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INEQUALITIES FOR QUANTUM f-DIVERGENCE OF

CONVEX FUNCTIONS AND MATRICES

Silvestru Sever Dragomir

Abstract. Some inequalities for quantum f -divergence of matrices
are obtained. It is shown that for normalised convex functions it is
nonnegative. Some upper bounds for quantum f -divergence in terms
of variational and χ2-distance are provided. Applications for some
classes of divergence measures such as Umegaki and Tsallis relative
entropies are also given.

1. Introduction

Let (X,A) be a measurable space satisfying |A| > 2 and µ be a σ-
finite measure on (X,A) . Let P be the set of all probability measures on
(X,A) which are absolutely continuous with respect to µ. For P, Q ∈ P ,
let p = dP

dµ
and q = dQ

dµ
denote the Radon-Nikodym derivatives of P and

Q with respect to µ.
Two probability measures P, Q ∈ P are said to be orthogonal and we

denote this by Q ⊥ P if

P ({q = 0}) = Q ({p = 0}) = 1.

Let f : [0,∞)→ (−∞,∞] be a convex function that is continuous at
0, i.e., f (0) = limu↓0 f (u) .
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In 1963, I. Csiszár [3] introduced the concept of f -divergence as fol-
lows.

Definition 1. Let P, Q ∈ P . Then

(1.1) If (Q,P ) =

∫
X

p (x) f

[
q (x)

p (x)

]
dµ (x) ,

is called the f -divergence of the probability distributions Q and P.

Remark 1. Observe that, the integrand in the formula (1.1) is unde-
fined when p (x) = 0. The way to overcome this problem is to postulate
for f as above that

(1.2) 0f

[
q (x)

0

]
= q (x) lim

u↓0

[
uf

(
1

u

)]
, x ∈ X.

We now give some examples of f -divergences that are well-known and
often used in the literature (see also [2]).

1.1. The Class of χα-Divergences. The f -divergences of this class,
which is generated by the function χα, α ∈ [1,∞), defined by

χα (u) = |u− 1|α , u ∈ [0,∞)

have the form

(1.3) If (Q,P ) =

∫
X

p

∣∣∣∣qp − 1

∣∣∣∣α dµ =

∫
X

p1−α |q − p|α dµ.

From this class only the parameter α = 1 provides a distance in the topo-
logical sense, namely the total variation distance V (Q,P ) =

∫
X
|q − p| dµ.

The most prominent special case of this class is, however, Karl Pearson’s
χ2-divergence

χ2 (Q,P ) =

∫
X

q2

p
dµ− 1

that is obtained for α = 2.

1.2. Dichotomy Class. From this class, generated by the function
fα : [0,∞)→ R

fα (u) =


u− 1− lnu for α = 0;

1
α(1−α)

[αu+ 1− α− uα] for α ∈ R\ {0, 1} ;

1− u+ u lnu for α = 1;
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only the parameter α = 1
2

(
f 1

2
(u) = 2 (

√
u− 1)

2
)

provides a distance,

namely, the Hellinger distance

H (Q,P ) =

[∫
X

(
√
q −√p)2 dµ

] 1
2

.

Another important divergence is the Kullback-Leibler divergence ob-
tained for α = 1,

KL (Q,P ) =

∫
X

q ln

(
q

p

)
dµ.

1.3. Matsushita’s Divergences. The elements of this class, which is
generated by the function ϕα, α ∈ (0, 1] given by

ϕα (u) := |1− uα|
1
α , u ∈ [0,∞),

are prototypes of metric divergences, providing the distances [Iϕα (Q,P )]α .

1.4. Puri-Vincze Divergences. This class is generated by the func-
tions Φα, α ∈ [1,∞) given by

Φα (u) :=
|1− u|α

(u+ 1)α−1 , u ∈ [0,∞).

It has been shown in [19] that this class provides the distances [IΦα (Q,P )]
1
α .

1.5. Divergences of Arimoto-type. This class is generated by the
functions

Ψα (u) :=



α
α−1

[
(1 + uα)

1
α − 2

1
α
−1 (1 + u)

]
for α ∈ (0,∞) \ {1} ;

(1 + u) ln 2 + u lnu− (1 + u) ln (1 + u) for α = 1;

1
2
|1− u| for α =∞.

It has been shown in [21] that this class provides the distances [IΨα (Q,P )]min(α, 1α)

for α ∈ (0,∞) and 1
2
V (Q,P ) for α =∞.

For f continuous convex on [0,∞) we obtain the ∗-conjugate function
of f by

f ∗ (u) = uf

(
1

u

)
, u ∈ (0,∞)
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and

f ∗ (0) = lim
u↓0

f ∗ (u) .

It is also known that if f is continuous convex on [0,∞) then so is f ∗.
The following two theorems contain the most basic properties of f -

divergences. For their proofs we refer the reader to Chapter 1 of [20]
(see also [2]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, f1 be con-
tinuous convex on [0,∞). We have

If1 (Q,P ) = If (Q,P ) ,

for all P,Q ∈ P if and only if there exists a constant c ∈ R such that

f1 (u) = f (u) + c (u− 1) ,

for any u ∈ [0,∞).

