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THE ¢-ADIC LIFTINGS OF CODES OVER FINITE
FIELDS

YouNG Ho PARK

ABSTRACT. There is a standard construction of lifting cyclic codes
over the prime finite field Z, to the rings Z,. and to the ring of
p-adic integers. We generalize this construction for arbitrary finite
fields. This will naturally enable us to lift codes over finite fields
F,- to codes over Galois rings GR(p®, r). We give concrete examples
with all of the lifts.

1. Introduction

Let IF, denote the finite field of ¢ = p" elements with characteristic p.
A submodule of Fy is called a (linear) code of length n.

Let

GR(p, 1) = Zype [X]/((X)) = Zye[C],

where h(X) is a monic basic irreducible polynomial in Z,e[X| of degree
r that divides X?"' =1 — 1. The polynomial h(z) can be chosen so that
¢ = X + (h(X)) is a primitive (p" — 1)st root of unity. GR(p®,r) is
the Galois extension of degree r over Ze, called a Galois ring. Galois

extensions are unique up to isomorphism. GR(p®,r) is a finite chain ring
with ideals of the form (p*) for 0 <i < e — 1, and residue field F,-.
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For generality on codes over fields, we refer [5,6]. See [2,7] for codes
over Z,, and [2,3] for codes over p-adic rings.

Let Q, denote the p-adic field and O, its ring of integers. O, is also
denoted by Z,~ at some literatures [1-3]. Cyclic codes over the prime
field Z, can be lifted to codes over Z,. and to the ring O, [1]. A natural
question to ask is therefore:

e Can we do the lifting for codes over general finite fields F,-?

Fpr% 7 < ? AY e S ?
Zp%zpz’ Zp3< e g Op

Are there any rings corresponding to Z,. and O,7

2. Unramified extensions of Q,

We first review relevant facts on unramified extensions of p-adic fields.

THEOREM 2.1 ([4]). Let K/Q, be a finite extension of degree r. Then

|| = {/|Nk/q, ()|, is the unique non-archimedian absolute value on K
extending the p-adic absolute value on Q,.

The p-adic valuation on K is defined by
vyla) = —log,lal (a £0), 1,(0) =0
We define the valuation ring or ring of integers of K
Ok ={aecK||a| <1} ={a€ K |uv,(a) >0}
and its maximal ideal
Prx={a€ K||a| <1} ={a€ K |v,(a) > 0}.
The residue field of K is the quotient
K = Ok /Pk.
We have the following results from [4].

THEOREM 2.2. Let K/Q, be a finite extension. Then

1. v,(K) = 1Z for some positive divisor e of n.

e

2. [K:F,] =n/e.
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The number e is called the ramification index of K over Q,. A finite
extension K of Q, is said to be unramified if e = 1, i.e.,

{la| |a € K} ={lal [a € @y} = {p" | v e Z}

K is ramified if e > 1, totally ramified if e = n. For example, Qs(v/2)
is unramified, while Q5(v/5) is ramified.

THEOREM 2.3 ([4]). For each integer r > 1, there exists a unique
unramified extension Q,- of degree r over QQ,. It can be obtained by
adjoining to Q, a primitive (p" — 1)st root of unity. In fact, Q, contains
all (p" — 1)st root of unity.

Here is how we construct Q,-.

1. Let ¢ be a generator of F.. Then F)r = F,(C).
2. Let h(X) be the minimal polynomial for ¢ over F,. Lift h(X) to

any h(X) € O,[X] which is then an irreducible polynomial over
O, and Q, of degree 7.

If ¢ is a root of h(X), then Q,({) is an extension of degree r.

4. If B is any (p" — 1)st root of unity, then Q,(5) = Q,(¢). Thus

Qp(g) = QpT-
The ring of integers of Q,» will be denoted by O,-:

Op = {a € Qy |la] < 1}.

O, is the set of all roots in Q,» of monic polynomials over O,,.

w

THEOREM 2.4 ([4]). O, = O,[C], where ( is a primitive (p" — 1)st
root of unity.

