
Korean J. Math. 26 (2018), No. 2, pp. 337–348
https://doi.org/10.11568/kjm.2018.26.2.337

BEGINNER’S GUIDE TO NEURAL NETWORKS FOR

THE MNIST DATASET USING MATLAB

Bitna Kim and Young Ho Park∗

Abstract. MNIST dataset is a database containing images of hand-
written digits, with each image labeled by an integer from 0 to 9.
It is used to benchmark the performance of machine learning algo-
rithms. Neural networks for MNIST are regarded as the starting
point of the studying machine learning algorithms. However it is
not easy to start the actual programming. In this expository article,
we will give a step-by-step instruction to build neural networks for
MNIST dataset using MATLAB.

1. Introduction

Machine learning or more generally artificial intelligence is a real hot
topic in these days. We have many applications of these principles to
areas including virtual assistances, traffic predictions, video surveillance,
social media services, email Spam filtering, etc. Many mathematicians
want to learn about machine learning, particularly neural networks.
There are so many books and internet pages for neural networks scat-
tered around all over the places. However it is hard to find a right
and fast track to actual programming for neural networks for beginners.
Python is known to be the best programming language for machine learn-
ing. But many mathematicians are more familiar with MATLAB than

Received June 7, 2018. Revised June 18, 2018. Accepted June 20, 2018.
2010 Mathematics Subject Classification: 68T10, 68T35.
Key words and phrases: Neural network, Machine learning, Pattern recognition,

MNIST dataset, MATLAB.
∗ Corresponding author.
c© The Kangwon-Kyungki Mathematical Society, 2018.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.

https://doi.org/10.11568/kjm.2018.26.2.337

338 Bitna Kim and Young Ho Park

with Python. It is also true that MATLAB is easier and quicker to learn
to apply to neural networks. The MNIST database is commonly used for
training image processing systems and is also widely used for training
and testing in machine learning. In this expository article, we will give
a step-by-step instruction to build neural networks for MNIST dataset
using MATLAB. After reading this article, we hope that the readers
start to expand their interests to general machine learning algorithms.

2. Preliminaries

2.1. Neural networks. In 1943, Warren McCulloch and Walter Pitts
introduced the first artificial neurons [10]. Then they showed that net-
works of these neurons could compute any arithmetic or logical function.
In the late 1950s, Frank Rosenblatt [18] and other researchers developed
a class of neural networks called perceptrons. He proved that the learning
rule converges to the correct network weights, if weights exist that solve
the problem. Unfortunately, the perceptron network is inherently lim-
ited. Many people believed that further research on neural networks was
a dead end. For a decade neural network research was almost suspended.

Two new concepts were most responsible for the rebirth of neural
networks. The first was the use of statistical mechanics to explain the
operation of a certain class of recurrent network [4]. The second key de-
velopment of the 1980s was the backpropagation algorithm for training
multilayer networks. The most influential publication of the algorithm
was by David Rumelhart and James McClelland [19]. These new devel-
opments revive the field of neural networks.

Preliminary basic materials for our work on neural networks can be
found in many books and web pages. The following list of references
may be helpful [2, 3, 7, 9, 12–17,20,21,23].

An artificial neural network is based on a connected units called
artificial neurons, analogous to neurons in an animal brain. Each connec-
tion, called a synapse, between neurons can transmit a signal to another
neuron. Further, they may have a threshold.

A single-layer network of S neurons with R inputs is shown in the
Figure 1. Each of the R inputs is connected to each of the neurons and
that the weight matrix has S rows. The individual inputs p1, p2, . . . , pR
enters the network through the weight matrix W = (wi,j). With a bias
b = (bi), the net output can be written as a = f(Wp + b).

Beginner’s guide to networks for the MNIST using MATLAB 339

Figure 1. Single layer network

A network can have several layers. Each layer has its own weight
matrix W, its own bias vector b, a net input vector n and an output
vector a. The leftmost layer of the network is called the input layer.
A layer whose output is the network output (i.e., the rightmost layer)
is called an output layer. The other layers are called hidden layers.
Multilayer networks are usually more powerful than single-layer net-
works. For example, a two-layer network can be trained to approximate
most functions arbitrarily well but single-layer networks cannot. Single-
unit perceptrons are only capable of learning linearly separable patterns;
Marvin Minsky and Seymour Papert showed that it was impossible for
a single-layer perceptron network to learn an XOR function [11].

The universal approximation theorem states that a multilayer
perceptron can approximate any continuous functions on compact sub-
sets of Rn, under mild assumptions on the activation function.

One of the first versions of the theorem was proved by George Cybenko
for sigmoid activation functions [1]. Kurt Hornik showed in 1991 that it
is not the specific choice of the activation function [5].

