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DERIVED CROSSED MODULES

Tunçar Şahan

Abstract. In this study, we interpret the notion of homotopy of
morphisms in the category of crossed modules in a category C of
groups with operations using the categorical equivalence between
the categories of crossed modules and of internal categories in C.
Further, we characterize the derivations of crossed modules in a cat-
egory C and obtain new crossed modules using regular derivations
of old one.

1. Introduction

Crossed modules first appear in Whitehead’s work on the second
homotopy groups [23, 25]. During these studies, he observed that the
boundary map from the relative second homotopy group to the first
homotopy group provided some conditions. He called the algebraic con-
struction that satisfies these conditions a crossed module. Briefly, a
crossed module over groups consist of a group homomorphism α : A→ B
and an (left) action of B on A (denoted by b · a for all a ∈ A and b ∈ B)
which satisfies (i) α (b · a) = b+ α (a)− b and (ii) α (a) · a1 = a+ a1 − a
for all a, a1 ∈ A and b ∈ B.

Crossed modules are algebraic models for (connected) homotopy 2-
types while groups are algebraic models for homotopy 1-types. Crossed
modules have been widely used in various areas of mathematics such as
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homotopy theory [3], representation theory [4], algebraic K-theory [10],
and homological algebra [9, 11].

Brown and Spencer proved that the category of crossed modules over
groups and the category of group-groupoids (internal categories with
in the category of groups) are equivalent [5]. Topological version of
this equivalence was introduced in [2]. As a generalisation of the given
equivalence in [5], Patchkoria [18] defined crossed semimodules as crossed
modules in the category of monoids and prove that these objects are
categorically equivalent to the Schreier internal categories in the category
of monoids. Topological version of this equivalence was given in [21].
Recently, since every monoid can be thought of as a category with single
object, Temel [22] extended the results of Patchkoria to the category of
small categories.

Orzech [16, 17] defined the category of groups with operations which
includes the categories of groups, R-modules, rings without identity, etc.
Porter [19] proved an analogous result to one given in [5] for any category
C of groups with operations. Using this equivalence, in [1] coverings of
internal groupoids and of crossed modules in C were introduced and it
was proved that these notions are also categorically equivalent. Recently,
these results were given for an arbitrary category of topological groups
with operations in [14]. See also [12,13] for some other extended results
in a category C of groups with operations.

Brown and Spencer [5], also defined the notion of homotopy for group-
groupoid morphisms using the homotopy of crossed module morphisms
defined by Cockcroft [6].

In this paper we define the notion of homotopy of morphisms in the
category of crossed modules and of internal categories in a fixed cate-
gory C of groups with operations. Further, since a derivation is a special
homotopy of morphisms of crossed modules, we characterized the deriva-
tions of crossed modules in a category C of groups with operations. Fi-
nally, by using the derivations of a given crossed module we construct
new crossed modules which will be called derived crossed modules and
obtain an infinite series of isomorphic crossed modules having the same
domain and the same codomain.
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2. Crossed modules and internal categories in C

Category of groups with operations were introduced by Orzech in
[16,17] and arranged in [19]. We now recall that the definition of category
of groups with operations from [19]. From now on C will be a category
of groups with a set Ω of operations and with a set E of identities such
that E includes the group laws, and the following conditions hold: If Ωi

is the set of i-ary operations in Ω, then

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(b) The group operations written additively 0; − and + are the ele-

ments of Ω0, Ω1 and Ω2 respectively.

Let Ω′2 = Ω2\ {+}, Ω′1 = Ω1\ {−} and assume that if ∗ ∈ Ω′2, then
∗◦ ∈ Ω′2 defined by a∗◦b = b∗a is also in Ω′2. Also assume that Ω0 = {0};

(c) For each ∗ ∈ Ω′2, E includes the identity a ∗ (b+ c) = a ∗ b+ a ∗ c;
(d) For each ω ∈ Ω′1 and ∗ ∈ Ω′2, E includes the identities ω (a+ b) =

ω (a) + ω (b) and ω (a) ∗ b = ω (a ∗ b).
A category satisfying the conditions (a)-(d) is called a category of

groups with operations [19].

Example 2.1. The categories of groups, rings generally without iden-
tity, R-modules, associative, associative commutative, Lie, Leibniz, al-
ternative algebras are examples of categories of groups with operations.

