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ONE-DIMENSIONAL JUMPING PROBLEM INVOLVING

p-LAPLACIAN

Tacksun Jung† and Q-Heing Choi∗‡

Abstract. We get one theorem which shows existence of solu-
tions for one-dimensional jumping problem involving p-Laplacian
and Dirichlet boundary condition. This theorem is that there ex-
ists at least one solution when nonlinearities crossing finite number
of eigenvalues, exactly one solutions and no solution depending on
the source term. We obtain these results by the eigenvalues and the
corresponding normalized eigenfunctions of the p−Laplacian eigen-
value problem when 1 < p < ∞, variational reduction method and
Leray-Schauder degree theory when 2 ≤ p <∞.

1. Introduction

Let Ω = (c, d) ⊂ R, c < d, is an open interval. Let p ∈ (1,∞)
and p′ by 1

p
+ 1

p′
= 1. Let Lp(Ω, R) be p−Lebesgue space with its dual
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space Lp
′
(Ω) and W 1,p(Ω, R) be the Lebesgue Sobolev space. When

1 < p <∞, it was proved in [7] the eigenvalue problem

−(|u′|p−2u′)′ = λ|u|p−2u in Ω,

u = 0 on ∂Ω.

has a nondecreasing sequence of nonnegative eigenvalues λj obtained by
the Ljusternik-Schnirelman principle tending to∞ as j →∞, where the
first eigenvalue λ1 is simple and only eigenfunctions associated with λ1

do not change sign, the set of eigenvalues is closed, the first eigenvalue
λ1 is isolated. Thus there are two sequences of eigenfunctions (φj)j and
(µj)j corresponding to the eigenvalues λj such that the first eigenfunction
φ1 > 0 in the sequence (φj)j and the first eigenfunction ψ1 < 0 in the
sequence (ψj)j.

In this paper we consider multiplicity of solutions u ∈ W 1,p(Ω, R) for
the following one-dimensional jumping problem involving p-Laplacian
and Dirichlet boundary value condition;

−(|u′|p−2u′)′ = b|u|p−2u+ − a|u|p−2u− + sφp−1
1 in Ω, (1.1)

u = 0 on ∂Ω,

where s ∈ R, u+ = max{u, 0} and u− = −min{u, 0}.
p−Laplacian boundary value problems with p−growth conditions arise

in applications of nonlinear elasticity theory, electro rheological fluids,
non-Newtonian fluid theory in a porous medium (cf. [5], [11]. Our prob-
lems are characterized as a jumping problem. Jumping problem was first
suggested in the suspension bridge equation as a model of the nonlinear
oscillations in differential equation

utt +K1uxxxx +K2u
+ = W (x) + εf(x, t),

u(0, t) = u(L, t) = 0, uxx(0, t) = uxx(L, t) = 0.

This equation represents a bending beam supported by cables under a
load f. The constant b represents the restoring force if the cables stretch.
The nonlinearity u+ models the fact that cables resist expansion but do
not resist compression. Choi and Jung (cf. [1], [3], [4]) and McKenna and
Walter (cf.[10]) investigate the existence and multiplicity of solutions for
the single nonlinear suspension bridge equation with Dirichlet boundary
condition. In [2], the authors investigate the multiplicity of solutions of
a semilinear equation

Au+ bu+ − au− = f(x) in Ω,
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u = 0 on Ω,

where Ω is a bounded domain in Rn, n ≥ 1, with smooth boundary ∂Ω
and A is a a second order linear partial differential operator when the
forcing term is a multiple sφ1, s ∈ R, of the positive eigenfunction and
the nonlinearity crosses eigenvalues.

Let us set the operator −L by

−Lu = −(|u′|p−2u′)′.

Then (1.1) is equivalent to the equation

u = (−L)−1(b|u|p−2u+ − a|u|p−2u− + sφp−1
1 ).

Our main theorem is as follows:

Theorem 1.1. Let a < b, −∞ < a < λ1, · · · , λn < b < λn+1 and
s ∈ R. Then
(i) if 1 < p <∞ and s > 0, then (1.1) has no solution
(ii) if 1 < p < ∞ and s = 0, then (1.1) has a unique trivial solution
u = 0.
(iii) if 2 ≤ p <∞, there exists s1 < 0 such that for any s with s1 < s < 0,
(1.1) has at least one nontrivial solutions.