Its unique maximal ideal is
Ppr = (p) ={a € Qy [|a] <1}
and the residue field of Q- is
Opr /P r Fpr.

THEOREM 2.5 ([4]). If R = {0,¢1,¢0, - ,cpr_1} is a set of complete
representatives of Oy /Pyr, then every element of O, can be written
uniquely as

ap+ap+ - +apt+ -
where a; € R.
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THEOREM 2.6 (Hensel’s Lemma v1). Let F(X) € O,-[X]. Suppose
that there exists an o; € O, such that
F(a1) =0 (mod p), F'(a1)#0 (mod p)

Then there exists a unique a € Oy such that o = «; (mod p) and
F(a)=0.

EXAMPLE 2.7. Consider f(X) = X?—2 € Q5[X]. It has a root @ in
Fo5 = Og5/Pas. Take a € &. Then f(a) =0 (mod 5) and f'(a) = 2a #
0 (mod 5). Therefore X% — 2 has a root in Q5. Similarly, X? — 3 has a
root in Q5. We note that this implies Q5(\/§) =Qy = Q5(\/§).

We can also see from Hensel’s Lemma that the set of all (p" — 1)st
root of unity in O, together with 0

T, = {07 L <7 T ’<pT72}

is a complete set of coset representatives for O,-/(p).

3. Cyclic lifts

For each natural number e,
Opr /(0°) = Op[C1/ () = Zype [/ (0°) = GR(p", 7).
We have a projective systems
Fyrs ©GR(p,7s) +—GR(p*,rs) +—GR(p*,rs) «—-+ +—Ops
| | | |
F, ~GR(p,r) +«+—GR(p*,r) <+—GR(p*r) +— - «—0Op

F, ~Z, — Ly — Ly - 0,

On each of extensions in two fixed rows, we have the isomorphic cyclic
Galois groups:

Gal(GR(p®,rs)/GR(p%,r)) ~ Gal(Oprs/O,pr)

generated by Fr” determined by the property Fr"(z) = 2P (mod p).
More precisely,

Frr<a0+a1p—|—-..—|—atpt—|—...):a,gr—i—azl)rp_’_..._i_a?rpt_i_...
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where a; € T,. In particular, if o is any nth of unity in O,rs, where
n|p™ —1, then
Fr'(a) = o

THEOREM 3.1 (Hensel’s Lemma v2). Let f(X) € O, [X]| and assume
that there exist g1(X), h1(X) € O,r[X] such that

1. ¢1(X) is monic

2. g1(X) and hy(X) are relatively prime modulo p

3. f(X) = g1(X)hi(X) (mod p)
Then there exist unique g(X), h(X) € O, such that

l g(X) is monic (so deg g = deg g, )
9(X) = g1(X) (mod p), h(X) = hi(X) (mod p)
f(X) = g(X)h(X).
Proof. (Constructive proof) We construct inductively two sequences
gn and h,, such that

1. g, is monic of the same degree as g;

2. gni1 = gn (mod p™), hypy1 = by, (mod pm)

3. f = guhy (mod p")
We follow the following steps:

1. Assume g,, h,, are constructed. Let f — g,h, = p"k,.

2. There are a,b € O, [X] such that 1 = ag,, + bh,, (mod p), hence

kn = (aky)gn + (bkyn)hy, (mod p).
3. Let bk, = gn.q, + r, with degr, < degg, = degg;. Let s, =
(aky,) + hngn. Then r,h, + s,9, =k, (mod p)
4. Now set 9n+1 = Gn +pnrn7 thrl = hn +pn5n- (deg gn+1 = deg gn)
5. Then f = gi1hny1 (mod p™Th).
m

Since any cyclic code of length n over F,r = O,-/(p) is generated by
a monic factor g;(X)

of X™ — 1, Hensel’s Lemma v2 provides a mechanism for generalizing
any class of cyclic codes from F,r to O, /(p®) = GR(p®, ) by
X" —=1=go(X)he(X) (mod p°)
and to O, by
X" —1=g(X)h(X)
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4. Examples

