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THE FEKETE-SZEGO INEQUALITY FOR CERTAIN
CLASS OF ANALYTIC FUNCTIONS DEFINED BY
CONVOLUTION BETWEEN GENERALIZED
AL-OBOUDI DIFFERENTIAL OPERATOR AND
SRIVASTAVA-ATTIYA INTEGRAL OPERATOR

K. A. CHALLAB, M. DARUS*, AND F. GHANIM

ABSTRACT. The aim of this paper is to investigate the Fekete Szego
inequality for subclass of analytic functions defined by convolution
between generalized Al-Oboudi differential operator and Srivastava-
Attiya integral operator. Further, application to fractional deriva-
tives are also given.

1. Introduction

Normally, we are considering the class of analytic function f of the
form

f(2) :z+2akzk (1.1)

in the open unit disc U = {z : |z| < 1} and denoted by A and normalized
by f(0) = f(0) — 1 = 0. Let the function which is defined by
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(1=N)f(2)+ X 2f'(2) (1.2)

be F)\(z). Then, we can write F)(z) as

Fa(z) =z+ ) [L4+A(n—1)]ayz",

using (1.1) and (1.2).
In 2004, Al-Oboudi [2] investigated the operator

Fi(2) =2+ f:[l + A(n — 1)]*a,z".

Later, Al-Oboudi differential operator was extended by Ramadan and
Darus [19] given as follows:

Dapasf(z) =2+ [L4+(A=08)(B—a)(n—1)]anz"
n=2
by having
Dagaef(z) =1 = (A=0)(B = a)lf(2) + (A =0)(B — a)zf'(2),
thus
Dy pasf(2) =2+ ) L+ (A= 0)(8—a)(n -1 ane",
n=2
for
(>0,6>0,A>0,0>0,A>0,>a)andn € {0,1,2,...}.
The Hadamard product (or convolution) of f and g can be defined by

(f*g) :z—l—Zanbnz”, zeU,
n=2

such that, f € A given by (1.1) and g € A (g(2) = z+ > ", by2").

An important operator given by [27] named as Srivastava-Attiya opera-
tor is as follows:

Joa: A A,
Jsaf(2) = Gsax f(2), (z€U;acC\{Z;};s€C;feA), (13)
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where, for convenience,

Gsa(2) = (1 +a)’[®(2,5,a) —a™®] (z€U), (1.4)

1+ n
_Z+Z(n+z> ’

and ®(z,s,a) = Zk:oﬁ? [see [1], Section 1.11, Eq.(1)] is obtained
by the successful implementation of (1.1), (1.3) and (1.4).

Now, by the Hadamard product we define the following generalized op-
erator

Thassf(2) =2+ > [+ A =0)(B—a)(n—1)F (1 i a) a,2"(1.5)

n-—+a
where
k,a,s
Ta,,B,)\,df( z) = Dk B, 5 f(2) % Gsa(2)
or as
YA = 2D A
where

Ay =1+ =0)(B—=a)n—1)F (”“)san.

n-—+a

For suitable values of s, o, 3,4, A\, we can see that:

(i) when s = 0, T “(1\ sf (%) is the Ramadan and Darus differential op-
erator as presented in [19],

(ii)) when s =0, a=0,0 =0, A =1, =1, Tﬁ:i’?’of(z) is the Salagean
differential operator as presented in [22],

(iii) when s = 0, a = 0, TH%9 "gxsf(2) is the Darus and Ibrahim differential
operator as presented in [10],

(iv) when s = 0, a =0, d =0, f = 1,T§f20 (z) is the Al-Oboudi
differential operator as presented in [2].

In the case where X is the class of functions TZ:‘;’;’(; f(z), it is obvious

that Y"% adasf(2) is an analytical function in U [8].
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If S is defined as the class of functions T];’fgi\,(; f(z) € X, which are
univalent in U.

Then we can recall that a Schwarzian function

o0

w(z) = Z Cn2"

n=1
has the condition of w(0) = 0 and |w(z)| < 1 and is analytical in U.