Theorem 2 (Range of Values Theorem). Let f : [0,∞) → R be a
continuous convex function on [0,∞).

For any P,Q ∈ P , we have the double inequality

(1.4) f (1) ≤ If (Q,P ) ≤ f (0) + f ∗ (0) .

(i) If P = Q, then the equality holds in the first part of (1.4).

If f is strictly convex at 1, then the equality holds in the first part of
(1.4) if and only if P = Q;

(ii) If Q ⊥ P, then the equality holds in the second part of (1.4).

If f (0) + f ∗ (0) <∞, then equality holds in the second part of (1.4)
if and only if Q ⊥ P.

The following result is a refinement of the second inequality in The-
orem 2 (see [2, Theorem 3]).

Theorem 3. Let f be a continuous convex function on [0,∞) with
f (1) = 0 (f is normalised) and f (0) + f ∗ (0) <∞. Then

(1.5) 0 ≤ If (Q,P ) ≤ 1

2
[f (0) + f ∗ (0)]V (Q,P )

for any Q,P ∈ P .
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For other inequalities for f -divergence see [1], [5]- [15].

Motivated by the above results, in this paper we obtain some new
inequalities for quantum f -divergence of matrices. It is shown that for
normalised convex functions it is nonnegative. Some upper bounds for
quantum f -divergence in terms of variational and χ2-distance are pro-
vided. Applications for some classes of divergence measures such as
Umegaki and Tsallis relative entropies are also given.

2. Quantum f-Divergence

Quasi-entropy was introduced by Petz in 1985, [22] as the quantum
generalization of Csiszár’s f -divergence in the setting of matrices or von
Neumann algebras. The important special case was the relative entropy
of Umegaki and Araki.

In what follows some inequalities for the quantum f -divergence of
convex functions in the finite dimensional setting are provided.

LetM denotes the algebra of all n×n matrices with complex entries
and M+ the subclass of all positive matrices.

On complex Hilbert space (M, 〈·, ·〉2) , where the Hilbert-Schmidt in-
ner product is defined by

〈U, V 〉2 := tr (V ∗U) , U, V ∈M,

for A, B ∈M+ consider the operators LA :M→M and RB :M→M
defined by

LAT := AT and RBT := TB.

We observe that they are well defined and since

〈LAT, T 〉2 = 〈AT, T 〉2 = tr (T ∗AT ) = tr
(
|T ∗|2A

)
≥ 0

and

〈RBT, T 〉2 = 〈TB, T 〉2 = tr (T ∗TB) = tr
(
|T |2B

)
≥ 0

for any T ∈ M, they are also positive in the operator order of B (M) ,
the Banach algebra of all bounded operators on M with the norm ‖·‖2

where ‖T‖2 = tr
(
|T |2

)
, T ∈M.
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Since tr
(
|X∗|2

)
= tr

(
|X|2

)
for any X ∈M, then also

tr (T ∗AT ) = tr
(
T ∗A1/2A1/2T

)
= tr

((
A1/2T

)∗
A1/2T

)
= tr

(∣∣A1/2T
∣∣2) = tr

(∣∣∣(A1/2T
)∗∣∣∣2) = tr

(∣∣T ∗A1/2
∣∣2)

for A ≥ 0 and T ∈M.
We observe that LA and RB are commutative, therefore the prod-

uct LARB is a selfadjoint positive operator in B (M) for any positive
matrices A, B ∈M+.

For A, B ∈ M+ with B invertible, we define the Araki transform
AA,B : M → M by AA,B := LARB−1 . We observe that for T ∈ M we
have AA,BT = ATB−1 and

〈AA,BT, T 〉2 =
〈
ATB−1, T

〉
2

= tr
(
T ∗ATB−1

)
.

Observe also, by the properties of trace, that

tr
(
T ∗ATB−1

)
= tr

(
B−1/2T ∗A1/2A1/2TB−1/2

)
= tr

((
A1/2TB−1/2

)∗ (
A1/2TB−1/2

))
= tr

(∣∣A1/2TB−1/2
∣∣2)

giving that

(2.1) 〈AA,BT, T 〉2 = tr
(∣∣A1/2TB−1/2

∣∣2) ≥ 0

for any T ∈M.
We observe that, by the definition of operator order and by (2.1) we

have r1M ≤ AA,B ≤ R1M for some R ≥ r ≥ 0 if and only if

(2.2) r tr
(
|T |2

)
≤ tr

(∣∣A1/2TB−1/2
∣∣2) ≤ R tr

(
|T |2

)
for any T ∈M.

