THE FEKETE-SZEGÖ INEQUALITY FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION BETWEEN GENERALIZED AL-OBOUDI DIFFERENTIAL OPERATOR AND SRIVASTAVA-ATTIYA INTEGRAL OPERATOR

K. A. Challab, M. Darus*, and F. Ghanim

ABSTRACT. The aim of this paper is to investigate the Fekete Szegö inequality for subclass of analytic functions defined by convolution between generalized Al-Oboudi differential operator and Srivastava-Attiya integral operator. Further, application to fractional derivatives are also given.

1. Introduction

Normally, we are considering the class of analytic function f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1.1}$$

in the open unit disc $U = \{z : |z| < 1\}$ and denoted by A and normalized by f(0) = f'(0) - 1 = 0. Let the function which is defined by

Received February 25, 2017. Revised March 28, 2018. Accepted May 2, 2018. 2010 Mathematics Subject Classification: 30C45; 30C50.

Key words and phrases: Analytic functions, Starlike functions, Convex functions, Subordination, Schwarz Function, Fekete-Szegö inequality, Generalized Al-Oboudi differential operator, Srivastava-Attiya integral operator.

The work here is supported by UKM's grant:GUP-2017-064.

- * Corresponding author.
- © The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

$$(1 - \lambda)f(z) + \lambda z f'(z) \tag{1.2}$$

be $F_{\lambda}(z)$. Then, we can write $F_{\lambda}(z)$ as

$$F_{\lambda}(z) = z + \sum_{n=2}^{\infty} [1 + \lambda(n-1)] a_n z^n,$$

using (1.1) and (1.2).

In 2004, Al-Oboudi [2] investigated the operator

$$F_{\lambda}^{k}(z) = z + \sum_{n=2}^{\infty} [1 + \lambda(n-1)]^{k} a_{n} z^{n}.$$

Later, Al-Oboudi differential operator was extended by Ramadan and Darus [19] given as follows:

$$D_{\alpha,\beta,\lambda,\delta}f(z) = z + \sum_{n=2}^{\infty} [1 + (\lambda - \delta)(\beta - \alpha)(n-1)]a_n z^n$$

by having

$$D_{\alpha,\beta,\lambda,\delta}f(z) = [1 - (\lambda - \delta)(\beta - \alpha)]f(z) + (\lambda - \delta)(\beta - \alpha)zf'(z),$$

thus

$$D_{\alpha,\beta,\lambda,\delta}^k f(z) = z + \sum_{n=2}^{\infty} [1 + (\lambda - \delta)(\beta - \alpha)(n-1)]^k a_n z^n,$$

for

$$(\alpha > 0, \beta > 0, \lambda > 0, \delta > 0, \lambda > \delta, \beta > \alpha)$$
 and $n \in \{0, 1, 2, ...\}$.

The Hadamard product (or convolution) of f and g can be defined by

$$(f * g) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad z \in U,$$

such that, $f \in A$ given by (1.1) and $g \in A$ $(g(z) = z + \sum_{n=2}^{\infty} b_n z^n)$.

An important operator given by [27] named as Srivastava-Attiya operator is as follows:

$$J_{s,a}: A \to A,$$

$$J_{s,a}f(z) = G_{s,a} * f(z), \quad (z \in U; a \in \mathbb{C} \setminus \{Z_0^-\}; s \in \mathbb{C}; f \in A), \quad (1.3)$$

where, for convenience,

$$G_{s,a}(z) := (1+a)^s [\Phi(z,s,a) - a^{-s}] \quad (z \in U),$$

$$J_a^s f(z) = z + \sum_{n=0}^{\infty} \left(\frac{1+a}{n+a}\right)^s a_n z^n,$$
(1.4)

and $\Phi(z, s, a) \equiv \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s}$, [see [1], Section 1.11, Eq.(1)] is obtained by the successful implementation of (1.1), (1.3) and (1.4).

Now, by the Hadamard product we define the following generalized operator

$$\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z) = z + \sum_{n=2}^{\infty} [1 + (\lambda - \delta)(\beta - \alpha)(n-1)]^k \left(\frac{1+a}{n+a}\right)^s a_n z^n, (1.5)$$

where

$$\Upsilon^{k,a,s}_{\alpha,\beta,\lambda,\delta}f(z) = D^k_{\alpha,\beta,\lambda,\delta}f(z) * G_{s,a}(z)$$

or as

$$\Upsilon^{k,a,s}_{\alpha,\beta,\lambda,\delta}f(z) = z + \sum_{n=2}^{\infty} A_n z^n,$$

where

$$A_n = [1 + (\lambda - \delta)(\beta - \alpha)(n - 1)]^k \left(\frac{1 + a}{n + a}\right)^s a_n.$$

For suitable values of s, α , β , δ , λ , we can see that:

- (i) when s = 0, $\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,0} f(z)$ is the Ramadan and Darus differential operator as presented in [19],
- (ii) when $s=0, \ \alpha=0, \ \delta=0, \ \lambda=1, \ \beta=1, \ \Upsilon^{k,a,0}_{0,1,1,0}f(z)$ is the Salagean differential operator as presented in [22],
- (iii) when $s=0,\,\alpha=0,\,\Upsilon^{k,a,0}_{0,\beta,\lambda,\delta}f(z)$ is the Darus and Ibrahim differential operator as presented in [10],
- (iv) when $s=0, \ \alpha=0, \ \delta=0, \ \beta=1, \Upsilon^{k,a,0}_{0,1,\lambda,0}f(z)$ is the Al-Oboudi differential operator as presented in [2].