For the proof of Theorem 1.1 we use the eigenvalues and the cor-
responding eigenfunctions of the eigenvalue problem, use variational re-
duction method and calculate the Leray-Schauder degree of u−(−L)−1(b
|u|p−2u+ − a|u|p−2u− + sφp−1

1 ) in the neighborhood of positive solution,
and in the whole solution bounded subspace. The outline of the proof
of Theorem 1.1 is as follows: In Section 2, we introduce some prelim-
inaries. In Section 3, we prove (i) and (ii) of Theorem 1.1 and some
lemmas by using eigenvalues and the corresponding eigenfunctions of the
eigenvalue problem, calculate direct computations and Leray-Schauder
degree. In Section 4, we prove (iii) of Theorem 1.1 for the case p such
that p-Laplacian eigenvalue problem has the first eigenfunction ψ1 < 0.
In Section 5, we prove (iii) of Theorem 1.1 for the case p such that
p-Laplacian eigenvalue problem has the first eigenfunction φ1 > 0.
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2. Preliminaries

Let Lp(Ω, R) be the Lebesgue space defined by

Lp(Ω, R) = {u| u : Ω→ R is measurable,

∫
Ω

|u|pdx <∞}

which is endowed with the norm

‖u‖Lp(Ω) = inf{λ > 0|
∫

Ω

|u(x)

λ
|p ≤ 1},

and W 1,p(Ω, R) be the Lebesgue Sobolev space defined by

W 1,p(Ω, R) = {u ∈ Lp(Ω, R)| u′ ∈ Lp(Ω, R)}
which is endowed with the norm

‖u‖W 1,p(Ω,R) = [

∫
Ω

|u′(x)|pdx]
1
p + [

∫
Ω

|u(x)|pdx]
1
p .

Let 1 < p <∞ and h ∈ Lr(Ω)), r > 1. Then the problem

−(|u′|p−2u′)′ = h(x) in Ω, (2.1)

u = 0 ∂Ω

has a unique solution u ∈ C1(Ω̄) which is of the form

u(x) =

∫
Ω

g−1
p

(
cf −

∫
Ω

h(τ)dτ
)
dy, (2.2)

where gp(t) = |t|p−2t for t 6= 0, gp(0) = 0 and its inverse g−1
p is g−1

p (t) =

t
1

p−1 if t > 0 and g−1
p (t) = −|t|

1
p−1 if t < 0 and cf is the unique constant

such that u = 0 on ∂Ω. By [[8], Lemma 2.1 or [9], Lemma 4.2], the
solution operator S satisfies that S : LP (Ω)→ C1(Ω̄) is continuous and
by [[12], Corollary 2.3], the embedding S : Lp(Ω)→ C(Ω̄) is continuous
and compact. By [6], we also have Poincaré-type inequality.

Lemma 2.1. Let 1 < p <∞. Then the embedding

W 1,p(Ω, R) ↪→ Lp(Ω, R)

is continuous and compact and for every u ∈ C∞0 (Ω, R), we have

‖u‖Lp(Ω̄,R) ≤ C‖u‖W 1,p(Ω̄,R)

for a positive constant C independent of u.

By Lemma 2.1, we obtain the following:
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Lemma 2.2. Assume that 1 < p < ∞, f(x, u) ∈ Lp(Ω). Then the
solutions of the problem

−(|u′|p−2u′)′ = f(x, u) in Lp(Ω),

u = 0 ∂Ω

belong to W 1,p(Ω).

Lemma 2.3. Assume that 2 ≤ p < ∞, v(u) ∈ Lp(Ω) and h(x) ∈
Lp(Ω). Then there exists a constant C > 0 such that the solutions u of
the problem

−(|u′|p−2u′)′ = v(u) + h(x) in Lp(Ω),

u = 0 ∂Ω

satisfies ‖u‖W 1,p(Ω) < C.

Proof. For given v(u) ∈ Lp(Ω) and h(x) ∈ Lp(Ω), the equation

−Lu = v(u) + h(x) in Lp(Ω)

is equivalent to the equation

u = (−L)−1(v(u) + h(x)).

We observe that

‖(−L)−1(v(u) + h(x))‖Lp(Ω) ≤ ‖
1

λ1

g−1
p (v(u) + h(x))‖Lp(Ω)

≤ ‖ 1

λ1

(v(u) + h(x))
1

p−1‖Lp(Ω).
(2.3)

If 2 ≤ p < ∞, then the right hand side of (2.3) is bounded. Thus we
prove the lemma.

3. Proof of Theorem 1.1

Proof of (i) of Theorem 1.1 (For the case s > 0)

We first consider the case p such that 1 < p < ∞ and p-Laplacian
eigenvalue problem has the first eigenfunction ψ1 < 0. We assume that
a < b, −∞ < a < λ1, · · · , λn < b < λn+1 and s > 0. Then (1.1) can be
rewritten as

−(|u′|p−2u′)′ − λ1|u|p−2u = (b− λ1)|u|p−2u+ − (a− λ1)|u|p−2u− + sφp−1
1 .