We consider the case ¢ = 4 = 2% so that p = 2 and r = 2. We have
that

F,={0,1,w,1+w}={0,1,w,w?}

where w is a root of the polynomial h(X) = X2+ X +1 € Fy[x] of degree
2 and that Fy = Fy(w). We lift h(X) to O as h(X) = X2+ X +1. This
is irreducible over Oy and over Q. Let ¢ be a root of h(X), so that
Q2(¢) ={a+ b | a,be Qq} is the extension of degree 2. Since we may
take ( = w (mod 2), we will replace w with ¢. This way, we have that

Fy =F5[C], Os=0(¢), Qi=Qy[(]

In general we will simply write ¢ for ¢ (mod p®).
We will consider cyclic codes of length 11. First we compute the
cyclotomic cosets mod n = 11 over Fy of s:

Cs = {87 54, Sq27 e 7Sqm571}
where s¢™* =1 (mod n). In our case, we have three cosets
Co={0}, Cy={1,4,5,9,3}, Cy=1{2,8,10,7,6}.

Thus X! —1 splits into linear factors in Fys, where 5 = |C}|. Let a € Fye
be a 11*" root of unity. Then X' — 1 factors in Fy as

XM —1=(X-1)g(X)h(X)
where g(X) = (X —a)(X —a?)(X —a®)(X —a?)(X —?) and h(X) =
1(lX - iQ)(X — a®)(X — ') (X — a")(X — ab) in F4[X]. Actually, we
ave that

g(X) =X+ X+ X3+ X2 X+,
A(X)=X"+CX'"+ XP+ XP + (X + 1.

We will lift the cyclic code (g(X)) to GR(2¢,2), and hence we would like
to find g.(X), he(X) € GR(2% 2)[X] = Zse[(][X] for all e = 2,3, - - - such
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that X' —1 = (X — 1)g.(X)he(X). We list first few lifts for e = 2,3, 4:

GX) =X+ (—(C+)X - X+ X2+ (—C+1)X -1
(X)) =X+ (3¢ -2)X* - X3+ X2+ (3¢ -3)X -1
Ga(X) =X+ (=5 - 2)X* = X3+ X2+ (-5( - 3)X — 1
ha(X) =X+ (- DX = X3+ X2+ ((+2)X —1
hg(X) = X° 4+ (=3¢C+3) X' = X+ X? + (=3¢ +2)X -1
hy(X) = X5+ (5¢+3)X* - X3+ X+ (5¢ +2)X — 1

From these lifts we conjecture that the ¢g-adic lifts have the form

(1) Io(X) = X"+ XX = XP + X2+ (A= 1D)X — 1
(2) hoo(X) =X+ (1 - NX" - X3+ X2 - AX -1

for some A € O;. We must have that
(3) g°0<X)hoo(X):1+x+x2+...+x10

in 0,4[X]. By expanding g.(X)hs(X) out with Equations (1) and (2),
it is easy to see that Equation (3) is equivalent to

(4) M —A+3=0.
Now we finally obtain the factorization X' — 1 in O,[X] as
X" =1 = (X = 1)gos(X) hoo(X).

Consequently, we can obtain all the cyclic lifts to GR(2¢,2) for all e by
solving the Equation (4) modulo 2° .
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By the same method explained above, we found a list of factorizations
of 2™ — 1 for g-adic cyclic codes of small length n:

2’ —1=(z-1)( - —¢)

2’ —1=@x-D@*+ I+ 1)@+ (1 - N+ 1),
where > = A —1=0

T —1=(z-D@®+ X+ N = Do —1D)(2® = (\—1)z* - Iz — 1),
where \> = A +2 =0

2’ —1=(z -1 -+ - 0" +)

B —1=(r—1)(2® + 2 ® + 22"+ (A = 1)2® + 227 + A\x + 1)-

(2 + (1= N2 + 22" — A\ +22° + (1 — N)a + 1),

where \> — X\ — 3 = 0.

These factorizations give the lifts of cyclic codes of odd lengths < 13 to
the Galois rings GR(2¢,2).
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