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ELLIPTIC BOUNDARY VALUE PROBLEM WITH TWO

SINGULARITIES

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate existence and multiplicity of the solu-
tions for elliptic boundary value problem with two singularities. We
obtain one theorem which shows that there exists at least one non-
trivial weak solution under some conditions on which the correspond-
ing functional of the problem satisfies the Palais-Smale condition.
We obtain this result by variational method and critical point the-
ory.

1. Introduction

Let Ω be a bounded domain of Rn with smooth boundary ∂Ω, n ≥ 3.
In this paper we investigate existence and multiplicity of the solutions for
the perturbation problem of a singular elliptic equation with Dirichlet
boundary condition

−∆u = au+
1

|u|p+1
+

1

|u− α|q+1
+ |u|r−1 in Ω, (1.1)
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u = 0 on ∂Ω,

where a, p, q and α are real constants, 2 < r < p < q and r < 2n
n−2

.
Our problems are characterized as singular eliptic problems with sin-

gularities at {u = 0} and {u = α}. We recommend the book [5] for the
singular elliptic problems. When p+1 > 0, since the pioneering work on
the subject in [2], these problem have been investigated in many ways.
For a survey on the scalar case we recommend the paper [3] and the
references therein. In the last decades, some works on the matter were
published focusing some other obstacles added to this kind of nonlin-
earities problems having critical growth and the case involving systems.
Ambrosetti-Prodi type problems for the critical growth case were studied
in [4]. For systems, we recommend the papers [1] and [3]. Essentially,
we work with variational techniques: We first prove that the associ-
ated functional of (1.1) satisfies Palais-Smale condition, and then we use
critical point theory.

Let λ1 < λ2 ≤ · · · ≤ λk ≤ · · · be eigenvalues of the eigenvalue prob-
lem −∆u = λu in Ω, u = 0 on ∂Ω, and φk be eigenfunctions belonging
to the eigenvalues λk, k ≥ 1. The eigenvalue problem (−∆ − a)u = µu
in Ω, u = 0 on ∂Ω has infinitely many eigenvalues µλi = λi − a and
corresponding eigenfunctions φk, k ≥ 1. If a < λ1, then

µλi > 0 ∀i ≥ 1

and

lim
i→∞

µλi
λi

= 1.

Let cµλi be eigenvectors corresponding to eigenvalues µλi = λi − a re-
spectively. Let us define the space

E = W 1,r
0 (Ω, R) = {u| ∇u ∈ Lr(Ω, R) with compact support in Ω}

with the norm

‖u‖W 1,r
0 (Ω,R) =

( ∫
Ω

|∇u|rdx
) 1
r for all r ≥ 1, for all u ∈ W 1,r

0 (Ω).

Let us set

Wλi = span{φi| −∆φi = λiφi},
Eµλi = {cµλiφ ∈ E| c ∈ R, φ ∈ Wλi}.

Then

E = ⊕i≥1Eµλi .
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Let us set

U = {u(x) ∈ E| u(x) 6= 0, u(x) 6= α for all x ∈ Ω},

∂U = {u(x) ∈ U | u(x0) = 0 for some x0 and u(x1) = α for some x1}.
In this paper we are trying to find weak solutions of (1.1) in W 1,r

0 (Ω, R)
with singularity at u = 0 and u = α. The weak solutions of (1.1) in U
satisfy∫

Ω

[−∆u · v − auv − 1

|u|p+1
v − 1

|u− α|q+1
v − |u|r−1v]dx = 0 ∀v ∈ U.

(1.2)
We note that there exists one to one corresponding between weak solu-
tions of (1.1) and critical points of the continuous and Frechét differen-
tiable functional

F (u) ∈ C1(U),

F (u) = Ψa(u)−
∫

Ω

[−1

p

1

|u|p
− 1

q

1

|u− α|q
+

1

r
|u|r]dx, (1.3)

where

Ψa(u) =
1

2

∫
Ω

[|∇u|2 − au2]dx,

which will be proved in Section 2.
Our main result is as follows:

Theorem 1.1. Assume that 2 < r < p < q, r < 2n
n−2

, a < λ1 and α
is a real constant. Then (1.1) has at least one nontrivial weak solution
u(x) such that

u(x) 6= 0 u(x) 6= α.