(3.1)
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Taking inner product both side of (3.1) with ψ1, we have〈
− (|u′|p−2u′)′ − λ1|u|p−2u, ψ1

〉
=
〈
(b− λ1)|u|p−2u+ − (a− λ1)|u|p−2u− + sφp−1

1 , ψ1

〉
. (3.2)

The left hand side of (3.2) is equal to 0. On the other hand, the right
hand side of (3.2) is negative because b−λ1 > 0, −(a−λ1) > 0, sφp−1

1 > 0
for s > 0, and ψ1 < 0. Thus if s > 0, then there is no solution for (1.1).
We next consider the case p such that 1 < p < ∞ and p-Laplacian
eigenvalue problem has the first eigenfunction φ1 > 0. Taking inner
product both side of (3.1) with φ1, we have〈

− (|u′|p−2u′)′ − λ1|u|p−2u, φ1

〉
=
〈
(b− λ1)|u|p−2u+ − (a− λ1)|u|p−2u− + sφp−1

1 , φ1

〉
. (3.3)

The left hand side of (3.3) is equal to 0. On the other hand, the right
hand side of (3.3) is positive because b−λ1 > 0, −(a−λ1) > 0, sφp−1

1 > 0
for s > 0, and φ1 > 0. Thus if s > 0, then there is no solution for (1.1).

Proof of (ii) of Theorem 1.1 (For the case s = 0)

We first consider the case p such that 1 < p < ∞ and p-Laplacian
eigenvalue problem has the first eigenfunction ψ1 < 0. If s = 0, then
(3.2) is reduced to the equation〈
−(|u′|p−2u′)′−λ1|u|p−2u, ψ1

〉
=
〈
(b−λ1)|u|p−2u+−(a−λ1)|u|p−2u−, ψ1

〉
,

i.e., ∫
Ω

[(−(|u′|p−2u′)′ − λ1|u|p−2u)ψ1]dx = 0

=

∫
Ω

[((b− λ1)|u|p−2u+ − (a− λ1)|u|p−2u−)ψ1]dx. (3.4)

Since b− λ1 > 0, −(a− λ1) > 0 and ψ1 < 0, the only possibility to hold
(3.4) is that u = 0.
We next consider the case p such that 1 < p < ∞ and p-Laplacian
eigenvalue problem has the first eigenfunction φ1 > 0. If s = 0, then
(3.3) is reduced to the equation〈
−(|u′|p−2u′)′−λ1|u|p−2u, φ1

〉
=
〈
(b−λ1)|u|p−2u+−(a−λ1)|u|p−2u−, φ1

〉
,
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i.e., ∫
Ω

[(−(|u′|p−2u′)′ − λ1|u|p−2u)φ1]dx = 0

=

∫
Ω

[((b− λ1)|u|p−2u+ − (a− λ1)|u|p−2u−)φ1]dx. (3.5)

Since b− λ1 > 0 and −(a− λ1) > 0, the only possibility to hold (3.5) is
that u = 0.

Lemma 3.1. (A priori bound) Assume that 2 ≤ p < ∞, −∞ < a <
λ1, · · · , λn < b < λn+1, s ∈ R. Then there exist s1 < 0, s2 > 0 and a
constant C > 0 depending only on a, b and s such that for any any s
with s1 ≤ s ≤ s2, any solution u of (1.1) satisfies ‖u‖W 1,p(Ω) < C.

Proof. Suppose that the lemma is false. Then there exists a sequence
(un)n, (an)n, (bn)n and (tn)n such that −∞ < an < λ1, · · · , λn < bn <
λn+1, s1 ≤ tn ≤ s2, ‖un‖W 1,p(Ω) = ρn →∞ and

−(|u′n|p−2u′n)′ = bn|un|p−2u+
n − an|un|p−2u−n + tnφ

p−1
1 in Ω (3.6)

or equivalently

un = (−L)−1(bn|un|p−2u+
n − an|un|p−2u−n + tnφ

p−1
1 ) in Ω.

Let us set wn = un
‖un‖W1,p(Ω)

. Then (wn)n is bounded, so there exists a

subsequence, up to a subsequence (wn)n such that (wn)n → w weakly
for some w in W 1,p(Ω). Dividing (3.6) by ‖un‖p−1

W 1,p(Ω), we have

−(|u′n|p−2u′n)′

‖un‖p−1
W 1,p(Ω)

= bn
|un|p−2u+

n

‖un‖p−1
W 1,p(Ω)

− an
|un|p−2u−n
‖un‖p−1

W 1,p(Ω)

+
tnφ

p−1
1

‖un‖p−1
W 1,p(Ω)

in Ω,

(3.7)
i.e.,

wn = (−L)−1(bn|wn|p−2w+
n − an|wn|p−2w−n +

tnφ
p−1
1

‖un‖p−1
W 1,p(Ω)

) in Ω.