A morphism in C is a function, which preserves the operations in Ω1

and Ω2.
We recall from [19] that for groups with operations A and B, an

extension of B by A is an exact sequence

0 // A
ı // E

p // B // 0

in which p is surjective and ı is the kernel of p. An extension of B by A
is called split if there is a morphism s : B → E such that ps = 1B, i.e.
s is a section of p. A split extension of B by A is called a B-structure
on A. For given such a B-structure on A we obtain a set of actions of B
on A called derived actions by Orzech [16, p.293] for b ∈ B, a ∈ A and
∗ ∈ Ω′2

(1)
b · a = s(b) + a− s(b),
b ∗ a = s(b) ∗ a.
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Orzech [16] proved that a set of actions of an object B on an object
A is a set of derived actions if and only if the semi-direct product AoB
defined by the operations

(a, b) + (a1, b1) = (a+ b · a1, b+ b1) ,

(a, b) ∗ (a1, b1) = (a ∗ a1 + a ∗ b1 + b ∗ a1, b ∗ b1) and

ω (a, b) = (ω (a) , ω (b))

is again an object in C.
For example, for any A in C, the obvious action of A on itself corre-

sponds to the split extension

0 // A
ı // Ao A p

// A
sqq

// 0

with s(a) = (a, 0).
Together with the description of the set of derived actions given above,

Datuashvili [7] proved the following proposition which gives the neces-
sary and sufficient conditions for a set of actions to be a set of derived
actions.

Proposition 2.2. [7] A set of actions of B on A in C is a set of
derived actions if and only if it satisfies the following conditions:

(1) 0 · a = a,
(2) b · (a1 + a2) = b · a1 + b · a2,
(3) (b1 + b2) · a = b1 · (b2 · a),
(4) b ∗ (a1 + a2) = b ∗ a1 + b ∗ a2,
(5) (b1 + b2) ∗ a = b1 ∗ a+ b2 ∗ a,
(6) (b1 ∗ b2) · (a1 ∗ a2) = a1 ∗ a2,
(7) (b1 ∗ b2) · (a ∗ b) = a ∗ b,
(8) a1 ∗ (b · a2) = a1 ∗ a2,
(9) b ∗ (b1 · a) = b ∗ a,

(10) ω(b · a) = ω(b) · ω(a),
(11) ω(a ∗ b) = ω(a) ∗ b = a ∗ ω(b),
(12) x ∗ y + z ∗ t = z ∗ t+ x ∗ y,

for each ω ∈ Ω′1, ∗ ∈ Ω2
′, b, b1, b2 ∈ B, a, a1, a2 ∈ A and for x, y, z, t ∈

A ∪B whenever each side of (12) has a sense.

Porter [19] defines a crossed module in C as in the following way.

Definition 2.3. [19] A crossed module in C is a morphism α : A→ B
in C with a set of derived actions of B on A such that (1A, α) : AoA→
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Ao B and (α, 1B) : Ao B → B o B are morphisms in C where Ao A
and BoB are semi-direct products obtained from obvious actions on A
and on B respectively.

Porter [19] also gives the necessary and sufficient conditions for a
morphism in C to be a crossed module with a given set of derived actions
in terms of operations and actions.

Proposition 2.4. [19] A crossed module (A,B, α) in C consist of
a morphism α : A → B in C and a set of derived actions of B on A
satisfying the conditions:

(CM1) α(b · a) = b+ α(a)− b;
(CM2) α(a) · a1 = a+ a1 − a;
(CM3) α(b ∗ a) = b ∗ α(a), α(a ∗ b) = α(a) ∗ b;
(CM4) α(a) ∗ a1 = a ∗ a1 = a ∗ α(a1)

for all a, a1 ∈ A, b ∈ B and ∗ ∈ Ω′2.

Definition 2.5. A morphism (f1, f0) between crossed modules (A,B, α)
and (A′, B′, α′) is a pair f1 : A → A′ and f0 : B → B′ of morphisms in
C such that

(i) f0α = α′f1,
(ii) f1 (b · a) = f0 (b) · f1 (a) and

(iii) f1 (b ∗ a) = f0 (b) ∗ f1 (a).

for all a ∈ A, b ∈ B and ∗ ∈ Ω′2.

Crossed modules and crossed module morphisms form a category
which is denoted by XMod(C).

Definition 2.6. [8] An internal category C in C consist of two
objects C1 (object of morphisms) and C0 (object of objects) in C, and of
four maps called initial and final point maps d0, d1 : C1 → C0, identity
morphism map ε : C0 → C1 and partial composition

◦ : C1 d0×d1 C1 → C1, (b, a) 7→ b ◦ a
which are morphisms in C.