In the case where Σ is the class of functions $\Upsilon^{k,a,s}_{\alpha,\beta,\lambda,\delta}f(z)$, it is obvious that $\Upsilon^{k,a,s}_{\alpha,\beta,\lambda,\delta}f(z)$ is an analytical function in U [8].

If S is defined as the class of functions $\Upsilon^{k,a,s}_{\alpha,\beta,\lambda,\delta}f(z)\in\Sigma$, which are univalent in U.

Then we can recall that a Schwarzian function

$$w(z) = \sum_{n=1}^{\infty} c_n z^n$$

has the condition of w(0) = 0 and |w(z)| < 1 and is analytical in U.

If f and g are two analytical functions in U, then f is said to be subordinate to g (symbolically $f \prec g$) when a Schwarz function $w(z) \in U$ exists, such that f(z) = g(w(z)) ([9], [25]).

As studied by Goel and Mehrok [13], $S_{\lambda}^*(A, B)$ can be a subclass of the functions $\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z) \in \Sigma$ with the condition of

$$\frac{z\left(\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}f(z)\right)'}{\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}f(z)} \prec \frac{1+Az}{1+Bz}, \quad -1 \leq B < A \leq 1, z \in U,$$

where $S_{\lambda}^*(A, B)$ is a subclass of the starlike functions, and $S_0^*(A, B) \equiv S^*(A, B)$. In particular, $S_0^*(1, -1) \equiv S^*$, which is a class of the starlike functions [26].

 $K_{\lambda}(A,B)$ is a subclass of the functions $\Upsilon^{k,a,s}_{\alpha,\beta,\lambda,\delta}f(z)\in\Sigma$, with the condition of

$$\frac{\left(z\left(\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}f(z)\right)'\right)'}{\left(\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}f(z)\right)'} \prec \frac{1+Az}{1+Bz}, -1 \leq B < A \leq 1, z \in U.$$

Note that, $K_0(A, B) \equiv K(A, B)$ and is a subclass of the convex functions. Most particularly $K_0(1, -1) \equiv K$, and is a class of the convex functions [26].

Now, we shall give a brief background on Fekete and Szegö problem which is our ultimate goal. Back in 1933, Fekete and Szegö [11] studied a special inequality which arises naturally from a combination of two coefficients a_2 and a_3 of a class of univalent analytic normalised function S. They obtained sharp upper bound of $|a_3 - \mu a_2^2|$, where μ is real. Later Keogh and Merkes [14], Koepf [15] and many others follow the same problems with different techniques for different classes.

The problems evolve and many new subclasses are focussed on Fekete-Szegö problem. For examples, Alhindi and Darus [5] studied the problems on a function belongs to a new subclass of Sakaguchi type which was determined through fractional derivatives, Ravichandran et al. [20] studied the problems for the class $z^{1-\alpha}f'(z)/f^{1-\alpha}(z)$ ($\alpha \geq 0$) which was located in a starlike region with respect to 1 and was symmetric with respect to the real axis, and Selvaraj and Kumar [23] studied for the class $\Re\left[1+\frac{1}{b}\left\{(1-\alpha)\frac{f(z)}{z}+\alpha f'(z)-1\right\}\right] \succ 0$. For other examples defined on various classes can be read in ([3], [4], [6], [7], [12], [16], [17], [19], [21], [24], [28]).

Motivated by all the work done above, we obtain sharp upper bound of $|a_3 - \mu a_2^2|$ for classes of starlike $S_{\lambda}^*(A, B)$ and convex $K_{\lambda}(A, B)$, respectively.

2. Preliminary Results

To begin our results, P is defined as the family of all the functions r analytical in U, for which $\Re(r(z)) > 0$ and

$$r(z) = 1 + r_1 z + r_2 z^2 + \dots$$

for $z \in U$. The following lemma was necessary to obtain our results:

LEMMA 2.1. [19] If $q(z) = 1 + r_1 z + r_2 z^2 + ...$ is an analytic function with positive real part in U, then

$$|r_2 - \nu r_1^2| := \begin{cases} -4\nu + 2 & \nu \le 0; \\ 2 & 0 \le \nu \le 1; \\ 4\nu - 2 & \nu \ge 1, \end{cases}$$

when $\nu < 0$ or $\nu > 1$, q(z) is (1+z)/(1-z) or one of its rotations if and only if the equality holds. If $0 < \nu < 1$, then q(z) is $(1+z^2)/(1-z^2)$ or one of its rotations if and only if the equality holds. If $\nu = 0$, then

$$q(z) = \left(\frac{1}{2} + \frac{1}{2}\gamma\right) \frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2}\gamma\right) \frac{1-z}{1+z} \quad (0 \le \gamma \le 1)$$

or one of its rotations if and only if the equality holds. If $\nu = 1$, q(z) is the reciprocal of one of the functions if and only if the equality holds

such that the equality holds in the case of $\nu = 0$. Also the above upper bound can be improved as follows when $0 < \nu < 1$.

$$|r_2 - \nu r_1^2| + \nu |r_1|^2 \le 2 \quad \left(0 < \nu \le \frac{1}{2}\right)$$

and

$$|r_2 - \nu r_1^2| + (1 - \nu)|r_1|^2 \le 2 \left(\frac{1}{2} < \nu \le 1\right),$$

and it is sharp.