We also notice that a sufficient condition for (2.2) to hold is that the
following inequality in the operator order of M is satisfied

(2.3) r |T |2 ≤
∣∣A1/2TB−1/2

∣∣2 ≤ R |T |2

for any T ∈ B2 (H) .
Let U be a selfadjoint linear operator on a complex Hilbert space

(K; 〈·, ·〉) . The Gelfand map establishes a ∗-isometrically isomorphism
Φ between the set C (Sp (U)) of all continuous functions defined on the
spectrum of U, denoted Sp (U) , and the C∗-algebra C∗ (U) generated by
U and the identity operator 1K on K as follows:
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For any f, g ∈ C (Sp (U)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f) Φ (g) and Φ

(
f̄
)

= Φ (f)∗ ;
(iii) ‖Φ (f)‖ = ‖f‖ := supt∈Sp(U) |f (t)| ;
(iv) Φ (f0) = 1K and Φ (f1) = U, where f0 (t) = 1 and f1 (t) = t, for

t ∈ Sp (U) .
With this notation we define

f (U) := Φ (f) for all f ∈ C (Sp (U))

and we call it the continuous functional calculus for a selfadjoint operator
U.

If U is a selfadjoint operator and f is a real valued continuous function
on Sp (U), then f (t) ≥ 0 for any t ∈ Sp (U) implies that f (U) ≥ 0, i.e.
f (U) is a positive operator on K. Moreover, if both f and g are real
valued functions on Sp (U) then the following important property holds:

(P) f (t) ≥ g (t) for any t ∈ Sp (U) implies that f (U) ≥ g (U)

in the operator order of B (K) .
Let f : [0,∞) → R be a continuous function. Utilising the con-

tinuous functional calculus for the Araki selfadjoint operator AQ,P ∈
B (M) we can define the quantum f -divergence for Q, P ∈ S1 (M) :=
{P ∈M, P ≥ 0 with tr (P ) = 1 } and P invertible, by

Sf (Q,P ) :=
〈
f (AQ,P )P 1/2, P 1/2

〉
2

= tr
(
P 1/2f (AQ,P )P 1/2

)
.

If we consider the continuous convex function f : [0,∞) → R, with
f (0) := 0 and f (t) = t ln t for t > 0 then for Q, P ∈ S1 (M) and Q, P
invertible we have

Sf (Q,P ) = tr [Q (lnQ− lnP )] =: U (Q,P ) ,

which is the Umegaki relative entropy.
If we take the continuous convex function f : [0,∞) → R, f (t) =

|t− 1| for t ≥ 0 then for Q, P ∈ S1 (H) with P invertible we have

Sf (Q,P ) = tr (|Q− P |) =: V (Q,P ) ,

where V (Q,P ) is the variational distance.
If we take f : [0,∞) → R, f (t) = t2 − 1 for t ≥ 0 then for Q,

P ∈ S1 (M) with P invertible we have

Sf (Q,P ) = tr
(
Q2P−1

)
− 1 =: χ2 (Q,P ) ,

which is called the χ2-distance
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Let q ∈ (0, 1) and define the convex function fq : [0,∞) → R by
fq (t) = 1−tq

1−q . Then

Sfq (Q,P ) =
1− tr (QqP 1−q)

1− q
,

which is Tsallis relative entropy.

If we consider the convex function f : [0,∞)→ R by f (t) = 1
2

(√
t− 1

)2
,

then

Sf (Q,P ) = 1− tr
(
Q1/2P 1/2

)
=: h2 (Q,P ) ,

which is known as Hellinger discrimination.
If we take f : (0,∞)→ R, f (t) = − ln t then for Q, P ∈ S1 (M) and

Q, P invertible we have

Sf (Q,P ) = tr [P (lnP − lnQ)] = U (P,Q) .

The reader can obtain other particular quantum f -divergence measures
by utilizing the normalized convex functions from Introduction, namely
the convex functions defining the dichotomy class, Matsushita’s diver-
gences, Puri-Vincze divergences or divergences of Arimoto-type. We
omit the details.

In the important case of finite dimensional spaces and the generalized
inverse P−1, numerous properties of the quantum f -divergence, mostly
in the case when f is operator convex, have been obtained in the recent
papers [17], [18], [22]- [25] and the references therein.

In what follows we obtain several inequalities for the larger class of
convex functions on an interval.

3. Inequalities for f Convex and Normalized

Suppose that I is an interval of real numbers with interior I̊ and
f : I → R is a convex function on I. Then f is continuous on I̊ and has
finite left and right derivatives at each point of I̊. Moreover, if x, y ∈ I̊
and x < y, then f ′− (x) ≤ f ′+ (x) ≤ f ′− (y) ≤ f ′+ (y) , which shows that

both f ′− and f ′+ are nondecreasing function on I̊. It is also known that
a convex function must be differentiable except for at most countably
many points.
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For a convex function f : I → R, the subdifferential of f denoted by

∂f is the set of all functions ϕ : I → [−∞,∞] such that ϕ
(
I̊
)
⊂ R and

(G) f (x) ≥ f (a) + (x− a)ϕ (a) for any x, a ∈ I.
It is also well known that if f is convex on I, then ∂f is nonempty,

f ′−, f ′+ ∈ ∂f and if ϕ ∈ ∂f , then

f ′− (x) ≤ ϕ (x) ≤ f ′+ (x) for any x ∈ I̊.