It is easy to see that partial composition being a morphism in C,
implies that

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d)

for all a, b, c, d ∈ C1 and ∗ ∈ Ω2, whenever both sides make sense.
Equality given above is called interchange law. Partial composition can
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be described in terms of addition operation (+) using interchange law
as follows:

b ◦ a = (b+ 10) ◦ (1y + (−1y + a))

= (b ◦ 1y) + (10 ◦ (−1y + a))

= b− 1y + a

for a, b ∈ C1 such that d1 (a) = y = d0 (b). Another application of
interchange law is that any internal category in C is an internal groupoid
since

a−1 = 1d1(a) − a+ 1d0(a)

is the inverse morphism of a ∈ C1. From now on, an internal category
(groupoid) will be denoted by G.

Morphisms between internal groupoids in C are groupoid morphisms
(functors) that are morphisms in C. Internal groupoids form a category
with internal groupoid morphisms. This category is denoted by Cat(C).

Example 2.7. If A is an object in C then G = A× A is an internal
groupoid in C where d0 = π1, d1 = π2, ε(a) = (a, a), i.e. ε = ∆, and

(a1, a2) ◦ (a, a1) = (a, a2)

for all a, a1, a2 ∈ A.

Porter [19] proved a similar result to Brown & Spencer Theorem [5,
Theorem 1] for an arbitrary category C of groups with operations. We
sketch the proof of Porter’s Theorem since we need some details later.

Theorem 2.8. [19] The category XMod(C) of crossed modules in
C and the category Cat(C) of internal categories (groupoids) in C are
equivalent.

Proof. Define a functor δ from XMod(C) to Cat(C) as follows: Let
(A,B, α) be an object in XMod(C). Then the internal groupoid δ (A,B, α)
has object of morphisms AoB, object of objects B where d0 (a, b) = b,
d1 (a, b) = α (a) + b, ε (b) = (0, b) and the partial composition

(a, b) ◦ (a1, b1) = (a+ a1, b) .

Conversely, define a functor θ from Cat(C) to XMod(C) as follows:
Let G be an internal groupoid in C. Then θ (G) =

(
ker d0, G0, d1| ker d0

)
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where the actions of G0 on ker d0 is defined by

x · a = 1x + a− 1x

x ∗ a = 1x ∗ a
for all x ∈ C0, a ∈ ker d0 and ∗ ∈ Ω′2. Other details are straightforward.

3. Homotopy of crossed module morphisms in C

In this section, first we define the homotopy of internal groupoid mor-
phisms in C. Using the results of Cockcroft [6] and Brown and Spencer [5]
we can give the following definition.

Definition 3.1. Let G and H be two internal groupoids in C and
f, g : G→ H be two internal groupoid morphisms. Then we say that f
is homotopic to g if there is a natural isomorphism η from f to g and
η : G0 → H1 is a morphism in C. We denote this by η : f ' g.

Cat(C) has, with its notion of homotopy, the structure of a 2-category,
where 2-cells are homotopies.

Now, let (A,B, α) and (C,D, γ) be two crossed modules and, G and
H be the corresponding internal groupoids to (A,B, α) and (C,D, γ)
respectively according to Theorem 2.8. Also, let

(f1, f0) , (g1, g0) : (A,B, α)→ (C,D, γ)

be two crossed module morphisms. In this case the corresponding in-
ternal groupoid morphisms to (f1, f0) is f1 × f0 on morphisms and f0
on objects and to (g1, g0) is g1 × g0 on morphisms and g0 on objects.
Assume that we have a function d from B to C.

d : B → C

Hence we obtain a function

V : B → C oD
b 7→ V (b) = (d (b) , f0 (b)) .

Suppose that this function is a homotopy between (f1 × f0, f0) and
(g1 × g0, g0). Thus V must be a natural isomorphism and a morphism
in C. Now let us find the conditions on d to be a homotopy.

Since V is a morphism in C then

V (b+ b1) = V (b) + V (b1) ,
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V (b ∗ b1) = V (b) ∗ V (b1)

and
V (ω (b)) = ω (V (b))

for all b, b1 ∈ B, ∗ ∈ Ω′2 and ω ∈ Ω1. Then

(d (b+ b1) , f0 (b+ b1)) = V (b+ b1)

= V (b) + V (b1)

= (d (b) , f0 (b)) + (d (b1) , f0 (b1))

= (d (b) + f0 (b) · d (b1) , f0 (b) + f0 (b1))

and thus

(2) d (b+ b1) = d (b) + f0 (b) · d (b1) .

Also (d (b ∗ b1) , f0 (b ∗ b1)) = V (b ∗ b1). So

V (b ∗ b1) = V (b) ∗ V (b1)

= (d (b) , f0 (b)) ∗ (d (b1) , f0 (b1))

= (d (b) ∗ d (b1) + d (b) ∗ f0 (b1) + f0 (b) ∗ d (b1) , f0 (b) ∗ f0 (b1))

and thus

(3) d (b ∗ b1) = d (b) ∗ d (b1) + d (b) ∗ f0 (b1) + f0 (b) ∗ d (b1) .