Theorem 2.1. (Universal Approximation Theorem) Let ϕ be a non-
constant bounded and monotonically increasing continuous function.
Let Im denote the m-dimensional unit hypercube [0, 1]m. Let C(Im)

340 Bitna Kim and Young Ho Park

be the space of continuous functions on Im. Let f ∈ C(Im) be any func-
tion. Then for any ε > 0 there exist an integer N , real constants ci, bi
and real vectors Wi ∈ Rm, where 1 ≤ i ≤ N , such that∣∣∣∣∣

N∑
i=1

ciϕ(WT
i p + bi)− f(p)

∣∣∣∣∣ < ε

for all p ∈ Im.

2.2. Machine learning. Supervised learning is a type of system in
which both input and desired output data are provided. Input and
output data are labeled for classification to provide a learning basis for
future data processing.

Training data for supervised learning includes a set of examples with
paired input subjects and desired output (which is also referred to as
the supervisory signal). In supervised learning for image processing,
for example, an AI system might be provided with labeled pictures of
vehicles in categories such as cars and trucks. After a sufficient amount
of observation, the system should be able to distinguish between and
categorize unlabeled images. We will use supervised learning algorithms
for MNIST dataset.

Unsupervised learning is the training of an artificial intelligence algo-
rithm using information that is neither classified nor labeled and allowing
the algorithm to act on that information without guidance.

3. MATLAB implimentation for MNIST dataset

3.1. Preparing MNIST dataset for MATLAB. The MNIST data-
base (Modified National Institute of Standards and Technology data-
base) is a database of handwritten digits. It is commonly used for
training image processing systems. The database is also widely used
for training and testing in machine learning.

The MNIST data comes in two parts. The first part contains 60,000
images to be used as training data. The images are greyscale and 28×28
pixels in size. The second part of the MNIST data set is 10,000 images
to be used as test data. The test data is used to evaluate how well a
neural network has learned to recognize digits.

MNIST dataset can be downloaded from the MNIST web page [12].
There are four zipped files:

Beginner’s guide to networks for the MNIST using MATLAB 341

• train-images-idx3-ubyte.gz: training set images (9912422 bytes)
• train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
• t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
• t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)

The image and label data is stored in a binary format described on the
website. These files should be unzipped after downloaded. All files we
work with, including MATLAB code files below, will be saved in a fixed
directory mnist.

We can find two functions loadMNISTImages and loadMNISTLabels

for extracting the data from the database files. MATLAB codes of these
functions are available at [16], or directly at [22]. Once we get these help
files in the mnist directory, we can use them to read the MNIST data
into MATLAB as follows. In MATLAB commandline, type:

images = loadMNISTImages(’train-images.idx3-ubyte’);

labels = loadMNISTLabels(’train-labels.idx1-ubyte’);

tstimages = loadMNISTImages(’t10k-images.idx3-ubyte’);

tstlabels = loadMNISTLabels(’t10k-labels.idx1-ubyte’);

The variables images and labels are 784×60000 and 60000×1 matrices,
respectively. Each column of images is the digit image reshaped to
column vector of length 784 from the original 28 × 28 image. labels

represents the letter labels for corresponding number images. To view
the images we need to reshape them into the square size matrix. Make
a new script and run (after reading the data as above) as follows to view
first 100 digits:

figure

for i = 1:100

subplot(10,10,i)

digit = reshape(images(:, i), [28,28]);

imshow(digit)

title(num2str(labels(i)))

end

3.2. Neural network design. We will use MATLAB (R2016a) to de-
sign our neural networks for MNIST. It has a convenient Neural Network
Toolbox. There are four ways we can use the Neural Network Tool-
box software; Function fitting (nftool), Pattern recognition (nprtool),
Data clustering (nctool) and Time series analysis (ntstool). We can
open any of these tools by the command nnstart. The command-line

342 Bitna Kim and Young Ho Park

operations offer more flexibility than the tools, but with some added
complexity. In addition, the tools can generate scripts of documented
MATLAB code to provide with templates for creating our own cus-
tomized command-line functions. It is a good idea to use the tools first,
and then generate and modify MATLAB scripts.

