = ν ◦ µ for all µ, ν ∈ Ck(S) since
S is a group (see the proof of Proposition 4.3 in [6]). By Theorem 4.11,
(Ck(S),+, ·) is modular.

Open Problems. In this note, we defined weak fuzzy equivalence re-
lations (or fuzzy congruences) and developed some crucial properties of
those relations (or congruences). It is an open problem to find weaker
fuzzy equivalence relations (or fuzzy congruences) which still have so
many nice properties as those relations (or congruences) in this note.
In Theorem 4.12, we found the largest weak fuzzy congruence contained
in a given weak fuzzy congruence on a group. We suggest a problem
of finding the largest weak fuzzy congruence contained in a given weak
fuzzy equivalence relation (or congruence) on a semigroup.
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