Finally,

(d (ω (b)) , f0 (ω (b))) = V (ω (b))

= ω (V (b))

= (ω (d (b)) , ω (f0 (b)))

and thus

(4) d (ω (b)) = ω (d (b)) .

On the other hand, since V is a natural isomorphism then first of
all, the morphism V (b) = (d (b) , f0 (b)) in H1 has f0 (b) as initial point
object and γ (d (b)) + f0 (b) = g0 (b) as final point object according to
proof of Theorem 2.8. Thus

(5) γ (d (b)) = g0 (b)− f0 (b) .

Also for a morphism (a, b) : b → α (a) + b in G1 = A o B from the
naturality of V we have,

(g1 (a) , g0 (b)) ◦ V (b) = V (α (a) + b) ◦ (f1 (a) , f0 (b)) .
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After some calculations one can easily see that the equation above im-
plies

(6) d (α (a)) = g1 (a)− f1 (a) .

According to equations (2)-(6) now we can give the definition of ho-
motopy of crossed module morphisms in C as follows.

Definition 3.2. Let (A,B, α) and (C,D, γ) be two crossed modules
and

(f1, f0) , (g1, g0) : (A,B, α)→ (C,D, γ)

be two crossed module morphisms. If there is a function d : B → C
satisfying

(i) d (b+ b1) = d (b) + f0 (b) · d (b1),
(ii) d (b ∗ b1) = d (b) ∗ d (b1) + d (b) ∗ f0 (b1) + f0 (b) ∗ d (b1),
(iii) d (ω (b)) = ω (d (b)),
(iv) γ (d (b)) = g0 (b)− f0 (b) and
(v) d (α (a)) = g1 (a)− f1 (a)

for all a ∈ A, b, b1 ∈ B, ∗ ∈ Ω′2 and ω ∈ Ω′1 then we say that (f1, f0) and
(g1, g0) are homotopic and that d is a homotopy from (f1, f0) to (g1, g0).
We denote this by d : (f1, f0)⇒ (g1, g0) or by d : (f1, f0) ' (g1, g0).

This notion of homotopy gives XMod(C) the structure of a 2-category,
where 2-cells are homotopies.

Theorem 3.3. The 2-category XMod(C) of crossed modules in C
where 2-cells are homotopies and the 2-category Cat(C) of internal cat-
egories in C where 2-cells are homotopies are equivalent 2-categories.

Proof. It is straightforward from the construction of the notion of
homotopy in XMod(C).

4. Derived crossed modules

Derivations of crossed modules have been defined by Whitehead [25] in
order to define the actor crossed module analogous to the automorphism
group. Derivations, in fact, are homotopies between crossed module
endomorphisms and identity crossed module morphism.

Definition 4.1. Let (A,B, α) be a crossed module. A function d :
B → A is called a derivation of (A,B, α) if the following conditions hold:
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(i) d (b+ b1) = d (b) + b · d (b1),
(ii) d (b ∗ b1) = d (b) ∗ d (b1) + d (b) ∗ b1 + b ∗ d (b1),
(iii) d (ω (b)) = ω (d (b))

for all b, b1 ∈ B, ∗ ∈ Ω′2 and ω ∈ Ω′1.

The set of all derivations from B to A is denoted by Derα (B,A).

Proposition 4.2. Let (A,B, α) be a crossed module in C and d ∈
Derα (B,A). Then

(θd, σd) : (A,B, α)→ (A,B, α)

is a morphism in XMod(C) where θd (a) = dα (a) + a for a ∈ A and
σd (b) = αd (b) + b for b ∈ B.

Proof. First we need to show that θd and σd are morphisms in C.
In [24] it has been shown that θd and σd are group homomorphisms.
Now, let a, a1 ∈ A. Then for all ∗ ∈ Ω′2,

θd(a ∗ a1) = dα(a ∗ a1) + a ∗ a1
= d(α(a) ∗ α(a1)) + a ∗ a1
= dα(a) ∗ dα(a1) + dα(a) ∗ α(a1) + α(a) ∗ dα(a1) + a ∗ a1
= dα(a) ∗ dα(a1) + dα(a) ∗ a1 + a ∗ dα(a1) + a ∗ a1
= dα(a) ∗ (dα(a1) + a1) + a ∗ (dα(a1) + a1)
= (dα(a) + a) ∗ (dα(a1) + a1)
= θd(a) ∗ θd(a1)

and for all ω ∈ Ω′1

θd(ω(a)) = dα(ω(a)) + ω(a)
= ω(dα(a)) + ω(a)
= ω(d(α(a)) + a)
= ω(θd(a)).