If f and g are two analytical functions in U, then f is said to be sub-
ordinate to g (symbolically f < g) when a Schwarz function w(z) € U
exists, such that f(z) = g(w(z)) ( [9], [25]).

As studied by Goel and Mehrok [13], S5(A, B) can be a subclass of the
functions T';%S/\ sJ(2) € ¥ with the condition of

/
k,a,s
2 (T55541(2) PR
Ti’,%’fx,af(z) 1+ Bz’

where S§(A, B) is a subclass of the starlike functions, and Si(A4, B) =
S*(A, B). In particular, S§(1, —1) = S*, which is a class of the starlike
functions [26].

—1<B<A<1,zeUl,

K\(A, B) is a subclass of the functions TZ’}%’;’éf(z) € X, with the con-

dition of
/

k,a,s !
)
a,s ! 1 B ’
(ks f() b
Note that, Ko(A, B) = K(A, B) and is a subclass of the convex func-

tions. Most particularly Ky(1,—1) = K, and is a class of the convex
functions [26].

—-1<B<A<L1,zeUl.

Now, we shall give a brief background on Fekete and Szegd problem
which is our ultimate goal. Back in 1933, Fekete and Szeg6 [11] studied
a special inequality which arises naturally from a combination of two
coefficients a, and as of a class of univalent analytic normalised func-
tion S. They obtained sharp upper bound of |az — ua3|, where p is
real. Later Keogh and Merkes [14], Koepf [15] and many others fol-
low the same problems with different techniques for different classes.
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The problems evolve and many new subclasses are focussed on Fekete-
Szegd problem. For examples, Alhindi and Darus [5] studied the prob-
lems on a function belongs to a new subclass of Sakaguchi type which
was determined through fractional derivatives, Ravichandran et al. [20]
studied the problems for the class z!=2 f/(2)/f17%(2)(a > 0) which was
located in a starlike region with respect to 1 and was symmetric with re-
spect to the real axis, and Selvaraj and Kumar [23] studied for the class

R [1 + 3 {(1 - oz)@ +af'(z) — 1H >~ 0. For other examples defined

on various classes can be read in ( [3], [4], [6], [7], [12], [16], [17], [19],
[21], [24], [28]).

Motivated by all the work done above, we obtain sharp upper bound of
lag — pa?| for classes of starlike S3(A, B) and convex K, (A, B), respec-
tively.

2. Preliminary Results

To begin our results, P is defined as the family of all the functions r
analytical in U, for which ®(r(z)) > 0 and

r(2) =141z 4+192° + ...
for z € U. The following lemma was necessary to obtain our results:

LEMMA 2.1. [19] If q(2) = 1+ riz 4+ r92* + ... is an analytic function
with positive real part in U, then

—4v 4+ 2 v <0
‘TQ—IJT‘ﬂZ: 2 0<v<1
v — 2 v>1,

whenv < 0 orv > 1, q(z) is (1+z)/(1 — 2) or one of its rotations if and
only if the equality holds. If 0 < v < 1, then ¢(z) is (1 + 2%)/(1 — 2?) or
one of its rotations if and only if the equality holds. If v = 0, then

o (L LY (LoLYl=E ooy
=212 \a 21+ VTS

or one of its rotations if and only if the equality holds. If v = 1, q(z)
is the reciprocal of one of the functions if and only if the equality holds
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such that the equality holds in the case of v = 0. Also the above upper
bound can be improved as follows when 0 < v < 1.

1
ro —vr| +v|ri* <2 (0 <v< §>
and
1
lro —vri| + (1 —v)|r[* <2 (5 <v< 1) :

and it is sharp.