In particular, ϕ is a nondecreasing function.
If f is differentiable and convex on I̊, then ∂f = {f ′} .
We are able now to state and prove the first result concerning the

quantum f -divergence for the general case of convex functions.

Theorem 4. Let f : [0,∞) → R be a continuous convex function
that is normalized, i.e. f (1) = 0. Then for any Q, P ∈ S1 (M) , with P
invertible, we have

(3.1) 0 ≤ Sf (Q,P ) .

Moreover, if f is continuously differentiable, then also

(3.2) Sf (Q,P ) ≤ S`f ′ (Q,P )− Sf ′ (Q,P ) ,

where the function ` is defined as ` (t) = t, t ∈ R.

Proof. Since f is convex and normalized, then by the gradient in-
equality (G) we have

f (t) ≥ (t− 1) f ′+ (1)

for t > 0.
Applying the property (P) for the operator AQ,P , then we have for

any T ∈M
〈f (AQ,P )T, T 〉2 ≥ f ′+ (1)

〈(
AQ,P − 1B2(H)

)
T, T

〉
2

= f ′+ (1)
[
〈AQ,PT, T 〉2 − ‖T‖2

]
,

which, in terms of trace, can be written as

(3.3) tr (T ∗f (AQ,P )T ) ≥ f ′+ (1)
[
tr
(∣∣Q1/2TP−1/2

∣∣2)− tr
(
|T |2

)]
for any T ∈M.

Now, if we take in (3.3) T = P 1/2 where P ∈ S1 (M) , with P invert-
ible, then we get

Sf (Q,P ) ≥ f ′+ (1) [tr (Q)− tr (P )] = 0
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and the inequality (3.1) is proved.
Further, if f is continuously differentiable, then by the gradient in-

equality we also have
(t− 1) f ′ (t) ≥ f (t)

for t > 0.
Applying the property (P) for the operator AQ,P , then we have for

any T ∈M〈(
AQ,P − 1B2(H)

)
f ′ (AQ,P )T, T

〉
2
≥ 〈f (AQ,P )T, T 〉2 ,

namely

〈AQ,Pf
′ (AQ,P )T, T 〉2 − 〈f

′ (AQ,P )T, T 〉2 ≥ 〈f (AQ,P )T, T 〉2 ,
for any T ∈M, or in terms of trace

(3.4) tr (T ∗AQ,Pf
′ (AQ,P )T )− tr (T ∗f ′ (AQ,P )T ) ≥ tr (T ∗f (AQ,P )T ) ,

for any T ∈M.
If in (3.4) we take T = P 1/2, where P ∈ S1 (M) , with P invertible,

then we get the desired result (3.2).

Remark 2. If we take in (3.2) f : (0,∞)→ R, f (t) = − ln t then for
Q, P ∈ S1 (M) and Q,P invertible we have

(3.5) 0 ≤ U (P,Q) ≤ χ2 (P,Q) .

We need the following lemma.

Lemma 1. Let S be a selfadjoint operator on the Hilbert space (H, 〈·, ·〉)
and with spectrum Sp (S) ⊆ [γ,Γ] for some real numbers γ,Γ. If g :
[γ,Γ]→ C is a continuous function such that

(3.6) |g (t)− λ| ≤ ρ for any t ∈ [γ,Γ]

for some complex number λ ∈ C and positive number ρ, then

|〈Sg (S)x, x〉 − 〈Sx, x〉 〈g (S)x, x〉| ≤ ρ 〈|S − 〈Sx, x〉 1H |x, x〉(3.7)

≤ ρ
[〈
S2x, x

〉
− 〈Sx, x〉2

]1/2
for any x ∈ H, ‖x‖ = 1.

Proof. We observe that
(3.8)
〈Sg (S)x, x〉−〈Sx, x〉 〈g (S)x, x〉 = 〈(S − 〈Sx, x〉 1H) (g (S)− λ1H)x, x〉
for any x ∈ H, ‖x‖ = 1.
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For any selfadjoint operator B we have the modulus inequality

(3.9) |〈Bx, x〉| ≤ 〈|B|x, x〉 for any x ∈ H, ‖x‖ = 1.

Also, utilizing the continuous functional calculus we have for each fixed
x ∈ H, ‖x‖ = 1

|(S − 〈Sx, x〉 1H) (g (S)− λ1H)| = |S − 〈Sx, x〉 1H | |g (S)− λ1H |
≤ ρ |S − 〈Sx, x〉 1H | ,

which implies that
(3.10)
〈|(S − 〈Sx, x〉 1H) (g (S)− λ1H)|x, x〉 ≤ ρ 〈|S − 〈Sx, x〉 1H |x, x〉

for any x ∈ H, ‖x‖ = 1.