Similarly, let b, b1 ∈ B. Then for all ∗ ∈ Ω′2,

σd(b ∗ b1) = αd(b ∗ b1) + b ∗ b1
= α(d(b) ∗ d(b1) + d(b) ∗ b1 + b ∗ d(b1)) + b ∗ b1
= αd(b) ∗ αd(b1) + α(d(b) ∗ b1) + α(b ∗ d(b1)) + b ∗ b1
= αd(b) ∗ αd(b1) + αd(b) ∗ b1 + b ∗ αd(b1) + b ∗ b1
= αd(b) ∗ (αd(b1) ∗ b1) + b1 ∗ (αd(b1) ∗ b1)
= (αd(b) ∗ b) ∗ (αd(b1) ∗ b1)
= σd(b) ∗ σd(b1)
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and for all ω ∈ Ω′1

σd(ω(b)) = αd(ω(b)) + ω(b)
= ω(αd(b)) + ω(b)
= ω(αd(b) + b)
= ω(σd(b)).

Hence θd and σd are morphisms in C. Now we need to show that (θd, σd)
satisfies the condition of Definition 2.5.

(i) Let a ∈ A. Then

σdα(a) = αd(α(a)) + α(a)
= α(dα(a) + a)
= αθd(a).

(ii) Let a ∈ A and b ∈ B. Then

θd(b · a) = dα(b · a) + b · a
= d(b+ α(a)− b) + b · a
= d(b) + b · d(α(a)− b) + b · a
= d(b) + b · (d(α(a)− b) + a)
= d(b) + b · (dα(a) + α(a) · d(−b) + a)
= d(b) + b · (dα(a) + a+ d(−b)− a+ a)
= d(b) + b · (dα(a) + a+ d(−b))
= d(b) + b · (dα(a) + a) + b · (d(−b))
= d(b) + b · (dα(a) + a)− d(b)
= αd(b) · (b · (dα(a) + a))
= (αd(b) + b) · (dα(a) + a)
= σd(b) · θd(a).

(iii) Let a ∈ A and b ∈ B. Then

θd(b ∗ a) = dα(b ∗ a) + b ∗ a
= d(b ∗ α(a)) + b ∗ a
= d(b) ∗ dα(a) + d(b) ∗ α(a) + b ∗ dα(a) + b ∗ a
= d(b) ∗ dα(a) + d(b) ∗ a+ b ∗ dα(a) + b ∗ a
= d(b) ∗ (dα(a) + a) + b ∗ (dα(a) + a)
= αd(b) ∗ (dα(a) + a) + b ∗ (dα(a) + a)
= (αd(b) + b) ∗ (dα(a) + a)
= σd(b) ∗ θd(a).

Thus (θd, σd) is a morphism in XMod(C).
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That is, for a crossed module (A,B, α), each derivation defines a
crossed module endomorphism of (A,B, α). Here also note that θdd =
dσd for all d ∈ Derα (B,A).

Now we can define a multiplication on Derα (B,A) as in [24] using
the horizontal composition of corresponding natural isomorphisms. Let
d1, d2 ∈ Derα (B,A). Then

d (b) = (d1 ◦ d2) (b) = d1σ2 (b) + d2 (b)

or equally

d (b) = (d1 ◦ d2) (b) = θ1d2 (b) + d1 (b) .

Zero morphism 0: B → A (which assigns every element of B to the
zero element of A) is a derivation and the identity element of the multi-
plication defined above. In this case θ0 and σ0 are the identity morphisms
on A and B respectively. Moreover, if d = d1 ◦d2 then σd = σd1 ◦σd2 and
θd = θd1 ◦ θd2 . A derivation is called regular if it has an inverse up to the
composition defined above. Regular derivations forms a group structure
which is denoted by Dα (B,A) and called the Whitehead group.

Following proposition is a generalisation of the one given in [24] and
of the one combined in [15] to an arbitrary category C of groups with
operations.

Proposition 4.3. Let (A,B, α) be a crossed module in C and d ∈
Derα (B,A). Then the following are equivalent.

(a) d ∈ Dα (B,A)
(b) θd ∈ Aut (A)
(c) σd ∈ Aut (B)

Proof. Let (A,B, α) be a crossed module and d ∈ Derα (B,A).