Since, by Lemma 2.1, the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact,
and by Lemma 2.3, when 2 ≤ p < ∞, (−L)−1 is compact operator,
(wn)n → w strongly in W 1,p(Ω). Moreover (an)n and (bn)n satisfying
−∞ < an < λ1, · · · , λn < bn < λn+1 converge strongly to some a and b
with −∞ < a < λ1, · · · , λn < b < λn+1. Moreover (tn)n with s1 ≤ tn ≤
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s2 also converge strongly to some s with s1 ≤ s ≤ s2. Limiting (3.7) as
n→∞, we have

−(|w′|p−2w′)′ = b|w|p−2w+ − a|w|p−2w−. (3.8)

By (ii) of Theorem 1.1, (3.8) has only trivial solution, which is absurd
because ‖w‖W 1,p(Ω) = 1. Thus the lemma is proved.

We shall consider the Leray-Schauder degree on a large ball.

Lemma 3.2. Assume that 2 ≤ p < ∞, −∞ < a < λ1, · · · , λn < b <
λn+1. Then there exist a constant R > 0 depending on a, b, s, and s1 < 0
and s2 > 0 such that for any s with s1 ≤ s ≤ s2, the Leray-Schauder
degree

dLS(u− (−L)−1(b|u|p−2u+ − a|u|p−2u− + sφp−1
1 ), BR(0), 0) = 0,

where −Lu = −(|u′|p−2u′)′.

Proof. Let us consider the homotopy

F (x, u) = u− (−L)−1(b|u|p−2u+ − a|u|p−2u− + sφp−1
1 ). (3.9)

By (ii) of Theorem 1.1, for any s > 0, (1.1) has no solution. Thus there
exist s2 > 0 and a large R > 0 such that (3.7) has no zero in BR(0) for
any s ≥ s2, and by the a priori bound in Lemma 3.1, there exists s1 < 0
such that for any s with s1 ≤ s ≤ s2, all solutions of

u− (−L)−1(b|u|p−2u+ − a|u|p−2u− + sφp−1
1 ) = 0

satisfy ‖u‖W 1,p(Ω) ≤ R and (3.9) has no zero on ∂BR for any s1 ≤ s ≤ s2.
Since

dLS(u− (−L)−1(b|u|p−2u+ − a|u|p−2u− + s2φ
p−1
1 ), BR(0), 0) = 0,

by homotopy arguments, for any s1 ≤ s ≤ s2, we have

dLS(u− (−L)−1(b|u|p−2u+ − a|u|p−2u− + sφp−1
1 ), BR(0), 0)

= dLS(u−(−L)−1(b|u|p−2u+−a|u|p−2u−+sφp−1
1 +λ(s2−s)φp−1

1 ), BR(0), 0)

= dLS(u− (−L)−1(b|u|p−2u+ − a|u|p−2u− + s2φ
p−1
1 ), BR(0), 0) = 0

for any 0 ≤ λ ≤ 1. Thus the lemma is proved.
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Lemma 3.3. Let K be a compact set in Lp(Ω). Let ξ > 0 a.e. Then
there exists a modulus of continuity α : R → R depending only on K
and ξ such that

‖|(|τ | − ξ

η
)+‖Lp(Ω) ≤ α(η) for all τ ∈ K.

It follows that
‖|(ητ + ξ)−‖Lp(Ω) ≤ ηα(η).

and
‖|(ητ − ξ)+‖Lp(Ω) ≤ ηα(η) for all τ ∈ K.

Proof. For any τ ∈ K, Let τn = (|τ | − ξ
η
)+. Since 0 ≤ τn ≤ |τ | and

τn(x) → 0 as η → 0 a.e., it follows that ‖τn‖Lp(Ω) → 0 for all τ ∈ K.
We claim that for given ε > 0, there exists δ > 0 such that if τ ∈ K,
then ‖τn‖Lp(Ω) ≤ 2ε for all η ∈ [0, δ]. Choose {τi, i = 1, · · · , N} as an
ε net for K. Choose δ so that ‖(τi)δ‖Lp(Ω) < ε for i = 1, · · · , N . Then
for any τ ∈ K, there exists τk, α, ‖α‖LP (Ω) < ε that τ = τK + α. Since
(u + v)+ ≤ u+ + v+, we have ‖τδ‖LP (Ω) ≤ (τK)δ + |α| and therefore
‖τη‖LP (Ω) ≤ ‖τδ‖LP (Ω) + ‖α‖Lp(Ω) ≤ 2ε

4. Proof of (iii) of Theorem 1.1 the case p such that 2 ≤
p < ∞ and p-Laplacian eigenvalue problem has the first
eigenfunction ψ1 < 0

We assume that 2 ≤ p < ∞, −∞ < a < λ1, · · · , λn < b < λn+1. To
study equation (1.1), we shall reduce an infinite dimensional problem on
Lp(Ω) to a finite dimensional one.

