Korean J. Math. **26** (2018), No. 2, pp. 285–291 https://doi.org/10.11568/kjm.2018.26.2.285

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON C*-ALGEBRAS

Ali Taghavi and Aboozar Akbari

ABSTRACT. Let \mathcal{A} be a unital C^* -algebra. It is shown that additive map $\delta : \mathcal{A} \to \mathcal{A}$ which satisfies

$$\delta(|x|x) = \delta(|x|)x + |x|\delta(x), \ \forall x \in \mathcal{A}_N$$

is a Jordan derivation on \mathcal{A} . Here, \mathcal{A}_N is the set of all normal elements in \mathcal{A} . Furthermore, if \mathcal{A} is a semiprime C^* -algebra then δ is a derivation.

1. Introduction

Derivation has been the main subject of many researches done by mathematicians in recent years (see the articles [1,6,10] for example).

Recall that a ring \mathcal{R} is prime ring if for $a, b \in \mathcal{R}$, $a\mathcal{R}b = (0)$ implies that a = 0 or b = 0 and is semiprime in case $a\mathcal{R}a = (0)$ implies that a = 0. Let \mathcal{A} be a unital associative ring with unit e. Additive mapping $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ is called a derivation (resp. Jordan derivation) if $\delta(xy) = \delta(x)y + x\delta(y)$ (resp. $\delta(x^2) = \delta(x)x + x\delta(x)$) holds for all $x, y \in \mathcal{A}$. Obviously, any derivation is a Jordan derivation, but in general the converse is not true. A classical result of Herstein [9] asserts that any Jordan derivation on a 2-torsion free prime ring is a derivation. Cusack [5] generalized Herstein's theorem to 2-torsion free semiprime

Received April 11, 2018. Revised May 4, 2018. Accepted May 28, 2018.

²⁰¹⁰ Mathematics Subject Classification: 46J10, 47B48.

Key words and phrases: additive derivations, biadditive map, Jordan derivation. © The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

rings (see [2] for a alternative proof). It should be mentioned that Beidar, Bresar, Chebotar and Martidale [1] fairly generalized Herstein's theorem. Bresar [3] proved the following theorem.

THEOREM 1.1. Let \mathcal{R} be a 2-tortion free semiprime ring and let δ : $\mathcal{R} \longrightarrow \mathcal{R}$ be an additive mapping satisfying the relation

$$\delta(xyx) = \delta(x)yx + x\delta(y)x + xy\delta(x).$$

for all pairs $x, y \in \mathcal{R}$. Then δ is a derivation.

In 1996, Johnson [7] proved that if A is a C^* -algebra and M is a Banach A-module, then each Jordan derivation $\delta : A \longrightarrow M$ is a derivation (see [8], Theorem 2.4).

In this paper we consider these results in situation of \mathcal{A} be a C^* -algebras. We consider a more general problem concerning certain biadditive maps and then to the proof of the main result. Afterwards we use this result whenever \mathcal{A} be a C^* -algebras and $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map satisfying (0.1). Then δ is a derivation on \mathcal{A} .

Furthermore, we prove that if $[x, y] = [x, \delta(y)] = 0$ or $[x, y] = [\delta(x), y] = 0$ for any pair of normal elements x, y of \mathcal{A} , then $\delta(y) = \delta(\lambda e)$ for some $\lambda \in \mathcal{C}$. In fact, it is an extention on the work of Shoichiro Sakai ([10], Theorem 2.2.7), in which he showed that :

Let \mathcal{A} be a C^* -algebra, δ be a linear derivation on \mathcal{A} . If $[\delta(x), x] = 0$ for a normal element x of \mathcal{A} , then $\delta(x) = 0$. Throughout this paper let \mathcal{A}_N be the set of all normal elements in \mathcal{A} .

2. Main Results

We begin with the following lemma which will be used to prove our main results.

LEMMA 2.1. Let \mathcal{A} be a C^* -algebra, X be a vector space and f: $\mathcal{A} \times \mathcal{A} \longrightarrow X$ be a biadditive map which satisfies

(2.1)
$$f(|x|, x) = 0 \text{ for all } x \in \mathcal{A}_N.$$

Then f(x, y) = 0 for all pairs of binormal elements $x, y \in \mathcal{A}$.

