A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON C^{*}-ALGEBRAS

Ali Taghavi and Aboozar Akbari

Abstract

Let \mathcal{A} be a unital C^{*}-algebra. It is shown that additive map $\delta: \mathcal{A} \rightarrow \mathcal{A}$ which satisfies $$
\delta(|x| x)=\delta(|x|) x+|x| \delta(x), \forall x \in \mathcal{A}_{N}
$$ is a Jordan derivation on \mathcal{A}. Here, \mathcal{A}_{N} is the set of all normal elements in \mathcal{A}. Furthermore, if \mathcal{A} is a semiprime C^{*}-algebra then δ is a derivation.

1. Introduction

Derivation has been the main subject of many researches done by mathematicians in recent years (see the articles $[1,6,10]$ for example).

Recall that a ring \mathcal{R} is prime ring if for $a, b \in \mathcal{R}, a \mathcal{R} b=(0)$ implies that $a=0$ or $b=0$ and is semiprime in case $a \mathcal{R} a=(0)$ implies that $a=0$. Let \mathcal{A} be a unital associative ring with unit e. Additive mapping $\delta: \mathcal{A} \longrightarrow \mathcal{A}$ is called a derivation (resp. Jordan derivation) if $\delta(x y)=\delta(x) y+x \delta(y)$ (resp. $\left.\delta\left(x^{2}\right)=\delta(x) x+x \delta(x)\right)$ holds for all $x, y \in \mathcal{A}$. Obviously, any derivation is a Jordan derivation, but in general the converse is not true. A classical result of Herstein [9] asserts that any Jordan derivation on a 2-torsion free prime ring is a derivation. Cusack [5] generalized Herstein's theorem to 2-torsion free semiprime

[^0]rings (see [2] for a alternative proof). It should be mentioned that Beidar, Bresar, Chebotar and Martidale [1] fairly generalized Herstein's theorem. Bresar [3] proved the following theorem.

Theorem 1.1. Let \mathcal{R} be a 2 -tortion free semiprime ring and let $\delta:$ $\mathcal{R} \longrightarrow \mathcal{R}$ be an additive mapping satisfying the relation

$$
\delta(x y x)=\delta(x) y x+x \delta(y) x+x y \delta(x) .
$$

for all pairs $x, y \in \mathcal{R}$. Then δ is a derivation.
In 1996, Johnson [7] proved that if A is a C^{*}-algebra and M is a Banach A-module, then each Jordan derivation $\delta: A \longrightarrow M$ is a derivation (see [8], Theorem 2.4).

In this paper we consider these results in situation of \mathcal{A} be a C^{*} algebras. We consider a more general problem concerning certain biadditive maps and then to the proof of the main result. Afterwards we use this result whenever \mathcal{A} be a C^{*}-algebras and $\delta: \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map satisfying (0.1). Then δ is a derivation on \mathcal{A}.

Furthermore, we prove that if $[x, y]=[x, \delta(y)]=0$ or $[x, y]=[\delta(x), y]=$ 0 for any pair of normal elements x, y of \mathcal{A}, then $\delta(y)=\delta(\lambda e)$ for some $\lambda \in \mathcal{C}$. In fact, it is an extention on the work of Shoichiro Sakai ([10], Theorem 2.2.7), in which he showed that:

Let \mathcal{A} be a C^{*}-algebra, δ be a linear derivation on \mathcal{A}. If $[\delta(x), x]=0$ for a normal element x of \mathcal{A}, then $\delta(x)=0$. Throughout this paper let \mathcal{A}_{N} be the set of all normal elements in \mathcal{A}.

2. Main Results

We begin with the following lemma which will be used to prove our main results.

Lemma 2.1. Let \mathcal{A} be a C^{*}-algebra, X be a vector space and f : $\mathcal{A} \times \mathcal{A} \longrightarrow X$ be a biadditive map which satisfies

$$
\begin{equation*}
f(|x|, x)=0 \text { for all } x \in \mathcal{A}_{N} . \tag{2.1}
\end{equation*}
$$

Then $f(x, y)=0$ for all pairs of binormal elements $x, y \in \mathcal{A}$.
Proof. Let a and b be two commuting self-adjoint operators in \mathcal{A}. We have

$$
|a \pm i b|=\sqrt{a^{2}+b^{2}}
$$

By using (2.1) it follows that:

$$
f\left(\sqrt{a^{2}+b^{2}}, a \pm i b\right)=f(|a \pm i b|, a \pm i b)=0,
$$

which implies that

$$
\begin{equation*}
f\left(\sqrt{a^{2}+b^{2}}, a\right)=0, f\left(\sqrt{a^{2}+b^{2}}, i b\right)=0 . \tag{2.2}
\end{equation*}
$$