Therefore, by taking the modulus in (3.8) and utilizing (3.9) and
(3.10) we get

|〈Sg (S)x, x〉 − 〈Sx, x〉 〈g (S)x, x〉|(3.11)

= |〈(S − 〈Sx, x〉 1H) (g (S)− λ1H)x, x〉|
≤ 〈|(S − 〈Sx, x〉 1H) (g (S)− λ1H)|x, x〉
≤ ρ 〈|S − 〈Sx, x〉 1H |x, x〉

for any x ∈ H, ‖x‖ = 1, which proves the first inequality in (3.7).

Using Schwarz inequality we also have

〈|S − 〈Sx, x〉 1H |x, x〉 ≤
〈
(S − 〈Sx, x〉 1H)2 x, x

〉1/2

=
[〈
S2x, x

〉
− 〈Sx, x〉2

]1/2
for any x ∈ H, ‖x‖ = 1, and the lemma is proved.

Corollary 1. With the assumption of Lemma 1, we have

0 ≤
〈
S2x, x

〉
− 〈Sx, x〉2 ≤ 1

2
(Γ− γ) 〈|S − 〈Sx, x〉 1H |x, x〉(3.12)

≤ 1

2
(Γ− γ)

[〈
S2x, x

〉
− 〈Sx, x〉2

]1/2 ≤ 1

4
(Γ− γ)2 ,

for any x ∈ H, ‖x‖ = 1.
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Proof. If we take in Lemma 1 g (t) = t, λ = 1
2

(Γ + γ) and ρ =
1
2

(Γ− γ) , then we get

0 ≤
〈
S2x, x

〉
− 〈Sx, x〉2 ≤ 1

2
(Γ− γ) 〈|S − 〈Sx, x〉 1H |x, x〉(3.13)

≤ 1

2
(Γ− γ)

[〈
S2x, x

〉
− 〈Sx, x〉2

]1/2
for any x ∈ H, ‖x‖ = 1.

From the first and last terms in (3.13) we have[〈
S2x, x

〉
− 〈Sx, x〉2

]1/2 ≤ 1

2
(Γ− γ) ,

which proves the rest of (3.12).

We can prove the following result that provides simpler upper bounds
for the quantum f -divergence when the operators P and Q satisfy the
condition (2.2).

Theorem 5. Let f : [0,∞) → R be a continuous convex function
that is normalized. If Q, P ∈ S1 (M) , with P invertible, and there
exists R ≥ 1 ≥ r ≥ 0 such that

(3.14) r tr
(
|T |2

)
≤ tr

(∣∣Q1/2TP−1/2
∣∣2) ≤ R tr

(
|T |2

)
for any T ∈M, then

0 ≤ Sf (Q,P ) ≤ 1

2

[
f ′− (R)− f ′+ (r)

]
V (Q,P )(3.15)

≤ 1

2

[
f ′− (R)− f ′+ (r)

]
χ (Q,P )

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
.

Proof. Without loosing the generality, we prove the inequality in the
case that f is continuously differentiable on (0,∞) .

Since f ′ is monotonic nondecreasing on [r, R] we have that

f ′ (r) ≤ f ′ (t) ≤ f ′ (R) for any t ∈ [r, R] ,

which implies that∣∣∣∣f ′ (t)− f ′ (R) + f ′ (r)

2

∣∣∣∣ ≤ 1

2
[f ′ (R)− f ′ (r)]

for any t ∈ [r, R] .
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Applying Lemma 1 and Corollary 1 in the Hilbert space (M, 〈·, ·〉2)
and for the selfadjoint operator AQ,P we have∣∣〈AQ,Pf

′ (AQ,P )T, T 〉2 − 〈AQ,PT, T 〉2 〈f
′ (AQ,P )T, T 〉2

∣∣
≤ 1

2
[f ′ (R)− f ′ (r)]

〈∣∣AQ,P − 〈AQ,PT, T 〉2 1B2(H)

∣∣T, T〉
2

≤ 1

2
[f ′ (R)− f ′ (r)]

[〈
A2
Q,PT, T

〉
2
− 〈AQ,PT, T 〉22

]1/2

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
for any T ∈M, ‖T‖2 = 1.

If in this inequality we take T = P 1/2, P ∈ S1 (M) , with P invertible,
then we get∣∣〈AQ,Pf

′ (AQ,P )P 1/2, P 1/2
〉

2
−
〈
f ′ (AQ,P )P 1/2, P 1/2

〉
2

∣∣
≤ 1

2
[f ′ (R)− f ′ (r)]

〈∣∣AQ,P −
〈
AQ,PP

1/2, P 1/2
〉

2
1B2(H)

∣∣P 1/2, P 1/2
〉

2

≤ 1

2
[f ′ (R)− f ′ (r)]

[〈
A2
Q,PP

1/2, P 1/2
〉

2
−
〈
AQ,PP

1/2, P 1/2
〉2

2

]1/2

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
,

which can be written as

|S`f ′ (Q,P )− Sf ′ (Q,P )| ≤ 1

2

[
f ′− (R)− f ′+ (r)

]
V (Q,P )

≤ 1

2

[
f ′− (R)− f ′+ (r)

]
χ (Q,P )

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
.