3. Fekete-Szegő Problem For $S_{\lambda}^*(A, B)$

The main result is the following:

THEOREM 3.1. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + ...$ If f(z) given by (1.1) belongs to $S_{\lambda}^*(A,B)$, then

$$|a_3 - \mu a_2^2| := \begin{cases} \frac{-\mu(A-B)^2}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k}\left(\frac{1+a}{2+a}\right)^{2s}} + \\ \frac{A(A-B)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^k\left(\frac{1+a}{3+a}\right)^s} - \\ \frac{B(A-B)}{[2(\lambda-\delta)(\beta-\alpha)+1]^k\left(\frac{1+a}{3+a}\right)^s} - \\ \frac{A-B}{2[2(\lambda-\delta)(\beta-\alpha)+1]^k\left(\frac{1+a}{3+a}\right)^s} & \sigma_1 \le \mu \le \sigma_2; (3.1) \\ \frac{\mu(A-B)^2}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k}\left(\frac{1+a}{2+a}\right)^{2s}} - \\ \frac{A(A-B)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^k\left(\frac{1+a}{3+a}\right)^s} + \\ \frac{B(A-B)}{[2(\lambda-\delta)(\beta-\alpha)+1]^k\left(\frac{1+a}{3+a}\right)^s} + \\ \frac{B(A-B)}{[2(\lambda-\delta)(\beta-\alpha)+1]^k\left(\frac{1+a}{3+a}\right)^s} & \mu \ge \sigma_2, \end{cases}$$
 where

where

$$\sigma_1 = \frac{(A - 2B - 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}$$

and

$$\sigma_2 = \frac{(A - 2B + 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}.$$

The result is sharp.

If we follow a method like the one used in several other articles for example [17], [19] and [20], the following proof of Theorem 3.1 is obtained.

Proof. If $\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}f(z) \in S_{\lambda}^{*}(A,B)$, then a Schwarz function w(z) exists, such that

$$\frac{z\left(\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}f(z)\right)'}{\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}f(z)} = \phi(w(z)),\tag{3.2}$$

where

$$\phi(z) = \frac{1+Az}{1+Bz} = 1 + (A-B)z - B(A-B)z^2 + B^2(A-B)z^3 + \dots$$

$$= 1 + B_1z + B_2z^2 + B_3z^3 + \dots$$
(3.3)

The function p(z) is determined to be following:

$$p(z) = \frac{1 + w(z)}{1 - w(z)} = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \dots$$
 (3.4)

Because w(z) is a Schwarz function. Re(p(z)) > 0 and p(0) = 1 is obvious. If we use

$$h(z) = \frac{z \left(\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z) \right)'}{\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z)} = 1 + b_1 z + b_2 z^2 + b_3 z^3 + \dots , \qquad (3.5)$$

to define the function of h(z), we can find

$$h(z) = \phi\left(\frac{p(z) - 1}{p(z) + 1}\right) = \phi\left(\frac{c_1 z + c_2 z^2 + c_3 z^3 + \dots}{2 + c_1 z + c_2 z^2 + c_3 z^3 + \dots}\right)$$

$$= \phi\left(\frac{1}{2}c_1 z + \frac{1}{2}\left(c_2 - \frac{c_1^2}{2}\right)z^2 + \frac{1}{2}\left(c_3 - c_1 c_2 - \frac{c_1^3}{4}\right)z^3 + \dots\right)$$

$$= 1 + \frac{B_1 c_1}{2}z + \left[\frac{B_1}{2}\left(c_2 - \frac{c_1^2}{2}\right) + \frac{B_2 c_1^2}{4}\right]z^2$$

+
$$\left[\frac{B_1}{2}\left(c_3 - c_1c_2 + \frac{{c_1}^3}{4}\right) + \frac{B_2c_1}{2}\left(c_2 - \frac{{c_1}^2}{2}\right) + \frac{B_3c_1^3}{8}\right]z^3 + \dots$$
,

from equations (3.2), (3.4) and (3.5). Thus,

$$b_1 = \frac{B_1 c_1}{2}; b_2 = \frac{B_1}{2} \left(c_2 - \frac{{c_1}^2}{2} \right) + \frac{B_2 {c_1}^2}{4}.$$
 (3.6)

By applying (3.3) and (3.5) in (3.6)

$$a_2 = \frac{(A-B)c_1}{2[(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{2+a}\right)^s},$$

and

$$a_3 = \frac{A - B}{8[2(\lambda - \delta)(\beta - \alpha) + 1]^k (\frac{1+a}{3+a})^s} \left[2c_2 + (A - 2B - 1)c_1^2\right],$$

are obtained.

As a result, we have

$$a_{3} - \mu a_{2}^{2} = \frac{A - B}{4[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \left[c_{2} - \left(\frac{\mu(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} \left(\frac{1+a}{3+a}\right)^{s}}{[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} - \frac{A - 2B - 1}{2}\right) c_{1}^{2}\right]$$

$$a_3 - \mu a_2^2 = \frac{A - B}{4[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \left[c_2 - \nu c_1^2\right],$$

where

$$\nu = \frac{1}{2} \left(\frac{2\mu(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} - (A-2B-1) \right).$$

If $\mu \leq \sigma_1$, then if we apply Lemma 2.1

$$|a_{3} - \mu a_{2}|^{2} \le \frac{-\mu(A - B)^{2}}{[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} (\frac{1+a}{2+a})^{2s}} + \frac{A(A - B)}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} (\frac{1+a}{3+a})^{s}} - \frac{B(A - B)}{[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} (\frac{1+a}{3+a})^{s}}$$

is obtained.