Let V be the n−dimensional subspace of Lp(Ω) spanned by ψ1, ψ2,
· · · , ψn, and W be the orthogonal complement of V in Lp(Ω). Let P
be an orthogonal projection from Lp(Ω) onto V . Then every element
u ∈ Lp(Ω) is expressed by

u = v + w,

where v = Pu, w = (I − P )u. Hence equation (1.1) is equivalent to a
pair of equations

(I − P )
(
− (|(v + w)′|p−2(v + w)′)′

)
= (I − P )

(
b|v + w|p−2(v + w)+ − a|v + w|p−2(v + w)− + sφp−1

1

)
, (4.1)

w|∂Ω = 0,
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P
(
− (|(v + w)′|p−2(v + w)′)′)

)
= P

(
b|v + w|2m−2(v + w)+ − a|v + w|2m−2(v + w)− + sφp−1

1

)
, (4.2)

v|∂Ω = 0.

We can consider (4.1) and (4.2) as a system of two equations in two
unknowns v, w.

Lemma 4.1. Let 2 ≤ p < ∞, −∞ < a < λ1, · · · , λn < b < λn+1.
For fixed v ∈ V , (4.1) has a unique solution w = β(v, s). Furthermore,
β(v, s) is continuous on V ×R.

Proof. We suppose that for fixed v ∈ V , (4.1) has two solutions w1,
w2. Then we have

(I − P )[
(
− (|(v + w1)′|p−2(v + w1)′)′

)
−
(
− (|(v + w2)′|p−2(v + w2)′)′

)
]

= (I − P )[
(
b|v + w1|p−2(v + w1)+ − a|v + w1|p−2(v + w1)−

)
−
(
b|v + w2|p−2(v + w2)+ − a|v + w2|p−2(v + w2)−

)
]. (4.3)

Taking the inner product of (4.3) with w1 − w2, we have〈
(I − P )[

(
− (|(v + w1)′|p−2(v + w1)′)′

)
−
(
− (|(v + w2)′|p−2(v + w2)′)′

)
], w1 − w2

〉
=
〈
(I − P )[

(
b|v + w1|p(v + w1)+ − a|v + w1|p(v + w1)−

)
−
(
b|v + w2|p−2(v + w2)+ − a|v + w2|p−2(v + w2)−

)
], w1 − w2

〉
.

(4.4)

The left hand side of (4.4) is equal to〈
(I − P )[

(
− (|(v + w1)′|p−2(v + w1)′)′

)
−
(
− (|(v + w2)′|p−2(v + w2)′)′

)
], w1 − w2

〉
= (p− 1)

∫
Ω

[(I − P )[
(
(|∇(v + w2 + θ(w1 − w2))|p−2

∇(v + w2 + θ(w1 − w2))(∇(w1 − w2))2
)
]dx

≥ (p− 1)λn+1

∫
Ω

[(I − P )
(
|(v + w2) + θ(w1 − w2)|p−2(w1 − w2)2

)
]dx.

(4.5)

by mean value theorem. On the other hand, the right hand side of (4.5)
is equal to〈

(I − P )[
(
b|v + w1|p−2(v + w1)+ − a|v + w1|p−2(v + w1)−

)
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−
(
b|v + w2|p−2(v + w2)+ − a|v + w2|p−2(v + w2)−

)
], w1 − w2

〉
≤ (p− 1)b

∫
Ω

[[I − P ]|v + w2 + θ(w1 − w2)|p−2(w1 − w2)2]dx (4.6)

for 0 < θ < 1. On the other hand, by (4.5) and (4.6), we have

(p− 1)λn+1

∫
Ω

[(I − P )
(
|(v + w2) + θ(w1 − w2)|p−2(w1 − w2)2

)
]dx

≤ (p− 1)b

∫
Ω

[[I − P ]|v + w2 + θ(w1 − w2)|p−2(w1 − w2)2]dx,

which is a contradiction because b < λn+1. Thus w1 = w2. Thus for
fixed v ∈ V , every solution of (4.1) is a unique solution w = β(v, s) ∈ W
which satisfies (4.1). It follows that, by the standard argument principle,
that β(v, s) is continuous in v. Standard bootstrap arguments show that
β(v, s) is a smooth solution of (4.1)

Lemma 4.2. Let 2 ≤ p <∞, −∞ < a < λ1, · · · , λn < b < λn+1. Let
f denote the real values function defined on W 1,p(Ω, R) by

f(u, s) =

∫
Ω

[
1

p
|u′|p − b

p
|u|p−2|u+|2 − a

p
|u|p−2|u−|2 − sφp−1u]dx.

If f̃ : V ×R→ R is defined by

f̃(v, s) = f(v + β(v, s), s),

then f̃ had a continuous Frechét derivative Df̃ with respect to v and u
is a solution of (1.1) if and only if u = v + β(v, s), where v = Pu, and

Df̃(v, s) = 0.