Proof. Let a and b be two commuting self-adjoint operators in \mathcal{A} . We have

$$|a \pm ib| = \sqrt{a^2 + b^2}.$$

By using (2.1) it follows that:

A Characterization of Additive Derivations on C^* -algebras

$$f(\sqrt{a^2 + b^2}, a \pm ib) = f(|a \pm ib|, a \pm ib) = 0,$$

which implies that

(2.2)
$$f(\sqrt{a^2 + b^2}, a) = 0, \ f(\sqrt{a^2 + b^2}, ib) = 0.$$

In particular, let a and b be two positive elements such that ab = ba. Then there exists a unique positive element c such that $c^2 = a^2 + 2ab$. By (2.2) we obtain following equations

$$f(a+b,b) = f(\sqrt{(a+b)^2},b) = f(\sqrt{a^2+2ab+b^2},b)$$

= $f(\sqrt{c^2+b^2},b) = 0,$

which implies that f(a, b) = 0 and also, f(a, ib) = 0.

Now, assume x and y are two commuting self-adjoint operators in \mathcal{A} . We can write each of two self-adjoint elements of x and y as the combination of two positive ones. Easily, can be shown that the positive and negative parts of x and y commute with the other one. Consequently:

(2.3)
$$f(x,y) = 0, \ f(x,iy) = 0.$$

Finally, we assume that x and y are two binormal operators in \mathcal{A} . Since real and imaginary parts x and y commute with each other's we conclude that f(x, y) = 0. The proof of the lemma is now completed.

We use Lemma 2.1 to study additive maps which the image of the binormal pairs elements commutes (see [4]).

COROLLARY 2.2. Let \mathcal{A} be a C^* -algebra, \mathcal{B} be an algebra and ϕ : $\mathcal{A} \longrightarrow \mathcal{B}$ be an additive map which satisfies

(2.4)
$$\phi(|x|)\phi(x) = \phi(x)\phi(|x|), \text{ for all } x \in \mathcal{A}_N.$$

Then $\phi(x)\phi(y) = \phi(y)\phi(x)$ for all binormal elements $x, y \in \mathcal{A}$.

Proof. By defining $f(x, y) = \phi(x)\phi(y) - \phi(y)\phi(x)$ for all $x, y \in \mathcal{A}$ we can obtain the statement from Lemma 2.1.

We now proceed to show that we can not conclude from Lemma 2.1 which f(x, y) = 0 for every $x, y \in \mathcal{A}$ which commute with each other.

EXAMPLE 2.3. Let \mathcal{A} be a C^* -algebra and map $f : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ with $f(x, y) = xy^* - y^*x$ be a biadditive map satisfying (2.1). Let xnot to be a normal operator. ix and x commute with each other, but $f(x, ix) \neq 0$, because f(x, ix) = 0 implies that x is a normal operator. This contradiction shows the correctness of the assertion.

As an application of Lemma 1.1, we give the following theorem for characterization of derivation on C^* -algebras.

THEOREM 2.4. Let \mathcal{A} be a unital C^* -algebra with unit e. If $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map satisfying

$$\delta(|x|x) = \delta(|x|)x + |x|\delta(x), \ \forall x \in \mathcal{A}_N,$$

then δ is a Jordan derivation on \mathcal{A} . Furthermore, if \mathcal{A} is a semiprime C^* -algebra then δ is a derivation.

Proof. The proof is divided into several steps.

Step 1. $\delta(xy) = \delta(x)y + x\delta(y)$ for all binormal elements x, y.

Since $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map $f : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ with $f(x, y) = \delta(xy) - \delta(x)y - x\delta(y)$ for all $x, y \in \mathcal{A}$ is a biadditive map. Since δ satisfies in (0.1), $f(|x|, x) = \delta(|x|x) - \delta(|x|)x - |x|\delta(x) = 0$ for all $x \in \mathcal{A}_N$. Now, if x, y are binormal elements then Lemma 2.1 follows f(x, y) = 0, which means, $\delta(xy) = \delta(x)y + x\delta(y)$.