This is the first part of assertion (3.1).

Later, if $\mu \geq \sigma_2$, we can apply Lemma 2.1 to get

$$|a_{3} - \mu a_{2}|^{2} \leq \frac{\mu(A - B)^{2}}{[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} (\frac{1+a}{2+a})^{2s}} - \frac{A(A - B)}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} (\frac{1+a}{3+a})^{s}} + \frac{B(A - B)}{[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} (\frac{1+a}{3+a})^{s}}.$$

This is the third part of assertion (3.1).

If $\mu = \sigma_1$, then equality holds if and only if

$$p(z) = \left(\frac{1+\gamma}{2}\right)\frac{1+z}{1-z} + \left(\frac{1-\gamma}{2}\right)\frac{1-z}{1+z}, \quad (0 \le \gamma \le 1, z \in U)$$

or one of its rotations.

If $\mu = \sigma_2$, then we have

$$\nu = \frac{1}{2} \left(\frac{2\mu(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} - (A-2B-1) \right) = 0,$$

resulting in,

$$\frac{1}{p(z)} = \left(\frac{1+\gamma}{2}\right)\frac{1+z}{1-z} + \left(\frac{1-\gamma}{2}\right)\frac{1-z}{1+z}, \quad (0 \le \gamma \le 1, z \in U).$$

In the end, it is observed that

$$|a_{3} - \mu a_{2}|^{2} = \frac{A - B}{4[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \Big| \Big[c_{2} - \left(\frac{\mu(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} \left(\frac{1+a}{3+a}\right)^{s}}{[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} - \frac{A - 2B - 1}{2} \right) c_{1}^{2} \Big] \Big|,$$

and

$$\max \left| \frac{1}{2} \left(\frac{2\mu(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} - (A-2B-1) \right) \right| \le 1, \quad (\sigma_1 \le \mu \le \sigma_2).$$

Thus, if Lemma 2.1 is used, the result is

$$|a_3 - \mu a_2|^2 = \frac{A - B}{4[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \le \frac{A - B}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}, \quad (\sigma_1 \le \mu \le \sigma_2)$$

If $\sigma_1 < \mu < \sigma_2$, then we obtain

$$p(z) = \frac{1 + \gamma z^2}{1 - \gamma z^2}, \quad (0 \le \gamma \le 1).$$

Our result is now followed by the implementation of Lemma 2.1. The function Q_n^{ϕ} (n=2,3,...) can be defined by

$$h(z) = \frac{z \left(\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} Q_n^{\phi} \right)'}{\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} Q_n^{\phi}} = \phi(z^{n-1}), Q_n^{\phi}(0) = 0 = [Q_n^{\phi}(0)]' - 1$$

and the function F_{γ} and E_{γ} , $(0 \le \gamma \le 1)$ can be defined by

$$\frac{z\left(\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}F_{\gamma}(z)\right)'}{\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}F_{\gamma}(z)} = \phi\left(\frac{z(z+\gamma)}{1+\gamma z}\right), F_{\gamma}(0) = 0 = [F_{\gamma}(0)]' - 1$$

to show that the bounds are sharp, and

$$\frac{z\left(\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}E_{\gamma}(z)\right)'}{\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}E_{\gamma}(z)} = \phi\left(-\frac{z(z+\gamma)}{1+\gamma z}\right), E_{\gamma}(0) = 0 = [E_{\gamma}(0)]' - 1.$$

It is obvious that, the functions of Q_n^{ϕ} , F_{γ} , $E_{\gamma} \in S_{\lambda}^*(A, B)$, $Q^{\phi} = Q_2^{\phi}$ can also be written.

The equality holds for $\mu < \sigma_1$ or $\mu > \sigma_2$, if and only if f is Q^{ϕ} or one of its rotations. The equality holds When $\sigma_1 < \mu < \sigma_2$, if and only if f is Q_3^{ϕ} or one of its rotations. The equality holds for $\mu = \sigma_1$, if and only

if f is F_{γ} or one of its rotations. The equality holds for $\mu = \sigma_2$, if and only if f is E_{γ} or one of its rotations.

Remark 3.2. Then, in view of Lemma 2.1, Theorem 3.1 can be improved If $\sigma_1 \leq \mu \leq \sigma_2$.

Now, if

$$\frac{(A-2B)[(\lambda-\delta)(\beta-\alpha)+1]^{2k}\left(\frac{1+a}{2+a}\right)^{2s}}{2(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k\left(\frac{1+a}{3+a}\right)^s}$$

gives σ_3 , then for the values of $\sigma_1 \leq \mu \leq \sigma_3$

$$\left| a_{3} - \mu a_{2}^{2} \right| + \left[\frac{2\mu(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}}{2(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} - \frac{(A-2B-1)[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \times |a_{2}|^{2} \le \frac{(A-B)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}}$$

is obtained.