3. Fekete-Szeg6 Problem For S}(A, B)

The main result is the following:

THEOREM 3.1. Let ¢(z) = 1 + Byz + By2? + ... . If f(z) given by
(1.1) belongs to Sx(A, B), then

( —j(A - B)? .
[(A = 8)(8 — @) + 1]2* (Lt2)™
A(A - B)
22(A = 6)(8 — a) + 1]+ (322)°
B(A— B) <o
20X = 8)(8 — a) + 1]k (32)° -
A-B
az — paz| = 220 =) B —a) L 1" (éi_g)s o1 < < 023(3.1)
#(A - B)? B
(A= 8)(8 — a) + 1]+ (k2)
A(A - B) .
212(A = 6)(B — a) + 1]+ (522)°
B(A - B) o
[ 20 = 0)(B—a) + 1]F (5£2)° -

where

(A—2B - 1)[(A—6)(8 — a) + 1) (2)

2+4+a

2(A - B)[2(A — 8)(8 — ) + 1]k (12)°

3+a

o1 —
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and
o — (A—2B+ 1)[(A = 8)(8 — a) + 1] (L)
2 2(A— B)[2(A =) (B — )+ 1] (éi_g)s

The result is sharp.

If we follow a method like the one used in several other articles for ex-
ample [17], [19] and [20], the following proof of Theorem 3.1 is obtained.

Proof. 1f TZ’,%’,S,\,a (2) € S5(A, B), then a Schwarz function w(z) exists,
such that

!/
H(IBIO) (32)
= ¢(w(2)), .
Tohel (2)
where
d(z) = LAz 1+ (A—B)z— B(A- B)z*+ B*(A—B)2* +
14+ Bz
=1+ Byz+ By2? + B3 + ... . (3.3)
The function p(z) is determined to be following:
14+ w(z
p(z) = 1——11)&/2; =1l4cz+ez®+e322+ ... (3.4)

Because w(z) is a Schwarz function. Re(p(z)) > 0 and p(0) = 1 is
obvious. If we use

k,a,s !
< Ta,ﬁ,)\,éf<z)
T'Z:,%’S,af(Z)

to define the function of h(z), we can find

h(2)=¢<p(z)_1)=¢( 1z 4 2 + 32 + )

p(z) +1 24 c1z+ 22 + 323 + ..

=1+bz+by2® +b32®+ ..., (3.5)

h(z) =
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B o Bsc ci? Bsey?
—i—[?l (03—0102%—%)%— ;1 (02—%)—1— 381 ]23—1—... ,

from equations (3.2), (3.4) and (3.5). Thus,

B B 2 Byci?
by = %Cl;zb - <02 - %) + 2461 . (3.6)
By applying (3.3) and (3.5) in (3.6)
G — (A — B)Cl
C2( = 0)(B—a) + 1 (5)”
and
B A-B o )
=SB =85 —a) + Ry L2 (A2 e
are obtained.
As a result, we have
ag — pias? = -5 [62—
420 = 6)(8 - ) + 1% (12)
<MA—mpu—®w—m+u%§@S Aoy
s o €1
(A= 6)(8 — ) + 12+ (2)’ ’
as — pas® = A-DB [c2 — vey?]
T ARG - r G
where
_ _ _ k (14a)?®
1 (BA-BRO G- ),
2 (A= 0)(8 — o) + 112+ (512)
If 4 < oy, then if we apply Lemma 2.1
—(A - B)? A(A—B)

|as — pas®| <
2+a

B(A—B)
200 = 0)(8 — o) + 1]k (k£2)°

TIA=6) (B —a) + 1] (H_G)QS 22(A = 90)(B—a) +1]* (éi—g

T
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is obtained.

This is the first part of assertion (3.1).
Later, if u > 09, we can apply Lemma 2.1 to get

a3z — ,uazz‘ < ’M(A _ B)2 — A<A — B)
TIA= (B —a) + 1 ()T 2120 = 0)(8 — o) + 1] (53
B(A - B)

+

200 = 0)(8 — @) + 1]k ()™

This is the third part of assertion (3.1).