Making use of Theorem 4 we deduce the desired result (3.15).

Remark 3. If we take in (3.15) f (t) = t2 − 1, then we get

0 ≤ χ2 (Q,P ) ≤ 1

2
(R− r)V (Q,P ) ≤ 1

2
(R− r)χ (Q,P )(3.16)

≤ 1

4
(R− r)2

for Q, P ∈ S1 (M) , with P invertible and satisfying the condition (3.14).
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If we take in (3.15) f (t) = t ln t, then we get the inequality

0 ≤ U (Q,P ) ≤ 1

2
ln

(
R

r

)
V (Q,P ) ≤ 1

2
ln

(
R

r

)
χ (Q,P )(3.17)

≤ 1

4
(R− r) ln

(
R

r

)
provided that Q, P ∈ S1 (H) , with P, Q invertible and satisfying the
condition (3.14).

With the same conditions and if we take f (t) = − ln t, then

(3.18) 0 ≤ U (P,Q) ≤ R− r
2rR

V (Q,P ) ≤ R− r
2rR

χ (Q,P ) ≤ (R− r)2

4rR
.

If we take in (3.15) f (t) = fq (t) = 1−tq
1−q , then we get

0 ≤ Sfq (Q,P ) ≤ q

2 (1− q)

(
R1−q − r1−q

R1−qr1−q

)
V (Q,P )(3.19)

≤ q

2 (1− q)

(
R1−q − r1−q

R1−qr1−q

)
χ (Q,P )

≤ q

4 (1− q)

(
R1−q − r1−q

R1−qr1−q

)
(R− r)

provided that Q, P ∈ S1 (M) , with P, Q invertible and satisfying the
condition (3.14).

4. Other Reverse Inequalities

Utilising different techniques we can obtain other upper bounds for
the quantum f -divergence as follows. Applications for Umegaki relative
entropy and χ2-divergence are also provided.

Theorem 6. Let f : [0,∞) → R be a continuous convex function
that is normalized. If Q, P ∈ S1 (M) , with P invertible, and there
exists R ≥ 1 ≥ r ≥ 0 such that the condition (3.14) is satisfied, then

(4.1) 0 ≤ Sf (Q,P ) ≤ (R− 1) f (r) + (1− r) f (R)

R− r
.

Proof. By the convexity of f we have

f (t) = f

(
(R− t) r + (t− r)R

R− r

)
≤ (R− t) f (r) + (t− r) f (R)

R− r
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for any t ∈ [r, R] .

This inequality implies the following inequality in the operator order
of B (M)

f (AQ,P ) ≤ (R1M − AQ,P ) f (r) + (AQ,P − r1M) f (R)

R− r
,

which can be written as

〈f (AQ,P )T, T 〉2(4.2)

≤ f (r)

R− r
〈(R1M − AQ,P )T, T 〉2 +

f (R)

R− r
〈(AQ,P − r1M)T, T 〉2

for any T ∈M.

Now, if we take in (4.2) T = P 1/2, P ∈ S1 (M) , then we get the
desired result (4.2).

Remark 4. If we take in (4.1) f (t) = t2 − 1, then we get

(4.3) 0 ≤ χ2 (Q,P ) ≤ (R− 1) (1− r) R + r + 2

R− r

for Q, P ∈ S1 (M) , with P invertible and satisfying the condition (3.14).

If we take in (4.1) f (t) = t ln t, then we get the inequality

(4.4) 0 ≤ U (Q,P ) ≤ ln
[
r

(R−1)r
R−r R

R(1−r)
R−r

]
provided that Q, P ∈ S1 (M) , with P, Q invertible and satisfying the
condition (3.14).

If we take in (4.1) f (t) = − ln t, then we get the inequality

(4.5) 0 ≤ U (P,Q) ≤ ln
[
r

1−R
R−rR

r−1
R−r

]
for Q, P ∈ S1 (M) , with P, Q invertible and satisfying the condition
(3.14).

We also have:

Theorem 7. Let f : [0,∞) → R be a continuous convex function
that is normalized. If Q, P ∈ S1 (M) , with P invertible, and there
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exists R > 1 > r ≥ 0 such that the condition (3.14) is satisfied, then

0 ≤ Sf (Q,P ) ≤ (R− 1) (1− r)
R− r

Ψf (1; r, R)(4.6)

≤ (R− 1) (1− r)
R− r

sup
t∈(r,R)

Ψf (t; r, R)

≤ (R− 1) (1− r)
f ′− (R)− f ′+ (r)

R− r

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
where Ψf (·; r, R) : (r, R)→ R is defined by

(4.7) Ψf (t; r, R) =
f (R)− f (t)

R− t
− f (t)− f (r)

t− r
.

We also have

0 ≤ Sf (Q,P ) ≤ (R− 1) (1− r)
R− r

Ψf (1; r, R)(4.8)

≤ 1

4
(R− r) Ψf (1; r, R)

≤ 1

4
(R− r) sup

t∈(r,R)

Ψf (t; r, R)

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
.