Likewise,

$$\left| a_{3} - \mu a_{2}^{2} \right| + \left[\frac{(A - 2B + 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} - \frac{2\mu(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} \left(\frac{1+a}{3+a}\right)^{s}}{2(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \times |a_{2}|^{2} \leq \frac{(A - B)}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^{k} \left(\frac{1+a}{3+a}\right)^{s}},$$

is obtained for the values $\sigma_3 \leq \mu \leq \sigma_2$.

Proof. For the values of $\sigma_1 \leq \mu \leq \sigma_3$, we have

$$\begin{aligned} & \left| a_3 - \mu a_2^2 \right| + (\mu - \sigma_1) |a_2|^2 = \frac{(A - B)}{4[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \left| c_2 - \nu c_1^2 \right| + \\ & (\mu - \sigma_1) \frac{(A - B)^2 |c_1|^2}{4[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} \\ & = \frac{(A - B)}{4[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \left| c_2 - \nu c_1^2 \right| + \left(\mu - \frac{(A - 2B - 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \right) \times \frac{(A - B)^2 |c_1|^2}{4[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} \\ & = \frac{(A - B)}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \left(\frac{1}{2} \left[\left| c_2 - \nu c_1^2 \right| + \nu |c_1|^2 \right] \right) \le \frac{(A - B)}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}. \end{aligned}$$

Similarly, for the value of $\sigma_3 \leq \mu \leq \sigma_2$, we get

$$\begin{split} & \left| a_3 - \mu a_2^2 \right| + (\sigma_2 - \mu) |a_2|^2 = \frac{(A - B)}{4[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \left| c_2 - \nu c_1^2 \right| + \\ & (\sigma_2 - \mu) \frac{(A - B)^2 |c_1|^2}{4[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} \\ & = \frac{(A - B)}{4[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \left| c_2 - \nu c_1^2 \right| + \\ & \left(\frac{(A - 2B + 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} - \mu \right) \times \frac{(A - B)^2 |c_1|^2}{4[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} \\ & = \frac{(A - B)}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s} \left(\frac{1}{2} \left[\left| c_2 - \nu c_1^2 \right| + (1 - \nu) |c_1|^2 \right] \right) \le \\ & \frac{(A - B)}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}. \end{split}$$

Therefore, Remark 3.2 remains true.

4. Applications To Functions Defined By Fractional Derivatives

DEFINITION 4.1. [20] Let f be analytic function in a simply-connected region of the z-plane containing the region. The fractional derivative of f order η is defined by

$$C_z^{\eta} f(z) \frac{1}{\Gamma(1-\eta)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\eta}}, \quad (0 \le \eta < 1),$$

where the multiplicity of $(z - \zeta)^{\eta}$ is removed by requiring that $\log(z - \zeta)$ is real for $z - \zeta > 0$. Using the above definition and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [18] introduced the operator $\Omega^{\eta}: A \to A$ defined by

$$(\Omega^{\eta}f)(z) = \Gamma(2-\eta)z^{\eta}C_z^{\eta}f(z), \quad (\eta \neq 2, 3, 4, \ldots).$$

The class $S_{\lambda}^*(A, B, \eta)$ consists the functions of $f \in A$ for which $\Omega^{\eta} f \in S_{\lambda}^*(A, B)$.

It can be noted that, when

$$g(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)} z^n,$$

 $S_{\lambda}^{*}(A, B, \eta)$ is the special case of the class $S_{\lambda}^{*}(A, B, g)$. Let

$$g(z) = z + \sum_{n=2}^{\infty} g_n z^n, \quad (g_n > 0).$$

Since

$$\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z)$$

$$= z + \sum_{n=2}^{\infty} [1 + (\lambda - \delta)(\beta - \alpha)(n-1)]^k \left(\frac{1+a}{n+a}\right)^s a_n z^n \in S_{\lambda}^*(A, B, g)$$

if and only if

$$\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}(f*g)(z)$$

$$= z + \sum_{n=2}^{\infty} [1 + (\lambda - \delta)(\beta - \alpha)(n-1)]^k \left(\frac{1+a}{n+a}\right)^s a_n g_n z^n \in S_{\lambda}^*(A,B).$$

$$(4.1)$$

The estimation of the coefficient for the functions in the class $S_{\lambda}^*(A, B, g)$ is obtained from the estimation which corresponds to the functions of f in class $S_{\lambda}^*(A, B)$. If Theorem 3.1 is applied for operator (4.1), Theorem 4.1 is obtained after an obvious change of the parameter μ :

THEOREM 4.1. Let $g(z) = z + \sum_{n=2}^{\infty} g_n z^n$, $(g_n > 0)$, and let the function $\phi(z)$ be given by $\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n$. If operator $\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z)$ given by (1.5) belongs to $S_{\lambda}^*(A,B,g)$, then

$$\left| a_{3} - \mu a_{2}^{2} \right| := \begin{cases} \frac{1}{g_{3}} \left[\frac{-\mu(A-B)^{2}g_{3}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s} g_{2}^{2}} + \\ \frac{A(A-B)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} - \\ \frac{B(A-B)}{[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] & \mu \leq \sigma_{1}; \\ \frac{1}{g_{3}} \left[\frac{A-B}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] & \sigma_{1} \leq \mu \leq \sigma_{2}; \\ \frac{1}{g_{3}} \left[\frac{\mu(A-B)^{2}g_{3}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s} g_{2}^{2}} - \\ \frac{A(A-B)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} + \\ \frac{B(A-B)}{[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] & \mu \geq \sigma_{2}, \end{cases}$$

where

$$\sigma_1 = \frac{g_2^2}{g_3} \cdot \frac{(A - 2B - 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}$$

and

$$\sigma_2 = \frac{g_2^2}{g_3} \cdot \frac{(A - 2B + 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}.$$

The result is sharp.