If 4 = o1, then equality holds if and only if

1+vy\1+2 l—vy\1-2
+ <~ <1 U
p(2) ( 2 )l—z ( 2 )lJrZ7 O<y<Lzel)

or one of its rotations.
If 4 = oy, then we have

1 (m(A ~ B)2(A - 9)(8 — o) + " (54)°
2\ (M -0B-a)+ 1P ()"

—(A—QB—1)> —0,

resulting in,

1 I4+~v\1+z2 l—vy\1-=2
= , (0<~y<1,z€U).
p(2) ( 2 )1—z+< 2 )1+z O<y<lz )

In the end, it is observed that

A-B [62_
42O - 0)(B — o) + 1]k (2

<M(A— B2 =05 0)+ 1 (52) 4_ap o]

2
az — pas’| =

[ = )8 — )+ 1 (k) ’

Y
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and

max

<

1<2p(A—B)[Q(A—5)(5—Oz)+1]k(:lw+r_g)s _(A_QB_U)
2 (A= 6)(8 — a) + 1) (1)
L, (o1 <p<og).

Thus, if Lemma 2.1 is used, the result is
A-—B

AR =6)(B — a) + 1]k (552)°
A-B

B0 - + 1 ()

2
‘G:’,—Maz ‘ =

If 01 < u < 09, then we obtain

B 1+ 22

_1_—722, (0<~y<1).

p(2)

Our result is now followed by the implementation of Lemma 2.1. The
function Q¢ (n=2,3,...) can be defined by

k,a,s !
z (Talﬁ,,)\,éQi)
k,a,s
Ta,ﬁ,/\,(sQﬁ
and the function F, and E., (0 <~ < 1) can be defined by

h(z) =

= 0(2"1),Q4(0) = 0 = [Q7(0)]' ~ 1

k,a,s !
z <Ta757/\75Fw(3)) _ (M) F(0)=0=[F (0)]/ -1
a,s ’ 'Y ’y
TZ’,ﬁ’,A,aFw(Z)

1+vz
to show that the bounds are sharp, and

/

z <T]ccy’,a7,8)\,6E’Y(Z)> z2(z

Tkﬁ B (—h—??) L E,(0) =0=[E,(0)) - 1.

a,B,2,0 7Y

It is obvious that, the functions of Q%, F.,, E, € S;(A, B), Q¢ = Qg
can also be written.

The equality holds for i < oy or > 09, if and only if f is Q¢ or one
of its rotations. The equality holds When oy < pu < 09, if and only if f
is Q?,f or one of its rotations. The equality holds for p = o1, if and only
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if f is F), or one of its rotations. The equality holds for u = oy, if and
only if f is E, or one of its rotations. 0

Remark 3.2. Then, in view of Lemma 2.1, Theorem3.1 can be improved
If o1 < p <oy

Now, if
(A—=2B)[(A = 8)(B — ) + 1]2* (k)™
2(A - B)[2(A - 8)(8 — ) + 1]k (12)°

gives o3, then for the values of oy < u < o3

2u(A ~ B)2(\ ~ 6)(8 - a) + 1J¢ (1)’

‘ag—,uaz ‘—i— [ Q(A—B)[Q()\—5)(B_a)+1]k<éi_g>s —
(A-2B-1)[(A-0)(8—a) +1]2k<§%>28] X Jas|* <
2(A—B)[z(A—é)(ﬁ—Oé)“]k(;i_Z)S o
(A-B)

22(\ — 8)(8 — ) + 1]k(;;—g)s

is obtained.
Likewise,
2s

1+4a
2+4a

(A=2B+1)[A=08)(8 —a)+1]*

2A~ B)2(A—8)(8 — o) + (22

(A~ B)2(A— 0)(3 - ) + 11°(bt2)’

24~ B0~ 8)(8 — o) + 1 ()’
(A= B)

22(0— 0)(5 - ) + 11+(22)”

/~/
) N

2
a3 — Haz

+

| *laaf? <

is obtained for the values o3 < p < os.
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Proof. For the values of 01 < u < 03, we have
(A—-B)
420\ = 0)(8 - a) +1]F (32)
(A— B)*|ar]?
A0 5)(8 — o) + 12 (522)”
_ (A-B)
4200 = 0)(8 — ) + 1]F (22

}ag—ua22‘+(u—01)\a2]2: R ‘02—V012 +

(1 —o1)

5 }02 - VC12‘ + (M—
3+a)