(a)⇒(b) Assume that d ∈ D(B,A). Then there exist a derivation e ∈
Dα (B,A) such that d ◦ e = 0: B → A. Thus

θd◦e(a) = θd(θe(a)) = a

for all a ∈ A. Hence θe is the inverse of θd. So θd ∈ Aut (A).
(b)⇒(a) Now assume that θd ∈ Aut (A). Let define a function e : B →

A with e(b) = θ−1d (−d(b)). First of all, it easy to see that
θd(e(b)) = −d(b) for all b ∈ B. Now we show that e ∈
Derα(B,A).
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(i) Let b, b1 ∈ B. Then

θd (e(b) + b · e(b1)) = θd(e(b)) + θd(b · e(b1))
= θd(e(b)) + σd(b) · θd(e(b1))
= −d(b) + (α(d(b)) + b) · (−d(b1))
= −d(b) + α(d(b)) · (b · (−d(b1)))
= −d(b) + d(b) + (b · (−d(b1)))− d(b)
= −(d(b) + b · (d(b1)))
= −(d(b+ b1))
= θd(e(b+ b1)).

However, since θd ∈ Aut(A) then e(b+ b1) = e(b) + b · e(b1).
(ii) Let b, b1 ∈ B and ∗ ∈ Ω′2. If we set x := e(b) ∗ e(b1) + e(b) ∗ b1 +

b ∗ e(b1) then

θd (x) = θd(e(b) ∗ e(b1)) + θd(e(b) ∗ b1) + θd(b ∗ e(b1))
= d(b) ∗ d(b1) + (−d(b)) ∗ σd(b1) + σd(b) ∗ (−d(b1))
= d(b) ∗ d(b1) + (−d(b)) ∗ (α(d(b1) + b1)) + σd(b) ∗ (−d(b1))
= d(b) ∗ d(b1) + (−d(b)) ∗ d(b1) + ((−d(b)) ∗ b1)) + σd(b) ∗ (−d(b1))
= d(b) ∗ d(b1) +−(d(b) ∗ d(b1)) + ((−d(b)) ∗ b1)) + σd(b) ∗ (−d(b1))
= ((−d(b)) ∗ b1)) + σd(b) ∗ (−d(b1))
= ((−d(b)) ∗ b1)) + (α(d(b) + b)) ∗ (−d(b1))
= ((−d(b)) ∗ b1)) + d(b) ∗ (−d(b1)) + b ∗ (−d(b1))
= −(d(b) ∗ d(b1) + d(b) ∗ b1 + b ∗ d(b1))
= −(d(b ∗ b1))
= θd(e(b ∗ b1)).

Again, since θd ∈ Aut(A) then e(b ∗ b1) = e(b) ∗ e(b1) + e(b) ∗ b1 +
b ∗ e(b1).

(iii) Finally, let b ∈ B and ω ∈ Ω′1. Then

e(ω(b)) = θ−1d (−d(ω(b)))
= θ−1d (ω(−d(b)))
= ω(θ−1d (−d(b)))
= ω(e(b)).

Thus e : B → A is in Derα(B,A) by (i)-(iii). Now we show
that e is the inverse of d. Let b ∈ B. Then

(d ◦ e)(b) = θd(e(b)) + d(b)
= θd(θ

−1
d (−d(b))) + d(b)

= d(b) + (−d(b))
= 0
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and

(e ◦ d)(b) = θe(d(b)) + e(b)
= e(α(d(b))) + d(b) + θ−1d (−d(b))
= θ−1d (−d(α(d(b)))) + d(b) + θ−1d (−d(b))
= −θ−1d (d(α(d(b)))) + d(b) + θ−1d (−d(b))
= −θ−1d (θd(d(b))− d(b)) + d(b) + θ−1d (−d(b))
= θ−1d (d(b)) + θ−1d (−d(b))
= θ−1d (d(b) + (−d(b)))
= θ−1d (0)
= 0.

Hence e is the inverse of d. So d ∈ Dα (B,A).

Similarly one can show that (a)⇔(c). Here, in the proof of (c)⇒(a),
the inverse e : B → A of a derivation d ∈ Derα(B,A) is given by e(b) =
−d(σ−1d (b)) for all b ∈ B. This completes the proof.

Lemma 4.4. Let (A,B, α) be a crossed module and d ∈ Derα (B,A)
such that d(b) ∈ kerα for all b ∈ B. Then d = 0.

Proof. Let d ∈ Derα (B,A). By Proposition 4.2, σd(b) = α(d(b)) + b.
Since d(b) ∈ kerα for all b ∈ B then

σd(b) = α(d(b)) + b
= 0 + b
= b.

Hence σd is identity on B, i.e., σd = 1B. So d = 0.

Now, from a crossed module in C, we obtain new crossed modules on
the same objects using the derivations of old one.

Proposition 4.5. Let (A,B, α) be a crossed module in C and d ∈
Derα(B,A). Then the set of actions defined by

ba = d(b) + b · a− d(b)
b ∗̃ a = d(b) ∗ a+ b ∗ a

is a set of derived actions.