Proof. The function f has a continuous Frechét derivative with re-
spect to its first variable given by

Df(u, s)(z) =

∫
Ω

[|u′|p−2u′ · w′ − b|u|p−2u+w + a|u|p−2u−w − sφp−1
1 w]dx

and by standard regularity arguments, solution of (1.1) coincide with
solutions of Df(u, s) = 0.

Lemma 4.3. Let 2 ≤ p <∞ such that p-Laplacian eigenvalue prob-
lem has the first eigenfunction ψ1 < 0, −∞ < a < λ1, · · · , λn < b < λn+1

and let s < 0. Then there exist s1 < 0 such that for any any s with
s1 ≤ s < 0, f̃(0, s) has a strict local minimum at v = 0.
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Proof. Since u = 0 is a solution of (1.1) when s = 0, β(0, 0) = 0. We
claim that if s < 0, then β(0, s) < 0. In fact, since sφp−1 ∈ V ⊥, by (4.1),
we have

−(|β(0, s)′|p−2β(0, s)′)′ = b|β(0, s)|p−2β(0, s)+−a|β(0, s)|p−2β(o, s)−+sφp−1
1 .

(4.7)
Taking the inner product of (4.7) with ψ1, we have〈
−(|β(0, s)′|p−2β(0, s)′)′−b|β(0, s)|p−2β(0, s)++a|β(0, s)|p−2β(o, s)−, ψ1

〉
=
〈
sφp−1

1 , ψ1

〉
. (4.8)

We suppose that β(0, s) ≥ 0. Then the left hand side of (4.8) is equal to

(λ1 − b)|β(0, s)|p−2ψ2
1 < 0,

on the other hand, the right hand side of (4.8) is sφp−1
1 ψ1 > 0 because

s < 0 and ψ1 < 0, which is a contradiction. Thus β(0, s) < 0. Since
I + β is continuous, there exists a small neighborhood O1 such that if
v ∈ O1, then v + β(v, s) < 0. We claim that β(v, s) = β(0, s). In fact, if
s < 0, v ∈ V , v ∈ O1 and w = β(v, s), then we have

(I − P )
(
− (|(v + w)′|p−2(v + w)′)′ − b|v + w|p−2(v + w)+

+ a|v + w|p−2(v + w)− − sφp−1
1

)
=(I − P )

(
− (|(v + w)′|p−2(v + w)′)′ − a|v + w|p−2(v + w)− sφp−1

1

)
=− (|w′|p−2w′)′ − a|w|p−2w − sφp−1

1 = 0

on Ω and w = 0 on ∂Ω. By Lemma 4.1, β(v, s) = β(0, s). Therefore, if
s < 0, v ∈ V and v ∈ O1, then v + β(v, s) < 0 and we have

f̃(v, s)

=f(v + β(v, s))

=

∫
Ω

[
1

p
|(v + β(v, s))′|p − a

p
|(v + β(v, s))|p−2|u−|2 − sφp−1((v + β(v, s)))]dx

=

∫
Ω

[
1

p
|v′|p − a

p
|v|p−2|v−|2]dx+ C,

where

C =

∫
Ω

[
1

p
|β(v, s)′|p − a

p
|β(v, s)|p−2|β(v, s)−|2]− sφp−1

1 β(v, s)]dx
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=

∫
Ω

[
1

p
|β(0, s)′|p − a

p
|β(0, s)|p−2|β(0, s)−|2]− sφp−1

1 (β(0, s))]dx

= f̃(0, s).

If v ∈ V , then v = c1ψ1 + · · ·+ cnψn. Thus we have∫
Ω

1

p
|v′|pdx ≥ λ1

∫
Ω

|v|pdx

and ∫
Ω

1

p
|v′|pdx ≤ λn+1

∫
Ω

|v|pdx.

It follows that if s < 0, v ∈ V and v ∈ O1, then we have

f̃(v, s)− f̃(0, s) =

∫
Ω

[
1

p
|v′|p − a

p
|v|p−2|v−|2]dx ≥ (λ1 − a)

∫
Ω

|v|pdx > 0.

Thus for s < 0, f̃(0, s) has a strict local minimum at v = 0.

Proof of (iii) of Theorem 1.1 for the case p such that 2 ≤ p <∞ and
p-Laplacian eigenvalue problem has the first eigenfunction ψ1 < 0

By Lemma 4.2, f̃ is C1. By (ii) of Theorem 1.1, we can obtain the

result that f̃ satisfies (P.S.) condition. By Lemma 4.3, for s < 0, f̃(0, s)
has a strict local minimum at v = 0. Thus (1.1) has at least one weak
solution which is of the form u = 0 + β(0, s).

