
Korean J. Math. 26 (2018), No. 3, pp. 537–544
https://doi.org/10.11568/kjm.2018.26.3.537

THE q-ADIC LIFTINGS OF CODES OVER FINITE

FIELDS

Young Ho Park

Abstract. There is a standard construction of lifting cyclic codes
over the prime finite field Zp to the rings Zpe and to the ring of
p-adic integers. We generalize this construction for arbitrary finite
fields. This will naturally enable us to lift codes over finite fields
Fpr to codes over Galois rings GR(pe, r). We give concrete examples
with all of the lifts.

1. Introduction

Let Fq denote the finite field of q = pr elements with characteristic p.
A submodule of Fn

q is called a (linear) code of length n.
Let

GR(pe, r) = Zpe [X]/〈h(X)〉 ' Zpe [ζ],

where h(X) is a monic basic irreducible polynomial in Zpe [X] of degree
r that divides Xpr−1 − 1. The polynomial h(x) can be chosen so that
ζ = X + 〈h(X)〉 is a primitive (pr − 1)st root of unity. GR(pe, r) is
the Galois extension of degree r over Zpe , called a Galois ring. Galois
extensions are unique up to isomorphism. GR(pe, r) is a finite chain ring
with ideals of the form 〈pi〉 for 0 ≤ i ≤ e− 1, and residue field Fpr .
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For generality on codes over fields, we refer [5, 6]. See [2, 7] for codes
over Zm, and [2, 3] for codes over p-adic rings.

Let Qp denote the p-adic field and Op its ring of integers. Op is also
denoted by Zp∞ at some literatures [1–3]. Cyclic codes over the prime
field Zp can be lifted to codes over Zpe and to the ring Op [1]. A natural
question to ask is therefore:

• Can we do the lifting for codes over general finite fields Fpr?

Fpr ←−−− ? ←−−− ? ←−−− · · · ←−−− ?x x x x
Zp ←−−− Zp2 ←−−− Zp3 ←−−− · · · ←−−− Op

Are there any rings corresponding to Zpe and Op?

2. Unramified extensions of Qp

We first review relevant facts on unramified extensions of p-adic fields.

Theorem 2.1 ([4]). Let K/Qp be a finite extension of degree r. Then

|x| = r
√
|NK/Qp(x)|p is the unique non-archimedian absolute value on K

extending the p-adic absolute value on Qp.

The p-adic valuation on K is defined by

vp(a) = − logp |a| (a 6= 0), vp(0) = 0

We define the valuation ring or ring of integers of K

OK = {a ∈ K | |a| ≤ 1} = {a ∈ K | vp(a) ≥ 0}
and its maximal ideal

PK = {a ∈ K | |a| < 1} = {a ∈ K | vp(a) > 0}.
The residue field of K is the quotient

K = OK/PK .

We have the following results from [4].

Theorem 2.2. Let K/Qp be a finite extension. Then

1. vp(K) = 1
e
Z for some positive divisor e of n.

2. [K : Fp] = n/e.
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The number e is called the ramification index of K over Qp. A finite
extension K of Qp is said to be unramified if e = 1, i.e.,

{|a| | a ∈ K} = {|a| | a ∈ Qp} = {pv | v ∈ Z}

K is ramified if e > 1, totally ramified if e = n. For example, Q5(
√

2)
is unramified, while Q5(

√
5) is ramified.

Theorem 2.3 ([4]). For each integer r ≥ 1, there exists a unique
unramified extension Qpr of degree r over Qp. It can be obtained by
adjoining to Qp a primitive (pr−1)st root of unity. In fact, Qpr contains
all (pr − 1)st root of unity.

Here is how we construct Qpr .

1. Let ζ̄ be a generator of F∗pr . Then Fpr = Fp(ζ̄).

2. Let h̄(X) be the minimal polynomial for ζ̄ over Fp. Lift h̄(X) to
any h(X) ∈ Op[X] which is then an irreducible polynomial over
Op and Qp of degree r.

3. If ζ is a root of h(X), then Qp(ζ) is an extension of degree r.
4. If β is any (pr − 1)st root of unity, then Qp(β) = Qp(ζ). Thus

Qp(ζ) = Qpr .

The ring of integers of Qpr will be denoted by Opr :

Opr = {a ∈ Qpr | |a| ≤ 1}.

Opr is the set of all roots in Qpr of monic polynomials over Op.

Theorem 2.4 ([4]). Opr = Op[ζ], where ζ is a primitive (pr − 1)st
root of unity.

Its unique maximal ideal is

Ppr = (p) = {a ∈ Qpr | |a| < 1}

and the residue field of Qpr is

Opr/Ppr ' Fpr .