Since

$$(\Omega^{\eta} \Upsilon^{k,a,s}_{\alpha,\beta,\lambda,\delta} f)(z)$$

$$= z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)} [1 + (\lambda - \delta)(\beta - \alpha)(n-1)]^k \left(\frac{1+a}{n+a}\right)^s a_n z^n$$

we have

$$g_2 := \frac{\Gamma(3)\Gamma(2-\eta)}{\Gamma(3-\eta)} = \frac{2}{2-\eta}$$
 (4.2)

and

$$g_3 := \frac{\Gamma(4)\Gamma(2-\eta)}{\Gamma(4-\eta)} = \frac{6}{(2-\eta)(3-\eta)}.$$
 (4.3)

Theorem 4.1 is reduced to Theorem 4.2 for g_2 and g_3 given by (4.2) and (4.3).

THEOREM 4.2. Let $g(z) = z + \sum_{n=2}^{\infty} g_n z^n$, $(g_n > 0)$, and let the function $\phi(z)$ be given by $\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n$. If operator $\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z)$

given by (1.5) belongs to $S_{\lambda}^*(A, B, \eta)$, then

given by (1.5) belongs to
$$S_{\lambda}^{*}(A, B, \eta)$$
, then
$$\begin{cases} \frac{(2-\eta)(3-\eta)}{6} \left[-\frac{3(2-\eta)}{2(3-\eta)} \frac{\mu(A-B)^{2}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} + \frac{A(A-B)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \\ + \frac{B(A-B)}{[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \qquad \mu \leq \sigma_{1}; \\ \frac{B(A-B)}{[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \qquad \sigma_{1} \leq \mu \leq \sigma_{2}; \\ \frac{(2-\eta)(3-\eta)}{6} \left[\frac{3(2-\eta)}{2(3-\eta)} \frac{\mu(A-B)^{2}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} - \frac{A(A-B)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} + \frac{B(A-B)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \qquad \mu \geq \sigma_{2}, \end{cases}$$
 where

where

$$\sigma_1 = \frac{2(3-\eta)}{3(2-\eta)} \cdot \frac{(A-2B-1)[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}$$

and

$$\sigma_2 = \frac{2(3-\eta)}{3(2-\eta)} \cdot \frac{(A-2B+1)[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{2(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}.$$

The result is sharp.

5. Fekete-Szegő Problem For $K_{\lambda}(A, B)$

The main result is the following:

THEOREM 5.1. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + ...$ If f(z) given by (1.1) belongs to $K_{\lambda}(A,B)$, then

$$|a_{3} - \mu a_{2}^{2}| := \begin{cases} \frac{-\mu(A-B)^{2}}{4[(\lambda-\delta)(\beta-\alpha)+1]^{2k}\left(\frac{1+a}{2+a}\right)^{2s}} + \\ \frac{A(A-B)}{6[2(\lambda-\delta)(\beta-\alpha)+1]^{k}\left(\frac{1+a}{3+a}\right)^{s}} - \\ \frac{B(A-B)}{3[2(\lambda-\delta)(\beta-\alpha)+1]^{k}\left(\frac{1+a}{3+a}\right)^{s}} & \mu \leq \sigma_{1}; \\ \frac{A-B}{6[2(\lambda-\delta)(\beta-\alpha)+1]^{k}\left(\frac{1+a}{3+a}\right)^{s}} & \sigma_{1} \leq \mu \leq \sigma_{2}; \\ \frac{\mu(A-B)^{2}}{4[(\lambda-\delta)(\beta-\alpha)+1]^{2k}\left(\frac{1+a}{2+a}\right)^{2s}} - \\ \frac{A(A-B)}{6[2(\lambda-\delta)(\beta-\alpha)+1]^{k}\left(\frac{1+a}{3+a}\right)^{s}} + \\ \frac{B(A-B)}{3[2(\lambda-\delta)(\beta-\alpha)+1]^{k}\left(\frac{1+a}{3+a}\right)^{s}} & \mu \geq \sigma_{2}, \end{cases}$$
where

where

$$\sigma_1 = \frac{2(A - 2B - 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}$$

and

$$\sigma_2 = \frac{2(A - 2B + 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{2+a}\right)^s}.$$

The result is sharp.

We can give proof of Theorem 5.1by using the same technique as in Theorem 3.1.

Remark 5.2. If $\sigma_1 \leq \mu \leq \sigma_2$, then in view of Lemma 2.1, Theorem 5.1 can be improved. Let σ_3 be given by

$$\sigma_3 := \frac{2(A - 2B)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}.$$

If $\sigma_1 \leq \mu \leq \sigma_3$, then

$$\left| a_3 - \mu a_2^2 \right| + \left[\frac{3\mu(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}{3(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} - \frac{2(A-2B-1)[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} \right] \times |a_2|^2 \le \frac{(A-B)}{6[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}.$$

If $\sigma_3 \leq \mu \leq \sigma_2$, then

$$\left| a_3 - \mu a_2^2 \right| - \left[\frac{3\mu(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}{3(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} - \frac{2(A-2B+1)[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} \right] \times |a_2|^2 \le \frac{(A-B)}{6[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}.$$

We can give proof of Remark 5.2 by using the same technique as in Remark 3.2.