5. Proof of Theorem 1,1 for the case p such that 2 ≤ p < ∞
and p-Laplacian eigenvalue problem has the first eigen-
function φ1 > 0

Lemma 5.1. Assume that 2 ≤ p < ∞, −∞ < a < λ1, · · · , λn < b <
λn+1. Then there exist a small constant ε and s1 < 0 such that for any
s with s1 ≤ s < 0, the Leray-Schauder degree

dLS(u− (−L)−1(b|u|p−2u+ − a|u|p−2u− + sφp−1
1 ), Bε|s|(u0), 0) = (−1)n,

where u0 = ( s
λ1−b)

1
p−1φ1 > 0 is a positive solution of (1.1).

Proof. Let us set M = (−L− bgp)−1. Then (1.1) can be rewritten as

(−L− bgp)(u) = b|u|p−2u+ − a|u|p−2u− − b|u|p−2u+ sφp−1
1
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or equivalently

u = M(b|u|p−2u+ − a|u|p−2u− − b|u|p−2u+ sφp−1
1 ) = Tu. (5.1)

The operator M is compact on Lp(Ω), and the set K = M(B̄), where
B̄ is the closed unit ball in Lp(Ω). Then K is a compact set. Let us
set γ = min{b − λn, λn+1 − b}. We can observe that if 2 ≤ p < ∞,
then ‖M(u)‖Lp(Ω) ≤ ‖ 1

γ
g−1
p (u)‖Lp(Ω). Let α be the modulus continuity

of Lemma 3.3 corresponding to K and ξ = Mφp−1
1 = 1

λ1−bφ1 and choose
ε > 0 so that

α(ε
1

p−1 ((b− a)
1

p−1 + γ
1

p−1 ) ≤ γ

4(b− a)
1

p−1 ((b− a)
1

p−1 + γ
1

p−1 )
.

We have

‖b|u|p−2u+ − a|u|p−2u− − b|u|p−2u‖Lp(Ω) ≤ (b− a)‖|u|p−2u−‖Lp(Ω).

It follows from that

‖M
(
b|u|p−2u+ − a|u|p−2u− − b|u|p−2u

)
‖Lp(Ω) ≤

(b− a)
1

p−1

γ
1

p−1

‖u−‖Lp(Ω).

(5.2)

For u ∈ ( |s|
λ1−b)

1
p−1φ1 + (|s|εv)

1
p−1 with v ∈ B̄,

‖u−‖Lp(Ω) = ‖(( s

λ1 − b
)

1
p−1φ1 + (|s|ε)

1
p−1v

1
p−1 )−‖Lp(Ω)

≤ ‖((|s|εv)
1

p−1 )−‖Lp(Ω) ≤ (|s|ε)
1

p−1

since ( s
λ1−b)

1
p−1φ1 > 0. Then T (u) = M(b|u|p−2u+ − a|u|p−2u− −

b|u|p−2u+ sφp−1) can be rewritten as

T (u) = (
s

λ1 − b
)

1
p−1φ1 + (|s|ε)

1
p−1 ((b− a)

1
p−1 + γ)w

1
p−1 , w ∈ B̄.

If u is a solution of (5.1), then u = Tu and by Lemma 3.3,

‖u−‖Lp(Ω) = ‖(( s

λ1 − b
)

1
p−1φ1 + ((|s|ε)

1
p−1 ((b− a)

1
p−1 + γ)w

1
p−1 )−‖Lp(Ω)

≤ ((|s|ε)
1

p−1 ((b− a)
1

p−1 + γ)α(ε
1

p−1 ((b− a)
1

p−1 + γ) <
γ(|s|ε)

1
p−1

4(b− a)
1

p−1

. (5.3)
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Combining (5.2) with (5.3), we have

‖M(b|u|p−2u+ − a|u|p−2u− − b|u|p−2u)‖Lp(Ω)

≤ (b− a)
1

p−1

γ
‖u−‖Lp(Ω) ≤

1

4
(|s|ε)

1
p−1 ≤ 1

4
|s|ε.

Thus we have shown that any solution u ∈ ( s
λ−b

)
1

p−1φ1+|s|εB̄ of (5.1) be-

long to ( s
λ−b

)
1

p−1φ1+ 1
4
|s|εB̄. This estimate holds if we replace b|u|p−2u+−

a|u|p−2u−−b|u|p−2u by λ(b|u|p−2u+−a|u|p−2u−−b|u|p−2u) with 0 ≤ λ ≤
1. Thus the equation

u = (−L)−1(sφp−1
1 + b|u|p−2u+ λ(b|u|p−2u+ − a|u|p−2u− − b|u|p−2u))

has no solution on the boundary of the ball Bε|s|((
s

λ1−b)
1

p−1φ1) for 0 ≤
λ ≤ 1. By the homotopy invariance degree,

dLS(u− (−L)−1(sφp−1
1 + b|u|p−2u+ λ(b|u|p−2u+ − a|u|p−2u− − b|u|p−2u),

Bε|s|(
s

λ1 − b
)