For the proof of Theorem 1.1 we approach the variational technique.
When 2 < r < p < q, r < 2n

n−2
and a < λ1, the functional F (u) satisfies

Palais-Smale condition, so we can use the variational linking method in
the critical point theory. The Outline of the proof of Theorem 1.1 is
as follows: In Section 2, we introduce eigenvalues and eigenfunctions of
the eigenvalue problem (−∆ − a) = µu in Ω, u = 0 on ∂Ω, introduce
eigenspaces spanned by the eigenfunctions corresponding to λi−a, inves-
tigate the properties of eigenspaces and prove that when 2 < r < p < q,
r < 2n

n−2
and a < λ1, the functional F (u) satisfies Palais-Smale condi-

tion. In Section 3, we divide the whole space E into two subspaces,
investigate the geometry of the sublevel sets of corresponding functional
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F of (1.1), find some inequalities of F (u) on two linked sublevel sets,
and prove Theorem 1.1.

2. Variational Properties

Lemma 2.1. Assume that 2 < r < p < q, r < 2n
n−2

, a < λ1 and α be a

real constant. Let u ∈ U and au+ 1
|u|p+1 + 1

|u−α|q+1 + |u|r−1 ∈ L1,r(Ω)\{0}.
Then all the solutions of

−∆u = au+
1

|u|p+1
+

1

|u− α|q+1
+ |u|r−1

belong to U .

Proof. Equation (1.1) can be rewritten by

u = (−∆)−1(au+
1

|u|p+1
+

1

|u− α|q+1
+ |u|r−1) in Ω, (2.1)

u = 0 on ∂Ω.

Then there exist constants D1 > 0 such that

‖u‖2
E = ‖(−∆)−1(au+

1

|u|p+1
+

1

|u− α|q+1
+ |u|r−1)‖2

E

= ‖∇(−∆)−1(au+
1

|u|p+1
+

1

|u− α|q+1
+ |u|r−1)‖2

Lr(Ω)

≤ D1‖au+
1

|u|p+1
+

1

|u− α|q+1
+ |u|r−1‖2

Lr(Ω).

Thus

‖u‖E <∞.
Thus the lemma is proved.

Lemma 2.2. Assume that 2 < r < p < q, r < 2n
n−2

, a < λ1 and
α be a real constant. Then the functional F (u) is continuous, Fréchet
differentiable with Fréchet derivative in U ,

DF (u)·v =

∫
Ω

[−∆u·v−au·v− v

|u|p+1
− v

|u− α|q+1
−|u|r−1·v]dx ∀v ∈ E.

(2.2)
Moreover DF ∈ C. That is F ∈ C1.
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Proof. Let us set H(x, u) = 1
2
au2− 1

p
1
|u|p −

1
q

1
|u−α|q + 1

r
|u|r, Hu(x, u) =

au+ 1
|u|p+1 + 1

|u−α|q+1 +|u|r−1. First we shall prove that F (u) is continuous.

For u, v ∈ U ,

|F (u+ v)− F (u))| = |1
2

∫
Ω

(−∆u−∆v) · (u+ v)dx−
∫

Ω

H(x, u+ v)dx

−1

2

∫
Ω

(−∆u) · udx+

∫
Ω

H(x, u)dx|

= |1
2

∫
Ω

[(−∆u · v −∆v · u−∆v · v)dx

−
∫

Ω

(H(x, u+ v)−H(x, u))dx|.

We have

|
∫

Ω

[H(x, u+v)−H(x, u)]dx| ≤ |
∫

Ω

[Hu(x, u)·v+O(‖v‖E)]dx| = O(‖v‖E).

(2.3)
Thus we have

|F (u+ v)− F (u)| = O(‖v‖E).

|F (u+ v)− F (u)−DF (u) · v| = O(‖v‖2
E).

Next we shall prove that F (u) is Fréchet differentiable. For u, v ∈ U ,

|F (u+ v)− F (u)−DF (u) · v|

= |1
2

∫
Ω

(−∆u−∆v) · (u+ v)dx−
∫

Ω

H(x, u+ v)dx

−1

2

∫
Ω

(−∆u) · udx+

∫
Ω

H(x, u)dx−
∫

Ω

(−∆u−Hu(x, u)) · vdx|

= |1
2

∫
Ω

[−∆u · v −∆v · u−∆v · v]dx

−
∫

Ω

[H(x, u+ v)−H(x, u)]dx−
∫

Ω

[(−∆u−Hu(x, u)) · v]dx|.

By (2.3),
||F (u+ v)− F (u)−DF (u) · v|| = O(‖v‖2

E).

Thus F ∈ C1.

(1.1) can be rewritten by

u = (−∆− a)−1(
1

|u|p+1
+

1

|u− α|q+1
+ |u|r−1) in Ω, (2.4)
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u = 0 on ∂Ω.