2s

(A= 2B = D[(A = 8)(8 — a) + 1) 1

2+a> )X (A_B)2|Cl|2
24-BRO-9E -0+ (55) 7 40— 03— a)+ 1 (312)”
_ (A-B) Lo
2200 = 6)(8 — o) + 1J* (£2) <2 [le2 = ver®| +vlen] }> <
(A— B)

202(A = 6)(B — a) + 1% (;%)S

Similarly, for the value of o3 < u < 05, we get

CL*CL2 g — CL2: (A_B) C*I/C2
a3 = naz”| + (o2 = oo 4[2(A—5)(5—a)+1]k<m)5‘2 v
_ 26 2
(03 — 1) (A = B)*|ei] _
4[N = 0)(8 — ) + 12+ (52
(A-B)

= s ‘02_7/012|+
3+a>

AN = 6)(B— a) + 1]F (1+J

(A—2B+1)[(A=0)(B—a) + 1]* (7513)25 . (A — B)?|c|?
—p
(A —8)(8—

) PR
— (A-DB) L
2MA—®w—aH4w(;@s<2U2 2L+ ( Nﬂ})g
(A-B)

202(A = 6)(B — a) + 1% (gﬁ)
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Therefore, Remark 3.2 remains true. O

4. Applications To Functions Defined By Fractional Deriva-
tives

DEFINITION 4.1. [20] Let f be analytic function in a simply-connected
region of the z-plane containing the region. The fractional derivative of

f order n is defined by

CW@%EéailaiQW’@f”<m

where the multiplicity of (z — ()" is removed by requiring that log(z —
() is real for z — ¢ > 0. Using the above definition and its known
extensions involving fractional derivatives and fractional integrals, Owa
and Srivastava [18] introduced the operator Q7 : A — A defined by

Q7 f)(2) =T(2=n)2"CLf(2), (n#2,3,4,..).

The class S5(A, B, n) consists the functions of f € A for which Q"f €
S3(A, B).
It can be noted that, when

- Tn+1)T2—7) .
9@ =24 ) Ty

S3(A, B,n) is the special case of the class S5(A, B, g).
Let

g(z)=z+ Zgnz”, (gn > 0).
n=2
Since
TZ’,(E,SA,éf(Z)

= Y =96 - - U

1+a
n+a

) a,z" € SY(A, B, g)

if and only if
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Toie(f *9)(2)
=zt ;[1 +A=8(B—a)(n—-1) <iii) angnz" € Sy(A, B).

(4.1)

The estimation of the coefficient for the functions in the class S5 (A, B, g)
is obtained from the estimation which corresponds to the functions of f
in class S{(A, B). If Theorem 3.1 is applied for operator (4.1), Theorem
4.1 is obtained after an obvious change of the parameter u:

THEOREM 4.1. Let g(z) = z+ > 2, g.2", (gn > 0), and let the

function ¢(z) be given by ¢(z) = 1+Zn , Bnz". If operator T® oinsf(2)
given by (1.5) belongs to S5(A, B, g), then

( l[ —(A — B)’gs n

93 L[(A = 0)(8 — ) + ]2k (12)* g3
A(A - B)

22(\ — 8)(8 — a) + 1]* (12)°
B(A - B) ]

201 = 0)(8 — a) + 1]k (k)

2 . l[ A-B ]
“rel = G R 9B -+ 1 (5
1 (A — B)gs

1

w<oy;

o1 < p < 09

%hﬂ—ﬁw—a%%Pﬂﬁﬂ%ﬁ
A(A - B)
2[2(A — 6)(8 — a) + 1]F (H2)°
B(A - B) ]
[ 20 = 0)(B — o) + 1]F (522)°

/'1’20-27

where

g3 (A=2B-1)[(A=9)(B—a)+ 12k (éi_g)%

g5 2(A—B)[2(A = 0)(8 — a) + 1]k (k)"

3+a

o1 =
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and

g (A-2B+ 1A= 0)(B—a) +1* (i)

93. 2(A_B)[2()\_5)(B_a)+l]k (é_—::_z)s

02

The result is sharp.