1
p−1φ1, 0)

is defined for 0 ≤ λ ≤ 1 and is independent of λ. For λ = 0,

dLS(u− (−L)−1(sφp−1
1 + b|u|p−2u,Bε|s|((

s

λ1 − b
)

1
p−1φ1), 0) = (−1)n.

since u = s φ1

λ1−b is the unique solution of the equation and since there are
n eigenvalues λ1, · · · , λn of −∆p to the left of b and thus the operator
I − b(−L)−1 has n negative eigenvalues, while all the rest are positive.
When λ = 1, we have

dLS((u−(−L)−1(sφp−1
1 +b|u|p−2u+ +1(b|u|p−2u+−a|u|p−2u−−b|u|p−2u),

Bε|s|((
s

λ1 − b
)

1
p−1φ1), 0)

= dLS(sφp−1
1 + b|u|p−2u+ − a|u|p−2u−, Bε|s|((

s

λ1 − b
)

1
p−1φ1), 0).

Thus by the homotopy invariance of degree, we have

dLS(sφp−1
1 + b|u|p−2u+ − a|u|p−2u−, Bε|s|((

s

λ1 − b
)

1
p−1φ1), 0)

= dLS(u− (−L)−1(sφp−1
1 + b|u|p−2u,Bε|s|((

s

λ1 − b
)

1
p−1φ1), 0) = (−1)n.

Thus the lemma is proved.
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Proof of (iii) of Theorem 1.1 for the case p such that 2 ≤ p <∞ and
p-Laplacian eigenvalue problem has the first eigenfunction φ1 > 0

By Lemma 5.1, there is a solution ( s
λ1−b)

1
p−1φ1 > 0 inB|s|ε((

s
λ1−b)

1
p−1φ1).

We may assume that ε < ( s
λ1−a)

1
p−1 . Then there is a large ball BR centred

at origin and containing B|s|ε((
s

λ1−b)
1

p−1φ1). Since

dLS(u− (−L)−1(b|u|p−2u+ − a|u|p−2u− + sφp−1
1 ), BR(0), 0) = 0

and

dLS(u−(−L)−1(b|u|p−2u+−a|u|p−2u−+sφp−1
1 ), B|s|ε((

s

λ1 − b
)

1
p−1φ1), 0) = (−1)n,

we have

dLS(u−(−L)−1(b|u|p−2u+−a|u|p−2u−+sφp−1
1 ), BR(0)\B|s|ε((

s

λ1 − b
)

1
p−1φ1)), 0)

= (−1)n 6= 0.

Thus there exists the second solution inBR(0)\
(
B|s|ε((

s
λ1−b)

1
p−1φ1)

)
. Thus

there exist at least two solutions for problem (1.1).

Proof of (iii) of Theorem 1.1

By Chapter 4 and Chapter 5, if 2 ≤ p <∞, there exists s1 < 0 such
that for any s with s1 < s < 0, (1.1) has at least one nontrivial solutions.
Thus (iii) of Theorem 1.1. is proved.

Competing Interests

The authors declare that there is no conflict of interests regarding the
publication of this paper.

Authors’s contributions

Tacksun Jung introduced the main ideas of multiplicity study for this
problem. Q-Heung Choi participate in applying the method for solv-
ing this problem and drafted the manuscript. All authors contributed
equally to read and approved the final manuscript.



One-dimensional jumping problem involving p-Laplacian 699

References

[1] Q. H. Choi and T. Jung, A nonlinear suspension bridge equation with noncon-
stant load, Nonlinear Analysis TMA. 35 (1999), 649–668.

[2] Q. H. Choi and T. Jung, An application of a variational reduction method to a
nonlinear wave equation, J. Diff. Eq. 117 (1995), 390–410.

[3] Q. H. Choi and T. Jung, Multiplicity results for the nonlinear suspension bridge
equation, Dynamics of Continuous, Discrete and Impulsive Systems Series A:
Mathematical Analysis, 9 (2002), 29–38.

[4] Q. H. Choi, T. Jung and P. J. McKenna, The study of a nonlinear suspen-
sion bridge equation by a variational reduction method, Applicable Analysis 50
(1993), 73–92.

[5] M. Ghergu and V. Rádulescu, Singular elliptic problems, bifurcation and as-
ymptotic analysis, Oxford Lecture Series in Mathematics and Its Applications,
Oxford University Press.

[6] Y.-H. Kim, L. Wang and C. Zhang, Global bifurcation for a class of degenerate
elliptic equations with variable exponents, J. Math. Anal Appl. 371 (2010), 624–
637.
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