Theorem 2.5 ([4]). If R = {0, c1, c2, · · · , cpr−1} is a set of complete
representatives of Opr/Ppr , then every element of Opr can be written
uniquely as

a0 + a1p+ · · ·+ atp
t + · · ·

where ai ∈ R.
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Theorem 2.6 (Hensel’s Lemma v1). Let F (X) ∈ Opr [X]. Suppose
that there exists an α1 ∈ Opr such that

F (α1) ≡ 0 (mod p), F ′(α1) 6≡ 0 (mod p)

Then there exists a unique α ∈ Opr such that α ≡ α1 (mod p) and
F (α) = 0.

Example 2.7. Consider f(X) = X2 − 2 ∈ Q5[X]. It has a root ᾱ in
F25 = O25/P25. Take α ∈ ᾱ. Then f(α) ≡ 0 (mod 5) and f ′(α) = 2α 6≡
0 (mod 5). Therefore X2 − 2 has a root in Q25. Similarly, X2 − 3 has a
root in Q25. We note that this implies Q5(

√
2) = Q25 = Q5(

√
3).

We can also see from Hensel’s Lemma that the set of all (pr − 1)st
root of unity in Opr together with 0

Tr = {0, 1, ζ, · · · , ζpr−2}

is a complete set of coset representatives for Opr/(p).

3. Cyclic lifts

For each natural number e,

Opr/(p
e) = Op[ζ]/(pe) = Zpe [ζ]/(pe) = GR(pe, r).

We have a projective systems

Fprs 'GR(p, rs) ←−GR(p2, rs) ←−GR(p3, rs) ←−· · · ←−Oprs

| | | |
Fpr 'GR(p, r) ←−GR(p2, r) ←−GR(p3, r) ←−· · · ←−Opr

| | | |
Fp 'Zp ←− Zp2 ←− Zp3 ←−· · · ←−Op

On each of extensions in two fixed rows, we have the isomorphic cyclic
Galois groups:

Gal(GR(pe, rs)/GR(pe, r)) ' Gal(Oprs/Opr)

generated by Frr determined by the property Frr(x) ≡ xp
r

(mod p).
More precisely,

Frr(a0 + a1p+ · · ·+ atp
t + · · · ) = ap

r

0 + ap
r

1 p+ · · ·+ ap
r

t p
t + · · ·
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where ai ∈ Tr. In particular, if α is any nth of unity in Oprs , where
n | prs − 1, then

Frr(α) = αpr

Theorem 3.1 (Hensel’s Lemma v2). Let f(X) ∈ Opr [X] and assume
that there exist g1(X), h1(X) ∈ Opr [X] such that

1. g1(X) is monic
2. g1(X) and h1(X) are relatively prime modulo p
3. f(X) ≡ g1(X)h1(X) (mod p)

Then there exist unique g(X), h(X) ∈ Opr such that

1. g(X) is monic (so deg g = deg g1)
2. g(X) ≡ g1(X) (mod p), h(X) ≡ h1(X) (mod p)
3. f(X) = g(X)h(X).

Proof. (Constructive proof) We construct inductively two sequences
gn and hn such that

1. gn is monic of the same degree as g1
2. gn+1 ≡ gn (mod pn), hn+1 ≡ hn (mod pn)
3. f ≡ gnhn (mod pn)

We follow the following steps:

1. Assume gn, hn are constructed. Let f − gnhn = pnkn.
2. There are a, b ∈ Opr [X] such that 1 ≡ agn + bhn (mod p), hence
kn ≡ (akn)gn + (bkn)hn (mod p).

3. Let bkn = gnqn + rn with deg rn < deg gn = deg g1. Let sn =
(akn) + hnqn. Then rnhn + sngn ≡ kn (mod p)

4. Now set gn+1 = gn + pnrn, hn+1 = hn + pnsn. (deg gn+1 = deg gn)
5. Then f ≡ gn+1hn+1 (mod pn+1).

Since any cyclic code of length n over Fpr = Opr/(p) is generated by
a monic factor g1(X)

Xn − 1 = g1(X)h1(X)

of Xn − 1, Hensel’s Lemma v2 provides a mechanism for generalizing
any class of cyclic codes from Fpr to Opr/(p

e) = GR(pe, r) by

Xn − 1 ≡ ge(X)he(X) (mod pe)

and to Opr by
Xn − 1 = g(X)h(X)
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4. Examples

We consider the case q = 4 = 22 so that p = 2 and r = 2. We have
that

F4 = {0, 1, ω, 1 + ω} = {0, 1, ω, ω2}

where ω is a root of the polynomial h̄(X) = X2+X+1 ∈ F2[x] of degree
2 and that F4 = F2(ω). We lift h̄(X) to O2 as h(X) = X2 +X + 1. This
is irreducible over O2 and over Q2. Let ζ be a root of h(X), so that
Q2(ζ) = {a+ bζ | a, b ∈ Q2} is the extension of degree 2. Since we may
take ζ ≡ ω (mod 2), we will replace ω with ζ. This way, we have that

F4 = F2[ζ], O4 = O2(ζ), Q4 = Q2[ζ].