6. Applications To Functions Defined By Fractional Derivatives

In this section, we use Definition 4.1 to define the class $K_{\lambda}(A, B, \eta)$. The class $K_{\lambda}(A, B, \eta)$ consists the functions of $f \in A$ for which $\Omega^{\eta} f \in K_{\lambda}(A, B)$. It can be noted that, when

$$g(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\eta)}{\Gamma(n+1-\eta)} z^n,$$

then, $K_{\lambda}(A, B, \eta)$ is the special case of class $K_{\lambda}(A, B, g)$.

Let

$$g(z) = z + \sum_{n=2}^{\infty} g_n z^n, \quad (g_n > 0).$$

Since

$$\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z)$$

$$= z + \sum_{n=2}^{\infty} [1 + (\lambda - \delta)(\beta - \alpha)(n-1)]^k \left(\frac{1+a}{n+a}\right)^s a_n z^n \in K_{\lambda}(A, B, g),$$

if and only if

$$\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s}(f*g)(z)$$

$$= z + \sum_{n=2}^{\infty} [1 + (\lambda - \delta)(\beta - \alpha)(n-1)]^k \left(\frac{1+a}{n+a}\right)^s a_n g_n z^n \in K_{\lambda}(A,B).$$
(6.1)

The estimation of the coefficient for the functions in the class $K_{\lambda}(A, B, g)$, can be obtained from the estimation of the corresponding functions of f in the class $K_{\lambda}(A, B)$. Theorem 6.1 can be obtained after an obvious change of the parameter μ by implementing Theorem 5.1 for the operator (6.1).

THEOREM 6.1. Let $g(z) = z + \sum_{n=2}^{\infty} g_n z^n$, $(g_n > 0)$, and let the function $\phi(z)$ be given by $\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n$. If operator $\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z)$

given by (1.5) belongs to $K_{\lambda}(A, B, g)$, then

$$\left| a_{3} \left[\frac{1}{g_{3}} \left[\frac{-\mu(A-B)^{2}g_{3}}{4[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s} g_{2}^{2}} \right. \right. \\ \left. + \frac{A(A-B)}{6[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \\ \left. - \frac{B(A-B)}{3[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \qquad \mu \leq \sigma_{1};$$

$$\left| \frac{1}{g_{3}} \left[\frac{A-B}{6[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \qquad \sigma_{1} \leq \mu \leq \sigma_{2};$$

$$\left| \frac{1}{g_{3}} \left[\frac{\mu(A-B)^{2}g_{3}}{4[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s} g_{2}^{2}} \right. \\ \left. - \frac{A(A-B)}{6[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right. \\ \left. + \frac{B(A-B)}{3[2(\lambda-\delta)(\beta-\alpha)+1]^{k} \left(\frac{1+a}{3+a}\right)^{s}} \right] \qquad \mu \geq \sigma_{2},$$

where

$$\sigma_1 = \frac{g_2^2}{g_3} \cdot \frac{2(A - 2B - 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}$$

and

$$\sigma_2 = \frac{g_2^2}{g_3} \cdot \frac{2(A - 2B + 1)[(\lambda - \delta)(\beta - \alpha) + 1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A - B)[2(\lambda - \delta)(\beta - \alpha) + 1]^k \left(\frac{1+a}{3+a}\right)^s}.$$

The result is sharp.

Theorem 6.1 reduced to Theorem 6.2 for g_2 and g_3 given by (4.2) and (4.3).

THEOREM 6.2. Let $g(z) = z + \sum_{n=2}^{\infty} g_n z^n$, $(g_n > 0)$, and let the function $\phi(z)$ be given by $\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n$. If operator $\Upsilon_{\alpha,\beta,\lambda,\delta}^{k,a,s} f(z)$

given by (1.5) belongs to $K_{\lambda}(A, B, \eta)$, then

given by (1.5) belongs to
$$K_{\lambda}(A, B, \eta)$$
, then
$$\begin{cases}
\frac{(2-\eta)(3-\eta)}{6} \left[-\frac{3(2-\eta)}{2(3-\eta)} \frac{\mu(A-B)^2}{4[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} + \frac{A(A-B)}{6[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} - \frac{B(A-B)}{3[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} \right] & \mu \leq \sigma_1; \\
\frac{B(A-B)}{3[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} & \sigma_1 \leq \mu \leq \sigma_2; \\
\frac{(2-\eta)(3-\eta)}{6} \left[\frac{A-B}{6[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} \right] & \sigma_1 \leq \mu \leq \sigma_2; \\
\frac{(2-\eta)(3-\eta)}{6} \left[\frac{3(2-\eta)}{2(3-\eta)} \frac{\mu(A-B)^2}{4[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}} - \frac{A(A-B)}{6[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} + \frac{B(A-B)}{3[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s} \right] & \mu \geq \sigma_2,
\end{cases}$$
where

where

$$\sigma_1 = \frac{2(3-\eta)}{3(2-\eta)} \cdot \frac{2(A-2B-1)[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}$$

$$\sigma_2 = \frac{2(3-\eta)}{3(2-\eta)} \cdot \frac{2(A-2B+1)[(\lambda-\delta)(\beta-\alpha)+1]^{2k} \left(\frac{1+a}{2+a}\right)^{2s}}{3(A-B)[2(\lambda-\delta)(\beta-\alpha)+1]^k \left(\frac{1+a}{3+a}\right)^s}.$$

The result is sharp.