Proof. Since (A,B, α) is a crossed module then we have a split exten-
sion

0 // A
ı // AoB p

// B
sqq

// 0
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of B by A where ı(a) = (a, 0), p(a, b) = b and s(b) = (0, b). Also we
know that

V : B → AoB
b 7→ V (b) = (d (b) , b)

is a morphism in C. Then we obtain a new split extension

0 // A
ı // AoB p

// B
Vqq

// 0

of B by A. Derived actions obtained from this split extensions are given
by (

ba, 0
)

= V (b) + (a, 0)− V (b)
= (d(b), b) + (a, 0)− (d(b), b)
= (d(b) + b · a, b) + ((−b) · (−d(b)),−b)
= (d(b) + b · a− d(b), 0)

and
(b ∗̃ a, 0) = V (b) ∗ (a, 0)

= (d(b), b) ∗ (a, 0)
= (d(b) ∗ a+ d(b) ∗ 0 + b ∗ a, b ∗ 0)
= (d(b) ∗ a+ b ∗ a, 0)

for all a ∈ A, b ∈ B and ∗ ∈ Ω′2. Thus the set of actions given by

ba = d(b) + b · a− d(b)
b ∗̃ a = d(b) ∗ a+ b ∗ a

is a set of derived actions.

So, every derivation d ∈ Derα(B,A) defines a split extension of B by
A hence a new set of derived actions of B on A. Now we obtain this
new set of derived actions using regular derivations.

Proposition 4.6. Let (A,B, α) be a crossed module in C and d ∈
Dα(B,A). Then the set of actions defined by

ba = σd(b) · a
b ∗̃ a = σd(b) ∗ a

is a set of derived actions.

Proof. Since (A,B, α) is a crossed module then we have a split exten-
sion

0 // A
ı // AoB p

// B
sqq

// 0
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of B by A where ı(a) = (a, 0), p(a, b) = b and s(b) = (0, b). Also, since
d ∈ Dα(B,A) then σd : B → B is an isomorphism. Hence we obtain a
new split extension

0 // A
ı // AoB pd

// B
sdqq

// 0

of B by A where sd = sσd and pd = σ−1d p. Derived actions which are
obtained from this split extension are given by

ba = σd(b) · a
b ∗̃ a = σd(b) ∗ a

for all a ∈ A, b ∈ B and ∗ ∈ Ω′2. This completes the proof.

Corollary 4.7. Let (A,B, α) be a crossed module in C. Then for
the zero derivation 0 ∈ Derα(B,A)

ba = b · a
b ∗̃ a = b ∗ a,

i.e. the new set of actions is the same with the old one.

Proposition 4.8. Let (A,B, α) be a crossed module in C and d ∈
Dα(B,A). Then (A,B, αd) is a crossed module in C with the new set of
derived actions obtained from d where αd = σ−1d α.

Proof. We need to prove that αd satisfies the conditions (CM1)-(CM4)
of Proposition 2.4.

(CM1) Let a ∈ A and b ∈ B. Then,

αd
(
ba
)

= αd(σd(b) · a)
= σ−1d α(σd(b) · a)
= σ−1d (σd(b) + α(a)− σd(b))
= σ−1d (σd(b)) + σ−1d (α(a))− σ−1d (σd(b))
= b+ αd(a)− b.

(CM2) Let a, a1 ∈ A. Then,

αd(a)a1 = σd(αd(a)) · a1
= σd(σ

−1
d α(a)) · a1

= α(a) · a1
= a+ a1 − a.
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(CM3) Let a ∈ A and b ∈ B. Then,

αd (b ∗̃ a) = σ−1d α (σd(b) ∗ a)
= σ−1d (σd(b) ∗ α (a))
= σ−1d (σd(b)) ∗ σ−1d (α (a))
= b ∗ αd(a)

and similarly

αd (a ∗̃ b) = αd(a) ∗ b.

(CM4) Let a, a1 ∈ A. Then,

αd(a) ∗̃ a1 = σ−1d α(a) ∗̃ a1
= σd(σ

−1
d α(a)) ∗ a1

= α(a) ∗ a1
= a ∗ a1

and similarly

a ∗̃ αd(a1) = a ∗ a1.

Hence (A,B, αd) is a crossed module in C with the new set of derived
actions obtained from d.

We call this new crossed module (A,B, αd) a derived crossed module
from d ∈ Dα(B,A) and denote it by d(A,B, α).

Corollary 4.9. Let (A,B, α) be a crossed module in C. Then for
the zero derivation 0 ∈ Dα(B,A), α0 = α, i.e. (A,B, α) and 0(A,B, α) =
(A,B, α0) are the same crossed modules.