If a < λ1, then (−∆− a)−1 is positive operator. Since 1
|u|p+1 + 1

|u−α|q+1 +

|u|r−1 is positive, so if the weak solution of (1.1) exists, the weak solution
of (1.1) is positive. We shall show that if we choose a sequence (un)n ∈ U
such that F (un) → c > 0 and DF (un) → 0, then the sequence (un)n is
bounded as follows:

Lemma 2.3. (A priori estimate)
Assume that 2 < r < p < q, r < 2n

n−2
, a < λ1 and α be a real constant.

Let (un)n be any sequence in U and c ∈ R be any positive real number.
Then there exists a constant C = C(c) such that if (un)n ∈ U satisfies
that F (un)→ c and DF (un)→ 0, then

lim
n→∞

‖un‖Lr(Ω) ≤ C,

lim
n→∞

∫
Ω

1

|un|p
dx ≤ C, lim

n→∞

∫
Ω

1

|un − α|q
dx ≤ C.

Proof. Let c ∈ R be any positive real number. Let (un)n be any
sequence in U such that F (un)→ c and DF (un)→ 0. By a < λ1, there
exists a constant D > 0 such that

1

2

∫
Ω

[−∆un · un − au2
n]dx ≥ D‖un‖2

Lβ(Ω) > 0.

Thus we have

F (un) =
1

2

∫
Ω

[−∆un · un − au2
n]dx−

∫
Ω

[−1

p

1

|un|p
− 1

q

1

|un − α|q
+

1

r
|un|r]dx

> −
∫

Ω
[−1

p

1

|un|p
− 1

q

1

|un − α|q
+

1

r
|un|r]dx.
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By F (un) → c and DF (un) → 0, there exists a small number ε > 0
such that

c+ ε ≥ lim
n→∞

F (un)− lim
n→∞

1

2
DF (un) · un

= lim
n→∞

1

2

∫
Ω

[−∆un · un − au2
n]dx− lim

n→∞

∫
Ω

[−1

p

1

|un|p
− 1

q

1

|un − α|q
+

1

r
|un|r]dx

− lim
n→∞

1

2

∫
Ω

[−∆un · un − au2
n]dx

+ lim
n→∞

1

2

∫
Ω

[
1

|un|p+1
un + +

1

|un − α|q+1
unn|r−1un]dx

= lim
n→∞

∫
Ω

[(
1

2

un
|un|

+
1

p
)

1

|un|p
+ (

1

2

un
|un − α|

+
1

q
)

1

|un − α|q
+ (

1

2

un
|un|
− 1

r
)|un|r]dx.

By limn→∞DF (un) = 0, we have

lim
n→∞

un = lim
n→∞

(−∆− a)−1(
1

|un|p+1
+

1

|un − α|q+1
+ |un|r−1) in Ω,

u = 0 on ∂Ω.

Since (−∆−a)−1 is a positive operator and 1
|un|p+1 + 1

|un−α|q+1 +|un|r−1 > 0,

limn→∞ un > 0, ‖ un|un|‖Lr(Ω) = 1 and 1 < ‖ un
|un−α|‖Lr(Ω) < 1 + d for some

constant d > 0. Thus we have

c+ ε ≥ lim
n→∞

F (un)− lim
n→∞

1

2
DF (un) · un

= lim
n→∞

∫
Ω

[(
1

2
+

1

p
)

1

|un|p
+ (

1

2
+

1

q
)

1

|un − α|q
+ (

1

2
− 1

r
)|un|r]dx.

By 1
q
< 1

p
< 1

r
< 1

2
, 1

2
+ 1

p
> 0, 1

2
+ 1

q
> 0 and 1

2
− 1

r
> 0. Since

2 < r < p < q, r < 2n
n−2

, it follows that there exists a constant C > 0
such that

lim
n→∞

‖un‖rLr(Ω) < C,

lim
n→∞

∫
Ω

1

|un|p
dx < C, lim

n→∞

∫
Ω

1

|un − α|q
dx < C.

Lemma 2.4. If any sequence (un)n in U satisfies

un → u0 ∈ ∂U.
Then

F (un)→∞.
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Proof. The proof can be checked easily.

Now, we shall prove that F (u) satisfies (P.S.)c with c > 0 as follows:

Lemma 2.5. (Palais-Smale condition)
Assume that 2 < r < p < q, r < 2n

n−2
, a < λ1 and α be a real con-

stant. Let c be any positive real number. Then F(u) satisfies the Palais-
Smale condition: if (un)n ∈ U is any sequence such that F (un)→ c and
DF (un)→ 0, then (un) has a convergent subsequence (uni) such that

uni → u0 ∈ U.