In particular, let a and b be two positive elements such that $a b=b a$. Then there exists a unique positive element c such that $c^{2}=a^{2}+2 a b$. By (2.2) we obtain following equations

$$
\begin{aligned}
f(a+b, b) & =f\left(\sqrt{(a+b)^{2}}, b\right)=f\left(\sqrt{a^{2}+2 a b+b^{2}}, b\right) \\
& =f\left(\sqrt{c^{2}+b^{2}}, b\right)=0
\end{aligned}
$$

which implies that $f(a, b)=0$ and also, $f(a, i b)=0$.
Now, assume x and y are two commuting self-adjoint operators in \mathcal{A}. We can write each of two self-adjoint elements of x and y as the combination of two positive ones. Easily, can be shown that the positive and negative parts of x and y commute with the other one. Consequently:

$$
\begin{equation*}
f(x, y)=0, f(x, i y)=0 \tag{2.3}
\end{equation*}
$$

Finally, we assume that x and y are two binormal operators in \mathcal{A}. Since real and imaginary parts x and y commute with each other's we conclude that $f(x, y)=0$. The proof of the lemma is now completed.

We use Lemma 2.1 to study additive maps which the image of the binormal pairs elements commutes (see [4]).

Corollary 2.2. Let \mathcal{A} be a C^{*}-algebra, \mathcal{B} be an algebra and ϕ : $\mathcal{A} \longrightarrow \mathcal{B}$ be an additive map which satisfies

$$
\begin{equation*}
\phi(|x|) \phi(x)=\phi(x) \phi(|x|), \text { for all } x \in \mathcal{A}_{N} . \tag{2.4}
\end{equation*}
$$

Then $\phi(x) \phi(y)=\phi(y) \phi(x)$ for all binormal elements $x, y \in \mathcal{A}$.
Proof. By defining $f(x, y)=\phi(x) \phi(y)-\phi(y) \phi(x)$ for all $x, y \in \mathcal{A}$ we can obtain the statement from Lemma 2.1.

We now proceed to show that we can not conclude from Lemma 2.1 which $f(x, y)=0$ for every $x, y \in \mathcal{A}$ which commute with each other.

Example 2.3. Let \mathcal{A} be a C^{*}-algebra and map $f: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ with $f(x, y)=x y^{*}-y^{*} x$ be a biadditive map satisfying (2.1). Let x not to be a normal operator. $i x$ and x commute with each other, but $f(x, i x) \neq 0$, because $f(x, i x)=0$ implies that x is a normal operator. This contradiction shows the correctness of the assertion.

As an application of Lemma 1.1, we give the following theorem for characterization of derivation on C^{*}-algebras.

Theorem 2.4. Let \mathcal{A} be a unital C^{*}-algebra with unit e. If $\delta: \mathcal{A} \longrightarrow$ \mathcal{A} is an additive map satisfying

$$
\delta(|x| x)=\delta(|x|) x+|x| \delta(x), \forall x \in \mathcal{A}_{N}
$$

then δ is a Jordan derivation on \mathcal{A}. Furthermore, if \mathcal{A} is a semiprime C^{*}-algebra then δ is a derivation.

Proof. The proof is divided into several steps.
Step 1. $\delta(x y)=\delta(x) y+x \delta(y)$ for all binormal elements x, y.
Since $\delta: \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map $f: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ with $f(x, y)=$ $\delta(x y)-\delta(x) y-x \delta(y)$ for all $x, y \in \mathcal{A}$ is a biadditive map. Since δ satisfies in (0.1), $f(|x|, x)=\delta(|x| x)-\delta(|x|) x-|x| \delta(x)=0$ for all $x \in \mathcal{A}_{N}$. Now, if x, y are binormal elements then Lemma 2.1 follows $f(x, y)=0$, which means, $\delta(x y)=\delta(x) y+x \delta(y)$.