Competing interests

The authors declare that they have no competing interests.

Authors contributions All the authors read and approved the final manuscript.

References

- [1] M. Abramowitz and I.A. Stegun, *Handbook of mathematical functions*, Applied Mathematics Series, 55(62),p.39, 1966.
- [2] F.M. Al-Oboudi, On univalent functions defined by a generalized SăLăgean operator, International Journal of Mathematics and Mathematical Sciences 2004 (27) (2004), 1429–1436.
- [3] K. Al Shaqsi and M. Darus, On coefficient problems of certain analytic functions involving Hadamard products, International Mathematical Forum 1 (2006), 1669–1676.
- [4] K.Al-Shaqsi and M. Darus, On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivatives operator, Journal of Analysis and Applications 7 (1) (2009), 53–61.
- [5] K. R. Alhindi and M. Darus, Fekete-Szegö inequalities for Sakaguchi type functions and fractional derivative operator, AIP Conference Proceedings 1571 (2013), 956–962.
- [6] M.K. Aouf and F.M. Abdulkarem, Fekete–Szegö inequalities for certain class of analytic functions of complex order, International Journal of Open Problems in Complex Analysis 6 (1) (2014),1–13.
- [7] M.K. Aouf, R.M. El-Ashwah, A.A.M. Hassan and A.H. Hassan, Fekete-Szegö problem for a new class of analytic functions defined by using a generalized differential operator, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium. Mathematica 52 (1) (2013), 21–34.
- [8] M. Arif, M. Darus, M. Raza, and Q. Khan, Coefficient bounds for some families of starlike and convex functions of reciprocal order, The Scientific World Journal 2014 (2014), 1–6.
- [9] K. A. Challab, M. Darus, and F. Ghanim, Certain problems related to generalized Srivastava-Attiya operator, Asian-European Journal of Mathematics 10 (2) (2017), 21 pages.
- [10] M. Darus and R.W. Ibrahim, On subclasses for generalized operators of complex order, Far East Journal of Mathematical Sciences 33 (3) (2009), 299–308.
- [11] M. Fekete and G.Szegö, Eine Bemerkung uber ungerade schlichte funktionen, J. London Math. Soc. 8 (1933), 85-89.
- [12] B. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci 10 (2) (2010), 206–211.
- [13] R. M. Goat and B. S. Marmot, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math 12 (5) (1981), 634–647.
- [14] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic function, Proc. Amer. Math. Soc. 20 (1969), 8–12.
- [15] W. Koeph, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. **101** (1987), 89–95.
- [16] T. Mathur and R. Mathur, Fekete-Szegö inequalities for generalized Sakaguchi type functions, Proceedings of the World Congress on Engineering, 1 (2012), 210–213.

- [17] H. Orhan and E. Gunes, Fekete-Szegö inequality for certain subclass of analytic functions, General Math 14 (1) (2005), 41–54.
- [18] S. Owa and H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canadian Journal of Mathematics 5 (1987), 1057–1077.
- [19] S.F. Ramadan and M. Darus, On the Fekete-Szegö inequality for a class of analytic functions defined by using generalized differential operator, Acta Universitatis Apulensis 26 (2011), 167–78.
- [20] V. Ravichandran, A. Gangadharan and M. Darus, Fekete-Szegö inequality for certain class of Bazilevic functions, Far East Journal of Mathematical Sciences, 15 (2) (2004), 171–180.
- [21] T.R. Reddy and R.B. Sharma, Fekete-Szegö inequality for some sub-classes of analytic functions defined by a differential operator, Indian Journal of Mathematics and Mathematical Sciences 8 (1) (2012), 115–126.
- [22] Salagean and G. Stefan, Subclasses of univalent functions, Complex Analysis Fifth Romanian-Finnish Seminar, 362–372,1983.
- [23] C. Selvaraj and T.R.K. Kumar, Fekete-Szegö problem for some subclasses of complex order related to Salagean operator, Asian Journal of Mathematics and Applications **2014** (2014), 1–9.
- [24] T.N. Shanmugam, S. Kavitha and S. Sivasubramanian, On the Fekete-Szegö problem for certain subclasses of analytic functions, Vietnam Journal of Mathematics **36** (2008), 39–46.
- [25] P. Sharma, R. K. Raina, and J. Sokół, On the convolution of a finite number of analytic functions involving a generalized Srivastava–Attiya operator, Mediterranean Journal of Mathematics 13 (4) (2016), 1535–1553.
- [26] G. Singh and G. Singh, Second Hankel determinant for subclasses of starlike and convex functions, Open Science Journal of Mathematics and Application 2 (6) (2015), 48–51.
- [27] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms and Special Functions 18 (3) (2007), 207–216.
- [28] H.M. Srivastava and A.K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Computers and Mathematics with Applications 39 (3) (2000), 57–69.

K. A. Challab

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600 Selangor D. Ehsan, Malaysia E-mail: khalid_math1363@yahoo.com

M. Darus

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia
E-mail: maslina@ukm.edu.my

F. Ghanim

Department of Mathematics College of Sciences University of Sharjah Sharjah, United Arab Emirates E-mail: fgahmed@sharjah.ac.ae