Proof. Let (un)n be any sequence in U such that F (un) → c, c > 0
and DF (un) → 0. By Lemma 2.3, limn→∞ ‖un‖Lr(Ω) is finite. Thus
(un)n is bounded in Lr(Ω). Then up to subsequence, (un)n converges
weakly to some u0. From DF (un)→ 0 we have

lim
n→∞

un = lim
n→∞

(−∆− a)−1(
1

|un|p+1
+

1

|un − α|q+1
+ |un|r−1) in Ω.

By Lemma 2.3, (un)n and ( 1
|un|p+1 + 1

|un−α|q+1 + |un|r−1)n is bounded in

Lr(Ω). Since the embedding E into Lr−1(Ω), 2 < r < p < q, r−1 < n+2
n−2

,

is compact and (−∆− a)−1 is a compact operator, it follows that (un)n
has a convergent subsequence (uni) converging strongly to some u0 such
that

DF (u0) = lim
n→∞

DF (uni) = 0.

We claim that u0 6= 0 and u0 6= α. By contradiction, we suppose that
u0 = 0 and u0 6= α. Then u0 ∈ ∂U . Then by Lemma 2.4, F (u0) = ∞,
which is absurd. Thus

u0 6= 0, u0 6= α.

3. Proof of Theorem 1.1

Let E = W 1,r
0 (Ω, R) and let

Wλi = span{φi| −∆φi = λiφi},
Eµλi = {cµλiφ ∈ E| c ∈ R, φ ∈ Wλi}.
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Then we have E = ⊕i≥1Eλi . Let us set

E+ = (⊕µλi>0Eµλi ),

E− = (⊕µλi<0Eµλi ),

E0 = (⊕µλi=0Eµλi ).

Then

E = E+ ⊕ E− ⊕ E0.

Because µλi > 0 ∀i ≥ 1,

E0 = ∅ E− = ∅
and

E = E+.

We note that E can be split by two subspaces Y1 and Y2 such that

Y1 = span{eigenfunctions corresponding to eigenvalues µλi
with 1 ≤ i ≤ m, m ≥ 1}.

Y2 = span{eigenfunctions corresponding to eigenvalues µλi ,

with i ≥ m+ 1, m ≥ 1},
dimY1 <∞ and

E = Y1 ⊕ Y2.

Let us set

X1 = Y1 ∩ U,
X2 = Y2 ∩ U.

Then

U = X1 ⊕X2.

Let us set

Bρ = {(u ∈ U | ‖u‖E ≤ ρ},
∂Bρ = {u ∈ U | ‖u‖E = ρ},

Q = B̄R ∩X1 ⊕ {ρe| e ∈ ∂B1 ∩ Eµλm+1
⊂ ∂B1 ∩X2, 0 < ρ < R}.

Let us define

Γ = {γ ∈ C(Q̄, U)| γ = id on ∂Q}.

Lemma 3.1. Assume that 2 < r < p < q, r < 2n
n−2

, a < λ1 and
α be a real constant. Let e ∈ ∂B1 ∩ Eµλi ⊂ ∂B1 ∩ X2. Then there
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exist a small number ρ > 0 and a large number R > 0 such that if
u ∈ ∂Q = ∂(B̄R ∩X1 ⊕ {ρe| 0 < ρ < R}), then

sup
u∈∂Q

F (u) < 0

and

sup
u∈Q

F (u) <∞.

Proof. Let us choose an element e ∈ ∂B1 ∩X2 and u ∈ X1⊕{ρe| ρ >
0}. Then we have

F (u) =
1

2

∫
Ω

[−∆u · u− au2]dx−
∫

Ω

1

r
|u|rdx+

∫
Ω

[
1

p

1

|u|p
+

1

q

1

|u− α|q
]dx

≤ 1

2
µλm‖u‖2

Lr(Ω) +
1

2
ρ2µλm+1‖u‖2

Lr(Ω) −
1

r
‖u‖rLr(Ω)

+

∫
Ω

[
1

p

1

|u|p
+

1

q

1

|u− α|q
]dx.

By Lemma 2.3,
∫

Ω
1
p

1
|u|pdx < C̄ and

∫
Ω

1
q

1
|u−α|q dx < C̄ for some C̃. Thus

F (u) ≤ 1

2
µλm‖u‖2

Lr(Ω) +
1

2
ρ2µλm+1‖u‖2

Lr(Ω) −
1

r
‖u‖rLr(Ω) + C̄.