Step 2. $\delta(ix) = i\delta(x)$ for all $x \in \mathcal{A}$.

Let x be an arbitrary element in \mathcal{A} . In view of hypothesis we easily can show that $\delta(e) = 0$ and also

$$0 = -\delta(e) = ie\delta(ie) + ie\delta(ie)$$

which implies $\delta(ie) = 0$. So

$$\delta(ix) = ie\delta(x) + \delta(ie)x = i\delta(x).$$

Step 3. f(x, y) + f(y, x) = 0 for all self-adjoint operators $x, y \in A$.

Clearly, we can show f(x, x) = 0 for all $x \in \mathcal{A}_s$. Let x and y be self-adjoint operators in \mathcal{A} . We can conclude

$$f(x,y) + f(y,x) = f(x,y) + f(y,x) + f(x,x) + f(y,y)$$

= $f(x+y,x+y)$
= 0.

Step 4. δ is a Jordan derivation.

Let f be as in Step 1, by Step 2 f(ix, y) = f(x, iy) = if(x, y) = -f(ix, iy) for all $x, y \in \mathcal{A}_s$. Thus, if x is an arbitrary element of \mathcal{A} by Step 3 we have

$$f(x,x) = f(x_1 + ix_2, x_1 + ix_2)$$

= $f(x_1, x_1) - f(x_2, x_2) + if(x_1, x_2) + if(x_2, x_1)$
= 0,

and this shows δ is a Jordan derivation.

Step 5. δ is a derivation.

By Step 4 we have δ is a derivation. One can easily prove that any Jordan derivation on an arbitrary 2-tortion free ring is a Jordan triple derivation. That is,

$$\delta(xyx) = \delta(x)yx + x\delta(y)x + xy\delta(x),$$

for all pairs of $x, y \in \mathcal{A}$ and so δ is a derivation by Theorem 1.1.

THEOREM 2.5. Let \mathcal{A} be a unital C^* -algebra with unit e. If $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map satisfying

$$\delta(|x|x) = \delta(|x|)x^* + |x|\delta(x), \ \forall x \in \mathcal{A}_N,$$

then $\delta(xy) = \delta(x)y^* + x\delta(y)$, for all pairs of binormal elements $x, y \in \mathcal{A}$.

Proof. Since $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map $f : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ with $f(x,y) = \delta(xy) - \delta(x)y^* - x\delta(y)$ for all $x, y \in \mathcal{A}$ is a biadditive map. Similar to proof of Theorem 1.1 we can show $\delta(xy) = \delta(x)y^* + x\delta(y)$, for all pairs of binormal elements $x, y \in \mathcal{A}$.

THEOREM 2.6. Let \mathcal{A} be a unital C^* -algebra and $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ be an additive map satisfying (0.1). If $[x, y] = [x, \delta(y)] = 0$ for any pair of normal elements x, y of \mathcal{A} , then $\delta(y) = \delta(\lambda e)$ for some $\lambda \in \mathcal{C}$.

Proof. By (Fuglede) theorem we have $\delta(y)x^* = x^*\delta(y)$ and $x^*y = yx^*$ therefore by 2.4 we have $\delta(x^*y) = \delta(x^*)y + x^*\delta(y)$ also $\delta(yx^*) = \delta(y)x^* + y\delta(x^*)$. This implies that

 $\delta(x^*)y = y\delta(x^*).$

Again by the 2.4 $\delta(xy) = \delta(x)y + x\delta(y)$ and $\delta(yx) = \delta(y)x + y\delta(x)$. Then $\delta(x)y = y\delta(x)$.