Step 2. $\delta(i x)=i \delta(x)$ for all $x \in \mathcal{A}$.
Let x be an arbitrary element in \mathcal{A}. In view of hypothesis we easily can show that $\delta(e)=0$ and also

$$
0=-\delta(e)=i e \delta(i e)+i e \delta(i e)
$$

which implies $\delta(i e)=0$. So

$$
\delta(i x)=i e \delta(x)+\delta(i e) x=i \delta(x)
$$

Step 3. $f(x, y)+f(y, x)=0$ for all self-adjoint operators $x, y \in \mathcal{A}$.
Clearly, we can show $f(x, x)=0$ for all $x \in \mathcal{A}_{s}$. Let x and y be self-adjoint operators in \mathcal{A}. We can conclude

$$
\begin{aligned}
f(x, y)+f(y, x) & =f(x, y)+f(y, x)+f(x, x)+f(y, y) \\
& =f(x+y, x+y) \\
& =0
\end{aligned}
$$

Step 4. δ is a Jordan derivation.
Let f be as in Step 1, by Step $2 f(i x, y)=f(x, i y)=i f(x, y)=$ $-f(i x, i y)$ for all $x, y \in \mathcal{A}_{s}$. Thus, if x is an arbitrary element of \mathcal{A} by Step 3 we have

$$
\begin{aligned}
f(x, x) & =f\left(x_{1}+i x_{2}, x_{1}+i x_{2}\right) \\
& =f\left(x_{1}, x_{1}\right)-f\left(x_{2}, x_{2}\right)+i f\left(x_{1}, x_{2}\right)+i f\left(x_{2}, x_{1}\right) \\
& =0
\end{aligned}
$$

and this shows δ is a Jordan derivation.
Step 5. δ is a derivation.
By Step 4 we have δ is a derivation. One can easily prove that any Jordan derivation on an arbitrary 2 -tortion free ring is a Jordan triple derivation. That is,

$$
\delta(x y x)=\delta(x) y x+x \delta(y) x+x y \delta(x),
$$

for all pairs of $x, y \in \mathcal{A}$ and so δ is a derivation by Theorem 1.1.
Theorem 2.5. Let \mathcal{A} be a unital C^{*}-algebra with unit e. If $\delta: \mathcal{A} \longrightarrow$ \mathcal{A} is an additive map satisfying

$$
\delta(|x| x)=\delta(|x|) x^{*}+|x| \delta(x), \forall x \in \mathcal{A}_{N}
$$

then $\delta(x y)=\delta(x) y^{*}+x \delta(y)$, for all pairs of binormal elements $x, y \in \mathcal{A}$.
Proof. Since $\delta: \mathcal{A} \longrightarrow \mathcal{A}$ is an additive map $f: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ with $f(x, y)=\delta(x y)-\delta(x) y^{*}-x \delta(y)$ for all $x, y \in \mathcal{A}$ is a biadditive map. Similar to proof of Theorem 1.1 we can show $\delta(x y)=\delta(x) y^{*}+x \delta(y)$, for all pairs of binormal elements $x, y \in \mathcal{A}$.

Theorem 2.6. Let \mathcal{A} be a unital C^{*}-algebra and $\delta: \mathcal{A} \longrightarrow \mathcal{A}$ be an additive map satisfying (0.1). If $[x, y]=[x, \delta(y)]=0$ for any pair of normal elements x, y of \mathcal{A}, then $\delta(y)=\delta(\lambda e)$ for some $\lambda \in \mathcal{C}$.

Proof. By (Fuglede) theorem we have $\delta(y) x^{*}=x^{*} \delta(y)$ and $x^{*} y=y x^{*}$ therefore by 2.4 we have $\delta\left(x^{*} y\right)=\delta\left(x^{*}\right) y+x^{*} \delta(y)$ also $\delta\left(y x^{*}\right)=\delta(y) x^{*}+$ $y \delta\left(x^{*}\right)$. This implies that

$$
\delta\left(x^{*}\right) y=y \delta\left(x^{*}\right) .
$$

Again by the $2.4 \delta(x y)=\delta(x) y+x \delta(y)$ and $\delta(y x)=\delta(y) x+y \delta(x)$. Then

$$
\delta(x) y=y \delta(x)
$$

Let \mathcal{B} be a C^{*}-subalgebra of \mathcal{A} generated by $\left\{e, y, \delta(x), \delta\left(x^{*}\right)\right\}$, then y belongs to the center of \mathcal{B}. Similar to proof of ([10], Theorem 2.2.7), let $y=y_{1}+i y_{2},\left(y_{1}=y_{1}^{*}, y_{2}=y_{2}^{*}\right)$ and let \mathcal{P} be any closed primitive ideal of \mathcal{B} then there is a real number λ_{1} such that $y_{1}-\lambda_{1} e=a_{1}^{2}-a_{2}^{2}$, where $a_{1}^{2}, a_{2}^{2} \in \mathcal{P} \cap \mathcal{B}^{+}$then

$$
\delta\left(y_{1}-\lambda_{1} e\right)=\delta\left(a_{1}\right) a_{1}+a_{1} \delta\left(a_{1}\right)-\delta\left(a_{2}\right) a_{2}-a_{2} \delta\left(a_{2}\right) .
$$