Corollary 4.10. Let (A,B, α) be a crossed module in C and d ∈
Dα(B,A). Then

(1, σ−1d ) : (A,B, α)→ (A,B, αd)

is a morphism (isomorphism) of crossed modules in C.

Akız et al. [1, p.236] defined a crossed module (Ã, B̃, α̃) to be a cover-
ing of a crossed module (A,B, α) if there is a crossed module morphism

(f1, f0) : (Ã, B̃, α̃) → (A,B, α) such that f1 : Ã → A is an isomorphism
in C.

Corollary 4.11. Let (A,B, α) be a crossed module in C and d ∈
Dα(B,A). Then (A,B, α) is a covering of (A,B, αd).
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With the technique given in [20, Corollary 3.10] we now construct
a regular derivation of (A,B, αd) over σd using a regular derivation of
(A,B, α).

Proposition 4.12. Let (A,B, α) be a crossed module in C and d ∈
Dα(B,A). Then d′ = dσd ∈ Dαd

(B,A), i.e. d′ = dσd is a regular
derivation of (A,B, αd).

Proof. First we need to prove that d′ = dσd satisfies the conditions of
Definition 4.1.

(i) Let b, b1 ∈ B. Then

d′(b+ b1) = dσd(b+ b1)
= d(σd(b) + σd(b1))
= d(σd(b)) + σd(b) · d(σd(b1))
= d′(b) + bd′(b1).

(ii) Let b, b1 ∈ B and ∗ ∈ Ω′2. Then

d′(b ∗ b1) = dσd(b ∗ b1)
= d(σd(b) ∗ σd(b1))
= dσd(b) ∗ dσd(b1) + dσd(b) ∗ σd(b1) + σd(b) ∗ dσd(b1)
= d′(b) ∗ d′(b1) + d′(b) ∗̃ b1 + b ∗̃ d′(b1)
= d′(b ∗ b1).

(iii) Let b, b1 ∈ B and ∗ ∈ Ω′2. Then

d′(ω(b)) = dσd(ω(b))
= ω(dσd(b))
= ω(d′(b)).

Hence d′ = dσd is a derivation of (A,B, αd). Now we need to prove that
d′ is regular. The endomorphism θd′ : A→ A is defined with

θd′(a) = d′αd(a) + a
= dσdσ

−1
d α(a) + a

= dα(a) + a
= θd(a)

for all a ∈ A. Since d ∈ Dα(B,A) then by Proposition 4.3, θd = θd′ is
an automorphism of A. And again by Proposition 4.3, d′ ∈ Dαd

(B,A).
This completes the proof.

By Proposition 4.12, for all d ∈ Dα(B,A) we obtain a sequence of
isomorphic crossed modules as in the following.
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(A,B, α)
(1,σ−1

d )

∼=
// (A,B, αd)

(1,σ−1
d′ )

∼=
// (A,B, αd′)

(1,σ−1
d′′ )

∼=
// · · ·

or equally

(A,B, α)
(1,σ−1

d )

∼=
// d(A,B, α)

(1,σ−1
d′ )

∼=
// d′(d(A,B, α))

(1,σ−1
d′′ )

∼=
// · · ·

where d′ = dσd, d
′′ = d′σd′ and so on.

5. Conclusion

Whitehead defined the notion of derivations as a special morphisms
for crossed modules over groups. In this paper, in order to define homo-
topy of crossed module morphisms and derivations of crossed modules in
an arbitrary category C of groups with operations which is a more gen-
eral case according to works of Whitehead [24] and Norrie [15], we follow
the method used by Cockroft [6] and Norrie [15]. Moreover, we obtain
new crossed modules on the same objects in C using the derivations of
old one.
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[14] O. Mucuk and T. Şahan, Coverings and crossed modules of topological groups
with operations, Turk. J. Math. 38 (5) (2014), 833–845.

[15] K. Norrie, Actions and automorphisms of crossed modules, Bull. Soc. Math. Fr.
118 (2) (1990), 129–146.

[16] G. Orzech, Obstruction theory in algebraic categories, I, J. Pure. Appl. Algebra
2 (4) (1972), 287–314.

[17] G. Orzech, Obstruction theory in algebraic categories, II, J. Pure. Appl. Algebra
2 (4) (1972), 315–340.

[18] A. Patchkoria, Crossed semimodules and schreier internal categories in the cat-
egory of monoids, Georgian Math. J. 5 (6) (1998), 575–581.

[19] T. Porter, Extensions, crossed modules and internal categories in categories of
groups with operations P. Edinburgh. Math. Soc. 30 (3) (1987), 373–381.
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