Since 2 < r, there exists a large number R > 0 such that if u ∈ ∂Q, then
F (u) < 0. Thus we have supu∈∂Q F (u) < 0. Moreover if u ∈ Q, then

F (u) ≤ 1
2
µλm‖u‖2

Lr(Ω) + 1
2
ρ2µλm+1‖u‖2

Lr(Ω) + C̄ <∞.

Lemma 3.2. Assume that 2 < r < p < q, r < 2n
n−2

, a < λ1 and α be
a real constant. Then there exist a small number ρ > 0 such that

inf
u∈∂Bρ∩X2

F (u) > 0

and

inf
u∈Bρ∩X2

F (u) > −∞.
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Proof. Let u ∈ ∂Bρ ∩X2. Then we have

F (u) =
1

2

∫
Ω

[−∆u · u− au2]dx−
∫

Ω

1

r
|u|rdx+

∫
Ω

[
1

p

1

|u|p
+

1

q

1

|u− α|q
]dx

≥ 1

2

∫
Ω

[−∆u · u− au2]dx−
∫

Ω

1

r
|u|rdx

≥ 1

2
µλm+1‖u‖2

Lr(Ω) −
1

r
‖u‖rLr(Ω).

Since 2 < r, there exists a small number ρ > 0 such that if u ∈ ∂Bρ∩X2,
then F (u) > 0. Thus infu∈∂Bρ∩X2 F (u) > 0. Moreover if (u, v) ∈ Bρ∩X2,
then F (u) ≥ −1

r
‖u‖rLr(Ω) > −∞. Thus infu∈Bρ∩X2 F (u) > −∞. So the

lemma is proved.

Let us define

c = inf
h∈Γ

sup
u∈Q

F (h(u)).

Lemma 3.3. Assume that 2 < r < p < q, r < 2n
n−2

, a < λ1 and α be
a real constant. Then

0 < inf
u∈∂Bρ∩X2

F (u) ≤ c = inf
h∈Γ

sup
u∈Q

F (h(u)) ≤ sup
u∈Q

F (u) <∞.

Proof. By Lemma 3.1, we have

inf
h∈Γ

sup
u∈Q

F (h(u)) ≤ sup
u∈Q

F (u) <∞.

By Lemma 3.2, we have

inf
h∈Γ

sup
u∈Q

F (h(u)) ≥ inf
u∈∂Bρ∩X2

F (u) > 0.

Thus the lemma is proved.

Proof of Theorem 1.1
Assume that 2 < r < p < q, r < 2n

n−2
, a < λ1 and α be a real constant.

We note that F (u) is continuous and Fréchet differentiable in U and
DF ∈ C. By Lemma 2.5, F (u) satisfies Palais-Smale condition. We
claim that c > 0 is a critical value of F (u), that is, F (u) has a critical
point u0 such that

F (u0) = c,

DF (u0) = 0.
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In fact, by contradiction, we suppose that c > 0 is not a critical value of
F (u). Then by Theorem A.4 in [6], for any ε̄ ∈ (0, c) > 0, there exists a
constant ε ∈ (0, ε̄) and a deformation η ∈ C([0, 1]× U,U) such that
(i) η(0, u) = u for all u ∈ U ,
(ii) η(s, u) = u for all s ∈ [0, 1] if F (u) /∈ [c− ε̄, c+ ε̄],
(iii) F (η(1, u)) ≤ c− ε if F (u) ≤ c+ ε.
We can choose h ∈ Γ such that

sup
u∈Q

F (h(u)) ≤ c+ ε

and

F (h(u)) < c− ε̄ on ∂Q.

This lead to F (h(u)) /∈ [c− ε̄, c+ ε̄]. Thus by (ii),

η(1, h(u)) = h(u) on ∂Q.

Hence η(1, h(u, v)) ∈ Γ. By (iii) and the definition of c,

c ≤ sup
u∈Q

F (η(1, h(u))) = sup
u∈Q

F (h(u)) ≤ c− ε,

which is a contradiction. Thus c is a critical value of F (u). Thus F (u)
has a critical point u0 with a critical value

c = F (u0)

such that

0 < inf
u∈∂Bρ∩X2

F (u) ≤ c ≤ sup
u∈Q

F (u) <∞.

By Lemma 2.4,

u0 6= 0 u0 6= α.

Thus (1.1) has at least one nontrivial solution u0 such that u0 6= 0 and
u0 6= α. Thus Theorem 1.1 is proved.
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