Let \mathcal{B} be a C^* -subalgebra of \mathcal{A} generated by $\{e, y, \delta(x), \delta(x^*)\}$, then y belongs to the center of \mathcal{B} . Similar to proof of ([10], Theorem 2.2.7), let $y = y_1 + iy_2$, $(y_1 = y_1^*, y_2 = y_2^*)$ and let \mathcal{P} be any closed primitive ideal of \mathcal{B} then there is a real number λ_1 such that $y_1 - \lambda_1 e = a_1^2 - a_2^2$, where $a_1^2, a_2^2 \in \mathcal{P} \cap \mathcal{B}^+$ then

$$\delta(y_1 - \lambda_1 e) = \delta(a_1)a_1 + a_1\delta(a_1) - \delta(a_2)a_2 - a_2\delta(a_2).$$

Clearly $\delta(y_1 - \lambda_1 e) \in \mathcal{B}$. Let φ be any state on \mathcal{A} such that $\varphi(\mathcal{P}) = 0$ then

$$|\varphi(\delta(y_1 - \lambda_1 e)| \le |\varphi(\delta(a_1)a_1)| + |\varphi(a_1\delta(a_1))| + |\varphi(\delta(a_2)a_2)| + |\varphi(a_2\delta(a_2))| + |\varphi(a_2)| + |\varphi(a$$

Ali Taghavi and Aboozar Akbari

$$\leq \varphi(\delta(a_1)^*\delta(a_1))^{\frac{1}{2}}\varphi(a_1^2)^{\frac{1}{2}} + \varphi(\delta(a_2)^*\delta(a_2))^{\frac{1}{2}}\varphi(a_2^2)^{\frac{1}{2}} + \varphi(\delta(a_1)\delta(a_1)^*)^{\frac{1}{2}}\varphi(a_1^2)^{\frac{1}{2}} + \varphi(\delta(a_2)\delta(a_2)^*)^{\frac{1}{2}}\varphi(a_2^2)^{\frac{1}{2}} = 0$$

hence $\delta(y_1) \in \mathcal{P}$ and so $\delta(y_1 - \lambda_1 e) \in \bigcap_{\forall \mathcal{P}} \mathcal{P} = (0)$ sine every C^* -algebra is semi-simple. Similarly, $\delta(y_2) = \delta(\lambda_2 e)$. Hence $\delta(y) = \delta(\lambda e)$. \Box

THEOREM 2.7. Let \mathcal{A} be a C^* -algebra and $\delta : \mathcal{A} \longrightarrow \mathcal{A}$ be an additive map satisfies (0.1). If $[x, y] = [\delta(x), y] = 0$ for any pair of normal elements x, y of \mathcal{A} , then $\delta(y) = \delta(\lambda e)$ for some $\lambda \in \mathcal{C}$.

Proof. By 2.4
$$\delta(xy) = \delta(x)y + x\delta(y)$$
 and $\delta(yx) = \delta(y)x + y\delta(x)$. Then
 $\delta(y)x = x\delta(y)$.

Thus $[x, y] = [x, \delta(y)] = 0$. By Theorem 2.6 we have $\delta(y) = \delta(\lambda e)$ for some $\lambda \in \mathcal{C}$.

References

- K. I. Beidar, M. Bresar, M. A. Chebotar and W. A. Martindale 3rd , On Hersteins Lie map conjectures II, J. Algebra 238 (1) (2001), 239–264.
- [2] M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006.
- [3] M. Bresar, Jordan mappings of semiprime rings, J. Algebra. 127 (1989), 218– 228.
- [4] M. Bresar, P. Semrl, Commutativity preserving linear maps on central simple algebras, Journal of algebra 284 (2005) 102–110.
- [5] J. Cusak, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321– 324.
- [6] A. B. A. Essaleha, A. M.Peralta, Linear maps on C*-algebras which are derivations or triple derivations at a point, Linear Algebra and its Applications 538 (2018).
- [7] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Camb. Phil. Soc. 120 (1996), 455–473.
- [8] U.Haagerup and N. Laustsen, , Weak amenability of C*-algebras and a theorem of Goldstein, Banach algebras 97 (Blaubeuren), 223-243, de Gruyter, Berlin, 1998.
- [9] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104–1119.
- [10] Shoichiro sakai, Operator algebras in dynamical systems, Volume 41, Cambridge University press, 2008.
- [11] Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321–322.

Ali Taghavi

Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran P. O. Box 47416-1468, Babolsar, Iran. *E-mail*: Taghavi@umz.ac.ir

Aboozar Akbari

Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran P. O. Box 47416-1468, Babolsar, Iran. *E-mail*: a.akbari@umz.ac.ir