Clearly $\delta\left(y_{1}-\lambda_{1} e\right) \in \mathcal{B}$. Let φ be any state on \mathcal{A} such that $\varphi(\mathcal{P})=0$ then

$$
\mid \varphi\left(\delta (y _ { 1 } - \lambda _ { 1 } e) \left|\leq\left|\varphi\left(\delta\left(a_{1}\right) a_{1}\right)\right|+\left|\varphi\left(a_{1} \delta\left(a_{1}\right)\right)\right|+\left|\varphi\left(\delta\left(a_{2}\right) a_{2}\right)\right|+\left|\varphi\left(a_{2} \delta\left(a_{2}\right)\right)\right|\right.\right.
$$

$$
\begin{gathered}
\leq \varphi\left(\delta\left(a_{1}\right)^{*} \delta\left(a_{1}\right)\right)^{\frac{1}{2}} \varphi\left(a_{1}^{2}\right)^{\frac{1}{2}}+\varphi\left(\delta\left(a_{2}\right)^{*} \delta\left(a_{2}\right)\right)^{\frac{1}{2}} \varphi\left(a_{2}^{2}\right)^{\frac{1}{2}} \\
+\varphi\left(\delta\left(a_{1}\right) \delta\left(a_{1}\right)^{*}\right)^{\frac{1}{2}} \varphi\left(a_{1}^{2}\right)^{\frac{1}{2}}+\varphi\left(\delta\left(a_{2}\right) \delta\left(a_{2}\right)^{*}\right)^{\frac{1}{2}} \varphi\left(a_{2}^{2}\right)^{\frac{1}{2}}=0
\end{gathered}
$$

hence $\delta\left(y_{1}\right) \in \mathcal{P}$ and so $\delta\left(y_{1}-\lambda_{1} e\right) \in \bigcap_{\Downarrow \mathcal{P}} \mathcal{P}=(0)$ sine every C^{*}-algebra is semi-simple. Similarly, $\delta\left(y_{2}\right)=\delta\left(\lambda_{2} e\right)$. Hence $\delta(y)=\delta(\lambda e)$.

Theorem 2.7. Let \mathcal{A} be a C^{*}-algebra and $\delta: \mathcal{A} \longrightarrow \mathcal{A}$ be an additive map satisfies (0.1). If $[x, y]=[\delta(x), y]=0$ for any pair of normal elements x, y of \mathcal{A}, then $\delta(y)=\delta(\lambda e)$ for some $\lambda \in \mathcal{C}$.

Proof. By $2.4 \delta(x y)=\delta(x) y+x \delta(y)$ and $\delta(y x)=\delta(y) x+y \delta(x)$. Then

$$
\delta(y) x=x \delta(y)
$$

Thus $[x, y]=[x, \delta(y)]=0$. By Theorem 2.6 we have $\delta(y)=\delta(\lambda e)$ for some $\lambda \in \mathcal{C}$.

References

[1] K. I. Beidar, M. Bresar, M. A. Chebotar and W. A. Martindale 3rd , On Hersteins Lie map conjectures II, J. Algebra 238 (1) (2001), 239-264.
[2] M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[3] M. Bresar, Jordan mappings of semiprime rings, J. Algebra. 127 (1989), 218228.
[4] M. Bresar, P. Semrl, Commutativity preserving linear maps on central simple algebras, Journal of algebra 284 (2005) 102-110.
[5] J. Cusak, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321324.
[6] A. B. A. Essaleha, A. M.Peralta, Linear maps on C^{*}-algebras which are derivations or triple derivations at a point, Linear Algebra and its Applications 538 (2018).
[7] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Camb. Phil. Soc. 120 (1996), 455-473.
[8] U.Haagerup and N. Laustsen, , Weak amenability of C^{*}-algebras and a theorem of Goldstein, Banach algebras 97 (Blaubeuren), 223-243, de Gruyter, Berlin, 1998.
[9] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1119.
[10] Shoichiro sakai, Operator algebras in dynamical systems, Volume 41, Cambrige University press, 2008.
[11] Vukman , Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322.

Ali Taghavi
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran
P. O. Box 47416-1468, Babolsar, Iran.
E-mail: Taghavi@umz.ac.ir

Aboozar Akbari
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran
P. O. Box 47416-1468, Babolsar, Iran.
E-mail: a.akbari@umz.ac.ir

[^0]: Received April 11, 2018. Revised May 4, 2018. Accepted May 28, 2018.
 2010 Mathematics Subject Classification: 46J10, 47B48.
 Key words and phrases: additive derivations, biadditive map, Jordan derivation. (c) The Kangwon-Kyungki Mathematical Society, 2018.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