Proof. By denoting

∆f (t; r, R) :=
(t− r) f (R) + (R− t) f (r)

R− r
− f (t) , t ∈ [r, R]

we have

∆f (t; r, R) =
(t− r) f (R) + (R− t) f (r)− (R− r) f (t)

R− r
(4.9)

=
(t− r) f (R) + (R− t) f (r)− (T − t+ t− r) f (t)

R− r

=
(t− r) [f (R)− f (t)]− (R− t) [f (t)− f (r)]

M −m

=
(R− t) (t− r)

R− r
Ψf (t; r, R)

for any t ∈ (r, R) .
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From the proof of Theorem 6 we have

〈f (AQ,P )T, T 〉2(4.10)

≤ f (r)

R− r
〈(R1M − AQ,P )T, T 〉2 +

f (R)

R− r
〈(AQ,P − r1M)T, T 〉2

=

(
〈AQ,PT, T 〉2 − r

)
f (R) +

(
R− 〈AQ,PT, T 〉2

)
f (r)

R− r
for any T ∈M, ‖T‖2 = 1.

This implies that

0 ≤ 〈f (AQ,P )T, T 〉2 − f
(
〈AQ,PT, T 〉2

)(4.11)

≤
(
〈AQ,PT, T 〉2 − r

)
f (R) +

(
R− 〈AQ,PT, T 〉2

)
f (r)

R− r
− f

(
〈AQ,PT, T 〉2

)
= ∆f

(
〈AQ,PT, T 〉2 ; r, R

)
=

(
R− 〈AQ,PT, T 〉2

) (
〈AQ,PT, T 〉2 − r

)
R− r

Ψf

(
〈AQ,PT, T 〉2 ; r, R

)
for any T ∈M, ‖T‖2 = 1.

Since

Ψf

(
〈AQ,PT, T 〉2 ; r, R

)
≤ sup

t∈(r,R)

Ψf (t; r, R)

(4.12)

= sup
t∈(r,R)

[
f (R)− f (t)

R− t
− f (t)− f (r)

t− r

]
≤ sup

t∈(r,R)

[
f (R)− f (t)

R− t

]
+ sup

t∈(r,R)

[
−f (t)− f (r)

t− r

]
= sup

t∈(r,R)

[
f (R)− f (t)

R− t

]
− inf

t∈(r,R)

[
f (t)− f (r)

t− r

]
= f ′− (R)− f ′+ (r) ,

and, obviously

(4.13)
1

R− r
(
R− 〈AQ,PT, T 〉2

) (
〈AQ,PT, T 〉2 − r

)
≤ 1

4
(R− r) ,
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then by (4.11)-(4.13) we have

0 ≤ 〈f (AQ,P )T, T 〉2 − f
(
〈AQ,PT, T 〉2

)(4.14)

≤
(
R− 〈AQ,PT, T 〉2

) (
〈AQ,PT, T 〉2 − r

)
R− r

Ψf

(
〈AQ,PT, T 〉2 ; r, R

)
≤
(
R− 〈AQ,PT, T 〉2

) (
〈AQ,PT, T 〉2 − r

)
R− r

sup
t∈(r,R)

Ψf (t; r, R)

≤
(
R− 〈AQ,PT, T 〉2

) (
〈AQ,PT, T 〉2 − r

) f ′− (R)− f ′+ (r)

R− r

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
for any T ∈M, ‖T‖2 = 1.

Now, if we take in (4.14) T = P 1/2, then we get the desired result
(4.6).

The inequality (4.8) is obvious from (4.6).

Remark 5. If we consider the convex normalized function f (t) =
t2 − 1, then

Ψf (t; r, R) =
R2 − t2

R− t
− t2 − r2

t− r
= R− r, t ∈ (r, R)

and we get from (4.6) the simple inequality

(4.15) 0 ≤ χ2 (Q,P ) ≤ (R− 1) (1− r)
for Q, P ∈ S1 (M) , with P invertible and satisfying the condition (3.14),
which is better than (4.3).

If we take the convex normalized function f (t) = t−1 − 1, then we
have

Ψf (t; r, R) =
R−1 − t−1

R− t
− t−1 − r−1

t− r
=
R− r
rRt

, t ∈ [r, R] .

Also
Sf (Q,P ) = χ2 (P,Q) .

Using (4.6) we get

(4.16) 0 ≤ χ2 (P,Q) ≤ (R− 1) (1− r)
Rr

for Q, P ∈ S1 (M) , with Q invertible and satisfying the condition (3.14).
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If we consider the convex function f (t) = − ln t defined on [r, R] ⊂
(0,∞) , then

Ψf (t; r, R) =
− lnR + ln t

R− t
− − ln t+ ln r

t− r

=
(R− r) ln t− (R− t) ln r − (t− r) lnR

(M − t) (t−m)

= ln

(
tR−r

rR−tM t−r

) 1
(R−t)(t−r)

, t ∈ (r, R) .