In general we will simply write ζ for ζ (mod pe).

We will consider cyclic codes of length 11. First we compute the
cyclotomic cosets mod n = 11 over F4 of s:

Cs = {s, sq, sq2, · · · , sqms−1}

where sqms ≡ 1 (mod n). In our case, we have three cosets

C0 = {0}, C1 = {1, 4, 5, 9, 3}, C2 = {2, 8, 10, 7, 6}.

Thus X11−1 splits into linear factors in F45 , where 5 = |C1|. Let α ∈ F46

be a 11th root of unity. Then X11 − 1 factors in F4 as

X11 − 1 = (X − 1)g(X)h(X)

where g(X) = (X − α)(X − α4)(X − α5)(X − α9)(X − α3) and h(X) =
(X − α2)(X − α8)(X − α10)(X − α7)(X − α6) in F4[X]. Actually, we
have that

g(X) = X5 + ζX4 +X3 +X2 + ζ2X + 1,

h(X) = X5 + ζ2X4 +X3 +X2 + ζX + 1.

We will lift the cyclic code 〈g(X)〉 to GR(2e, 2), and hence we would like
to find ge(X), he(X) ∈ GR(2e, 2)[X] = Z2e [ζ][X] for all e = 2, 3, · · · such



The q-adic liftings of codes over finite fields 543

that X11− 1 = (X − 1)ge(X)he(X). We list first few lifts for e = 2, 3, 4:

g2(X) = X5 + (−ζ + 2)X4 −X3 +X2 + (−ζ + 1)X − 1

g3(X) = X5 + (3ζ − 2)X4 −X3 +X2 + (3ζ − 3)X − 1

g4(X) = X5 + (−5ζ − 2)X4 −X3 +X2 + (−5ζ − 3)X − 1

h2(X) = X5 + (ζ − 1)X4 −X3 +X2 + (ζ + 2)X − 1

h3(X) = X5 + (−3ζ + 3)X4 −X3 +X2 + (−3ζ + 2)X − 1

h4(X) = X5 + (5ζ + 3)X4 −X3 +X2 + (5ζ + 2)X − 1

From these lifts we conjecture that the q-adic lifts have the form

g∞(X) = X5 + λX4 −X3 +X2 + (λ− 1)X − 1(1)

h∞(X) = X5 + (1− λ)X4 −X3 +X2 − λX − 1(2)

for some λ ∈ O4. We must have that

(3) g∞(X)h∞(X) = 1 + x+ x2 + · · ·+ x10

in O4[X]. By expanding g∞(X)h∞(X) out with Equations (1) and (2),
it is easy to see that Equation (3) is equivalent to

(4) λ2 − λ+ 3 = 0.

Now we finally obtain the factorization X11 − 1 in O4[X] as

X11 − 1 = (X − 1)g∞(X)h∞(X).

Consequently, we can obtain all the cyclic lifts to GR(2e, 2) for all e by
solving the Equation (4) modulo 2e .



544 Young Ho Park

By the same method explained above, we found a list of factorizations
of xn − 1 for q-adic cyclic codes of small length n:

x3 − 1 = (x− 1)(x− ζ)(x− ζ2)
x5 − 1 = (x− 1)(x2 + λx+ 1)(x2 + (1− λ)x+ 1),

where λ2 − λ− 1 = 0

x7 − 1 = (x− 1)(x3 + λx2 + (λ− 1)x− 1)(x3 − (λ− 1)x2 − λx− 1),

where λ2 − λ+ 2 = 0

x9 − 1 = (x− 1)(x− ζ)(x+ ζ2)(x3 − ζ)(x3 + ζ2)

x13 − 1 = (x− 1)(x6 + λx5 + 2x4 + (λ− 1)x3 + 2x2 + λx+ 1)·
(x6 + (1− λ)x5 + 2x4 − λx3 + 2x2 + (1− λ)x+ 1),

where λ2 − λ− 3 = 0.

These factorizations give the lifts of cyclic codes of odd lengths ≤ 13 to
the Galois rings GR(2e, 2).

References

[1] A.R.Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, Des. Codes.
Cryptogr. 6 (1995), 21–35.

[2] S.T. Dougherty, S.Y. Kim and Y.H. Park, Lifted codes and their weight enumer-
ators, Discrete Math. 305 (2005), 123–135.

[3] S.T. Dougherty and Y.H. Park, Codes over the p-adic integers, Des. Codes.
Cryptogr. 39 (2006), 65–80.
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