Since
(@155 ,1)(2)
- i_oj M SE= s (3= )5 - ) - 1) (ij)
we have
o =) 2 )
and

g3 = = : (4.3)

Theorem 4.1 is reduced to Theorem 4.2 for g, and g3 given by (4.2)
and (4.3).

THEOREM 4.2. Let g(2) = 2+ > 2o gu2", (gn > 0), and let the
function ¢(z) be given by ¢(z) = 1+ ° | B,z". If operator TZ”%’XJ (2)
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given by (1.5) belongs to S5(A, B,n), then

(2—77)(3—?7)[_3(2—77) (A - B)?
6 2(3—1n) [(A—0)(B — ) + 1]2k G%)QS
A(A— B)
TR0 8B — )+ 1P (2)
3+a
- 54— 5) s} < o1;
200 = 8)(8 - a) + 1]F (42
(2-n)B—mn) A-B
a3 — pa3| = 6 [2[2(/\—5)(5—04)+1]k (éi)} e
2-mB-n) [3(2 —1) p(A - B)?
6 2(3—mn) [(A—68)(B—a)+ 1]2k (%)28
- A(A— B)
22(A — 8)(8 — o) + 1]* (},)%g)
+ 54~ B) s:| W= 02
201 = 8)(8 — a) + 1% (§£2)

where

23— ) (A—2B—1)[(A=3)(8 — a) + 1] (L2)*

32-n)" 2(A- B)[2(A—0)(8 —a) + 1]k (k)

3+a

g1 =

and

23 — 1) (A—2B+1)[(A—6)(8 — a) + 12 ()™

24a

32—-1)" 2(A-B)2(A - 0)(8 — o) + 1JF (£2)°

3+a

09 =

The result is sharp.

5. Fekete-Szeg6 Problem For K,(A, B)

The main result is the following:
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THEOREM 5.1. Let ¢(z) = 1+ Bz + By2? + ... . If f(z) given by
(1.1) belongs to K(A, B), then

( —pu(A - B)? N
A[(A = 6)(8 — a) + 1]+ (ka)™
A(A— B) -
612(A — 8)(8 — a) + 1]* (322)°
B(A - B) o
3200 — 0)(8 — a) + 1F(22)° =
2] . A — B o < < 09"
a3—,ua2‘.— 6207 — 0)(B —a) + 1]F (?1)1_3)5 1S M 02,
(A - B)? 3
A[(A = 6)(8 — a) + 1]k (ko)™
A(A— B) .
612(A — 6)(8 — a) + 1]+ (322)°
B(A - B) .
| 3200 — 8)(8 — a) + 1J* (=2)° reo
where
. 2(A— 2B — 1)[(A — 0)(8 — ) + 1] (L)
L3(A-B)20v—0)(B — a) + 1]F (L)’
and
L AA2BH (A -0)(B-a) + 1 2 (Leay®
T 3(A-B)2A ) (8 —a) + 1k ()T

The result is sharp.

We can give proof of Theorem 5.1by using the same technique as in
Theorem 3.1.

Remark 5.2. If 0y < o < 09, then in view of Lemma 2.1, Theorem
5.1 can be improved. Let o3 be given by

2A —2B)[(A — 6)(B — a) + 1] (kt2)™
3(A—B)2(A — 0)(8 — ) + 1]k (1)

O3 =
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If o1 < p < o3, then

(A~ B2 - 8)(3 - o) + 14 (i2)’

o =]+ | 3(A - B)20A—0)(8 — ) + UF(k) "
24— 2B~ (A - 6)(3 - a) + 112k(5i—3)28]
3(A— B)R2(A—5)(6 —a) + 1)+ ()’
(A= B)

6[2(\ — 0)(5 — a) + 1]k(;—g)s'

X |ag|* <

If o3 <y < 09, then

a3 — iz _[SM(A—B)[2()\_5)(ﬁ_a)+1]k(g_z>s

3(A—=B)2(A—6)(B—a) + 1]k<1+_a>s

3+a

3(A— B)2(\—8)(8 — a) + 1]5($22)’
(A-B)
61200 — 8)(8 — o) + 1]8(122) "

2(A—2B+1)[(\—8)(B—a)+ 1]2k<1ﬂ>28]

X |ag]? <

We can give proof of Remark 5.2 by using the same technique as in
Remark 3.2.