Then by (4.6) we have

(4.17) 0 ≤ U (P,Q) ≤ ln
[
r

1−R
R−rR

r−1
R−r

]
≤ (R− 1) (1− r)

rR

for Q, P ∈ S1 (M) , with P, Q invertible and satisfying the condition
(3.14).

We also have:

Theorem 8. Let f : [0,∞) → R be a continuous convex function
that is normalized. If Q,P ∈ S1 (M) , with P invertible, and there
exists R > 1 > r ≥ 0 such that the condition (3.14) is satisfied, then

(4.18) 0 ≤ Sf (Q,P ) ≤ 2

[
f (r) + f (R)

2
− f

(
r +R

2

)]
.

Proof. We recall the following result (see for instance [4]) that pro-
vides a refinement and a reverse for the weighted Jensen’s discrete in-
equality:

n min
i∈{1,...,n}

{pi}

[
1

n

n∑
i=1

f (xi)− f

(
1

n

n∑
i=1

xi

)]
(4.19)

≤ 1

Pn

n∑
i=1

pif (xi)− f

(
1

Pn

n∑
i=1

pixi

)

≤ n max
i∈{1,...,n}

{pi}

[
1

n

n∑
i=1

f (xi)− f

(
1

n

n∑
i=1

xi

)]
,

where f : C → R is a convex function defined on the convex subset C
of the linear space X, {xi}i∈{1,...,n} ⊂ C are vectors and {pi}i∈{1,...,n} are

nonnegative numbers with Pn :=
∑n

i=1 pi > 0.
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For n = 2 we deduce from (3.6) that

2 min {s, 1− s}
[
f (x) + f (y)

2
− f

(
x+ y

2

)]
(4.20)

≤ sf (x) + (1− s) f (y)− f (sx+ (1− s) y)

≤ 2 max {s, 1− s}
[
f (x) + f (y)

2
− f

(
x+ y

2

)]

for any x, y ∈ C and s ∈ [0, 1] .

Now, if we use the second inequality in (4.20) for x = r, y = R,
s = R−t

R−r with t ∈ [r, R] , then we have

(R− t) f (r) + (t− r) f (R)

R− r
− f (t)(4.21)

≤ 2 max

{
R− t
R− r

,
t− r
R− r

}[
f (r) + f (R)

2
− f

(
r +R

2

)]
=

[
1 +

2

R− r

∣∣∣∣t− r +R

2

∣∣∣∣] [f (r) + f (R)

2
− f

(
r +R

2

)]

for any t ∈ [r, R] .

This implies in the operator order of B (M)

(R1M − AQ,P ) f (r) + (AQ,P − r1M) f (R)

R− r
− f (AQ,P )

≤
[
f (r) + f (R)

2
− f

(
r +R

2

)]
×
[
1M +

2

R− r

∣∣∣∣AQ,P −
r +R

2
1M

∣∣∣∣]
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which implies that

0 ≤ 〈f (AQ,P )T, T 〉2 − f
(
〈AQ,PT, T 〉2

)(4.22)

≤
(
〈AQ,PT, T 〉2 − r

)
f (R) +

(
R− 〈AQ,PT, T 〉2

)
f (r)

R− r
− f

(
〈AQ,PT, T 〉2

)
≤
[
f (r) + f (R)

2
− f

(
r +R

2

)]
×
[
1 +

2

R− r

〈∣∣∣∣AQ,P −
r +R

2
1M

∣∣∣∣T, T〉
2

]
≤ 2

[
f (r) + f (R)

2
− f

(
r +R

2

)]
for any T ∈M, ‖T‖2 = 1.

If we take in (4.22) T = P 1/2, P ∈ S1 (M) , then we get the desired
result (4.18).

Remark 6. If we take f (t) = t2 − 1 in (4.18), then we get

0 ≤ χ2 (Q,P ) ≤ 1

2
(R− r)2

for Q,P ∈ S1 (M) , with P invertible and satisfying the condition (3.14),
which is not as good as (4.15).

If we take in (4.18) f (t) = t−1 − 1, then we have

(4.23) 0 ≤ χ2 (P,Q) ≤ (R− r)2

rR (r +R)

for Q,P ∈ S1 (M) , with P invertible and satisfying the condition (3.14).
If we take in (4.18) f (t) = − ln t, then we have

(4.24) 0 ≤ U (P,Q) ≤ ln

(
(R + r)2

4rR

)
for Q,P ∈ S1 (M) , with P invertible and satisfying the condition (3.14).

From (3.18) we have the following absolute upper bound

(4.25) 0 ≤ U (P,Q) ≤ (R− r)2

4rR

for Q,P ∈ S1 (M) , with P invertible and satisfying the condition (3.14).
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Utilising the elementary inequality lnx ≤ x− 1, x > 0, we have that

ln

(
(R + r)2

4rR

)
≤ (R− r)2

4rR
,

which shows that (4.24) is better than (4.25).
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