In pattern recognition problems, you want a neural network to classify
inputs into a set of target categories. A two-layer feed-forward network,
with sigmoid hidden and softmax output neurons, can classify vectors
arbitrarily well, given enough neurons in its hidden layer. We use the
patternnet in MATLAB. The network will be trained with scaled con-
jugate gradient backpropagation (trainscg).

patternnet(hiddenSizes,trainFcn,performFcn) takes these arguments,

• hiddenSizes: row vector of one or more hidden layer sizes (default
= 10)
• trainFcn: Training function (default = ’trainscg’)
• performFcn: Performance function (default = ’crossentropy’)

The command [net,tr]=train(net, images, labels) train the pat-
ternnet with the input database ‘images’ and target ‘labels’. tr returns
the training record (such as net’s epoch and perform). The target data
for pattern recognition networks should consist of vectors of all zero val-
ues except for a 1 in element i, where i is the class they are to represent.
I.e.,

[0 · · · 0 1 0 · · · 0]T ↔ i

where 1 is in the i-th position.
As an example, we will create a net for the XOR function. For tar-

gets, we will use the column vectors (0, 1)T , (1, 0)T representing F and
T , respectively. The input is the matrix (0 0 1 1

0 1 0 1) , where each column
represents (F, F), (F, T), (T, F), (T, T) pair of logical values. The target
matrix is (0 1 1 0

1 0 0 1) , where each column is the truth value of each of input
pairs. The patternnet has only a single hidden layer. Its size is given by
hiddenSizes. We choose hiddenSize = 3. See Figure 2.

Here is the MATLAB code net_xor for the network.

train_data=[0 0 1 1 ; 0 1 0 1];

target=[0 1 1 0 ; 1 0 0 1] ;

x = train_data; t = target;

% Create a Pattern Recognition Network

hiddenSize = 3;

Beginner’s guide to networks for the MNIST using MATLAB 343

net = patternnet(hiddenSize);

% Setup Division of Data for Training, Validation, Testing

net.divideParam.trainRatio = 100/100;

net.divideParam.valRatio = 0/100;

net.divideParam.testRatio = 0/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

disp(y);

Figure 2. Pattern net in MATLAB

The properties of the trained net can be obtained by simply typing
the command net. Moreover, for example its weights can be obtained by
the command net.IW and net.LW. net.b gives the biases of the network.
Notice that if we just want the output for some x then we just use net(x).
So net([1;0]) returns (1, 0)T , which represents T .

3.3. MATLAB implementation. Now we go back to MNIST classi-
fication. The digits 0, 1, · · · , 9 are used as the labels in a database. Since
there are 10 classes to classify, each class is represented by a vector of
length 10. The number 0 is labeled by the vector [0 0 · · · 0 1]. All is
done by the command dummyvar. Command vec2ind gives the labels
1, 2, · · · , 10 back.

344 Bitna Kim and Young Ho Park

labels = labels’;

% dummyvar function doesnt take zeroes

labels(labels==0)=10;

labels=dummyvar(labels); %

We will train the network with various number of layers from 10 to
50. We used the default trainFcn and PerformFcn for the remaining
arguments. Trainscg denotes the Scaled Conjugate Gradient Descent
method, which is a modified Conjugate Gradient Descent algorithm.

First we train the network using all the MNIST training database.
The command net(image) returns the network’s guess of the image la-
bel. After we trained the networks, we computed the percent errors
with the training data itself and recorded in percentErrors netdata.
We also test the network with MNIST test set to get the accuracies. The
results are saved into the variable percentErrors testdata. We experi-
ment the networks with different number of hidden layers 10, 20, 30, 40, 50.

% initialize figure

images = loadMNISTImages(’train-images.idx3-ubyte’);

labels = loadMNISTLabels(’train-labels.idx1-ubyte’);

tstimages = loadMNISTImages(’t10k-images.idx3-ubyte’);

tstlabels = loadMNISTLabels(’t10k-labels.idx1-ubyte’);

labels = labels’;

% dummyvar function doesnt take zeroes

labels(labels==0)=10;

labels=dummyvar(labels)’; %

tstlabels = tstlabels’;

tstlabels(tstlabels==0)=10;

tstlabels=dummyvar(tstlabels)’;

% use scaled conjugate gradient for training

trainFcn = ’trainscg’;

% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help nndivide

% net.divideFcn = ’dividerand’; % Divide data randomly

% net.divideMode = ’sample’; % Divide up every sample

net.divideParam.trainRatio = 80/100;

Beginner’s guide to networks for the MNIST using MATLAB 345

net.divideParam.valRatio = 20/100;

net.divideParam.testRatio = 0/100;

% Choose a Performance Function

% For a list of all performance functions type: help nnperformance

% Cross-Entropy

net.performFcn = ’crossentropy’;

% Choose Plot Functions

% For a list of all plot functions type: help nnplot

net.plotFcns = {’plotperform’,’plottrainstate’,’ploterrhist’, ...