6. Applications To Functions Defined By Fractional Deriva-
tives

In this section, we use Definition 4.1 to define the class K, (A, B,n).
The class K,(A, B,n) consists the functions of f € A for which Q"f €
K\(A, B).
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It can be noted that, when

[e.9]

Fn+1)I'2—-7n) ,
9(2)=Z+; Tnti-n) *

then, K)(A, B,n) is the special case of class K,(A, B, g).

Let
(=24 g (9o > 0)
n=2
Since
TZ:(E,S;\,(;JC(Z)

1+a
n-+a

:Z‘i‘Z[l‘i‘()\_d)(ﬁ_@)(n—l)]k< )SanZnEKA(A7B>g)7

if and only if

Toihs(f *9)(2)

==+ 3+ 0= 96— a1

14+a
n-+a

) angnz" € Ky\(A, B).
(6.1)

The estimation of the coefficient for the functions in the class K (A, B, g),
can be obtained from the estimation of the corresponding functions of
f in the class K)(A, B). Theorem 6.1 can be obtained after an obvi-
ous change of the parameter p by implementing Theorem 5.1 for the
operator (6.1).

THEOREM 6.1. Let g(2) = 2+ > "o gu2", (gn > 0), and let the
function ¢(z) be given by ¢(z) = 1+ | B,z". If operator TZ”%’;’J (2)
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given by (1.5) belongs to K)(A, B, g), then

( l[ —u(A — B)?gs
95 L4[(A = 8)(8 — a) + 11+ (12)™ 03
. A(A - B)
6[2(A — 6)(8 — a) + 1]F (2)°
B(A — B)
B0 35 — ) + () o
) 1 A-B .
@ = poa] = g £[6[2(A—5)(ﬁ—a)+1]’“(§i—3)8 nEnE
l[ (A — B)?gs
95 LA[(A = 8)(8 — @) + 1]2¢ (12)> g2
A(A - B)
6200 = 0)(B — ) + 1JF (1)
N B(A - B) } 0> o
[ 3200 = 8)(8 — a) + 1] (32 -
where
L@ 2A=2B-1[(A-0)(B—a)+ 1% ()
"gs 3(A-B)2(A - 8)(B — o) + 1JF (H2)°
and
B 2AA=2B+1)[(A=0)(8 - a) + 1 ()”
T BA-BRO-0)B—a)+ 1 ()T

The result is sharp.
Theorem 6.1 reduced to Theorem 6.2 for g, and g3 given by (4.2) and
(4.3).

THEOREM 6.2. Let g(2) = 2+ > 2o gu2", (9o > 0), and let the
function ¢(z) be given by ¢(z) = 1+ ° | B,z". If operator TZ”‘;’,S)HJ (2)
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given by (1.5) belongs to K,(A, B,n), then

(2—77)(3—?7)[_3(2—77) (A - B)?
’ 28 g3 - 5)(5 - o)+ 12+ ()
A(A - B)
TSRO 5B —a) + 1 (b2)"
3+a
54-5) s} M=o
3200 0)(8 - a) + 1]F (32)
2-nB-n) A-B ,
az — paj| = 6 [6[2(>\—5)(5—a)+1]k (%13)} LS p S0
(2=m@B—mn) [3(2*?7) WA~ B)?
6 B0 g5 o)1 ()
- A(A—- B) .
612(A — 6)(8 — ) + 1]* (;17;)
54~ 5) s} W= 02,
3200~ 0)(8 - a) + 1]F (52)

where
23— 2AA=2B- DA 0)(B—a) + 1 (32)”
L3 3(A-B)RO-0)(B—a)+ 1k (52
_2B-m) A4-2B+ D[ = 5)(B - a) + U (32)"

32—n)" 3(A—B)2(A—6)(B— )+ 1]* (32)

The result is sharp.
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