’plotconfusion’, ’plotroc’};

for i=10:10:50

hiddenLayerSize = i;

net = patternnet(hiddenLayerSize, trainFcn);

% Train the Network

[net,tr] = train(net,images,labels);

% Test the Network with the MNIST training data

y = net(images);

performance_netdata(i/10) = perform(net,labels,y);

tind = vec2ind(labels);

yind = vec2ind(y);

percentErrors_netdata(i/10) = sum(tind ~= yind)/numel(tind);

% Test the Network with MNIST test data

tsty = net(tstimages);

performance_testdata(i/10) = perform(net,tstlabels,tsty);

tind = vec2ind(tstlabels);

yind = vec2ind(tsty);

percentErrors_testdata(i/10) = sum(tind ~= yind)/numel(tind);

end

While the net is under the training we can monitor its training status
through many plots as in Figure 3.

When we execute the program, we obtain the percent errors with the
test data as follows:

346 Bitna Kim and Young Ho Park

Figure 3. Minitoring plots

number of hidden layers 10 20 30 40 50
percent error 0.079 0.062 0.056 0.049 0.043

The error rates get better with the number of hidden layers up to
a certain stage. However, it is not always increasing with number of
hidden layers. As the number grows, the run time also grows fast. We
could run the program with i = 150 by a PC with 8GB memory at
a reasonable time. From this point, you can experiment with various
modifications [6] or learn more about the distinct algorithms such as
convolutional networks. According to [12], the best test error rate was
achieved by the convolutional network in 2012.

References

[1] G. Cybenko, Approximations by superpositions of sigmoidal functions, Mathe-
matics of Control, Signals, and Systems 2 (4) (1989), 303–314.

[2] M.T. Hagan, M.H Beale, H.B. Demuth and O.D Jesús, Neural network Design,
2nd Ed.

[3] M.T. Hagan, Neural network design, free book from
http://hagan.okstate.edu/NNDesign.pdf

Beginner’s guide to networks for the MNIST using MATLAB 347

[4] J. J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proceedings of the National Academy of Sciences 79
(1982), 2554–2558.

[5] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neu-
ral Networks 4 (2) (1991), 251–257.

[6] Bitna Kim, Handwritten digits classification by neural networks with small data,
Master’s thesis, Kangwon National University, 2018.

[7] P. Kim, Matlab deep learning, Apress, 2017
[8] T. Kohonen, Correlation matrix memories,IEEE Transactions on Computers 21

(1972), 353–359.
[9] Mathworks, MATLAB documentation, MATLAB version R2016a, 2016

[10] W.S. McCulloch and W.H. Pitts, A logical calculus of the ideas immanent in
nervous activity, Bull. Math. Biophysics 5 (1943) 115–133.

[11] M. Minsky and S. Papert, Perceptrons: an introduction to computational geom-
etry, M.I.T. Press, Cambridge, 1969

[12] MNIST, http://yann.lecun.com/exdb/mnist/
[13] A. Ng, Course on machine learing, Cousera,

https://www.coursera.org/learn/machine-learning
[14] A.Ng, CS229 lecture notes, http://cs229.standford.edu
[15] M. Nielsen, Neural networks and deep learning,

http://neuralnetworksanddeeplearning.com
[16] UFLDL, Using the MNIST dataset,

http://ufldl.stanford.edu/wiki/index.php/Using the MNIST Dataset
[17] T. Rashid, Make your own neural network, CreatSpace, 2016
[18] F. Rosenblatt, The perceptron: A probabilistic model for information storage

and organization in the brain, Psycho-logical Review 65 (1958), 386–408.
[19] D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Processing:

Explorations, Microstructure of Cognition, Vol. 1, Cambridge, MA: MIT Press,
1986.

[20] J.R. Shewchuk, An introduction to the conjugate gradient method eithout the
agonizing pain, Technical report, Carnegie Mellon University, 1994

[21] UFLDL tutorial, Unsupervised feature learning and deep learning,
http://deeplearning.stanford.edu/wiki/index.php /UFLDL Tutorial

[22] http://ufldl.stanford.edu/wiki/resources/mnistHelper.zip
[23] Wikipedia, https://en.wikipedia.org/

348 Bitna Kim and Young Ho Park

Bitna Kim
Department of Mathematics
Kangwon National University
Chuncheon 24341, Korea
E-mail : kbn0884@naver.com

Young Ho Park
Department of Mathematics
Kangwon National University
Chuncheon 24341, Korea
E-mail : yhpark@kangwon.ac.kr

	1. Introduction
	2. Preliminaries
	2.1. Neural networks
	2.2. Machine learning

	3. MATLAB implimentation for MNIST dataset
	3.1. Preparing MNIST dataset for MATLAB
	3.2. Neural network design
	3.3. MATLAB implementation

	References

