THE q-ADIC LIFTINGS OF CODES OVER FINITE FIELDS

Young Ho Park

Abstract

There is a standard construction of lifting cyclic codes over the prime finite field \mathbb{Z}_{p} to the rings $\mathbb{Z}_{p^{e}}$ and to the ring of p-adic integers. We generalize this construction for arbitrary finite fields. This will naturally enable us to lift codes over finite fields $\mathbb{F}_{p^{r}}$ to codes over Galois rings $G R\left(p^{e}, r\right)$. We give concrete examples with all of the lifts.

1. Introduction

Let \mathbb{F}_{q} denote the finite field of $q=p^{r}$ elements with characteristic p. A submodule of \mathbb{F}_{q}^{n} is called a (linear) code of length n.

Let

$$
G R\left(p^{e}, r\right)=\mathbb{Z}_{p^{e}}[X] /\langle h(X)\rangle \simeq \mathbb{Z}_{p^{e}}[\zeta],
$$

where $h(X)$ is a monic basic irreducible polynomial in $\mathbb{Z}_{p^{e}}[X]$ of degree r that divides $X^{p^{r}-1}-1$. The polynomial $h(x)$ can be chosen so that $\zeta=X+\langle h(X)\rangle$ is a primitive $\left(p^{r}-1\right)$ st root of unity. $G R\left(p^{e}, r\right)$ is the Galois extension of degree r over $\mathbb{Z}_{p^{e}}$, called a Galois ring. Galois extensions are unique up to isomorphism. $G R\left(p^{e}, r\right)$ is a finite chain ring with ideals of the form $\left\langle p^{i}\right\rangle$ for $0 \leq i \leq e-1$, and residue field $\mathbb{F}_{p^{r}}$.

[^0]For generality on codes over fields, we refer $[5,6]$. See $[2,7]$ for codes over \mathbb{Z}_{m}, and $[2,3]$ for codes over p-adic rings.

Let \mathbb{Q}_{p} denote the p-adic field and \mathcal{O}_{p} its ring of integers. \mathcal{O}_{p} is also denoted by $\mathbb{Z}_{p^{\infty}}$ at some literatures [1-3]. Cyclic codes over the prime field \mathbb{Z}_{p} can be lifted to codes over $\mathbb{Z}_{p^{e}}$ and to the ring $\mathcal{O}_{p}[1]$. A natural question to ask is therefore:

- Can we do the lifting for codes over general finite fields $\mathbb{F}_{p^{r}}$?

Are there any rings corresponding to $\mathbb{Z}_{p^{e}}$ and \mathcal{O}_{p} ?

2. Unramified extensions of \mathbb{Q}_{p}

We first review relevant facts on unramified extensions of p-adic fields.
Theorem $2.1([4])$. Let K / \mathbb{Q}_{p} be a finite extension of degree r. Then $|x|=\sqrt[r]{\left|N_{K / \mathbb{Q}_{p}}(x)\right|_{p}}$ is the unique non-archimedian absolute value on K extending the p-adic absolute value on \mathbb{Q}_{p}.

The p-adic valuation on K is defined by

$$
v_{p}(a)=-\log _{p}|a|(a \neq 0), \quad v_{p}(0)=0
$$

We define the valuation ring or ring of integers of K

$$
\mathcal{O}_{K}=\{a \in K| | a \mid \leq 1\}=\left\{a \in K \mid v_{p}(a) \geq 0\right\}
$$

and its maximal ideal

$$
\mathcal{P}_{K}=\{a \in K| | a \mid<1\}=\left\{a \in K \mid v_{p}(a)>0\right\} .
$$

The residue field of K is the quotient

$$
\mathbb{K}=\mathcal{O}_{K} / \mathcal{P}_{K} .
$$

We have the following results from [4].
Theorem 2.2. Let K / \mathbb{Q}_{p} be a finite extension. Then

1. $v_{p}(K)=\frac{1}{e} \mathbb{Z}$ for some positive divisor e of n.
2. $\left[\mathbb{K}: \mathbb{F}_{p}\right]=n / e$.

The number e is called the ramification index of K over \mathbb{Q}_{p}. A finite extension K of \mathbb{Q}_{p} is said to be unramified if $e=1$, i.e.,

$$
\{|a| \mid a \in K\}=\left\{|a| \mid a \in \mathbb{Q}_{p}\right\}=\left\{p^{v} \mid v \in \mathbb{Z}\right\}
$$

K is ramified if $e>1$, totally ramified if $e=n$. For example, $\mathbb{Q}_{5}(\sqrt{2})$ is unramified, while $\mathbb{Q}_{5}(\sqrt{5})$ is ramified.

Theorem 2.3 ([4]). For each integer $r \geq 1$, there exists a unique unramified extension $\mathbb{Q}_{p^{r}}$ of degree r over \mathbb{Q}_{p}. It can be obtained by adjoining to \mathbb{Q}_{p} a primitive $\left(p^{r}-1\right)$ st root of unity. In fact, $\mathbb{Q}_{p^{r}}$ contains all $\left(p^{r}-1\right)$ st root of unity.

Here is how we construct $\mathbb{Q}_{p^{r}}$.

1. Let $\bar{\zeta}$ be a generator of $\mathbb{F}_{p^{r}}^{*}$. Then $\mathbb{F}_{p^{r}}=\mathbb{F}_{\underline{p}}(\bar{\zeta})$.
2. Let $\bar{h}(X)$ be the minimal polynomial for $\bar{\zeta}$ over \mathbb{F}_{p}. Lift $\bar{h}(X)$ to any $h(X) \in \mathcal{O}_{p}[X]$ which is then an irreducible polynomial over \mathcal{O}_{p} and \mathbb{Q}_{p} of degree r.
3. If ζ is a root of $h(X)$, then $\mathbb{Q}_{p}(\zeta)$ is an extension of degree r.
4. If β is any $\left(p^{r}-1\right)$ st root of unity, then $\mathbb{Q}_{p}(\beta)=\mathbb{Q}_{p}(\zeta)$. Thus $\mathbb{Q}_{p}(\zeta)=\mathbb{Q}_{p^{r}}$.
The ring of integers of $\mathbb{Q}_{p^{r}}$ will be denoted by $\mathcal{O}_{p^{r}}$:

$$
\mathcal{O}_{p^{r}}=\left\{a \in \mathbb{Q}_{p^{r}}| | a \mid \leq 1\right\} .
$$

$\mathcal{O}_{p^{r}}$ is the set of all roots in $\mathbb{Q}_{p^{r}}$ of monic polynomials over \mathcal{O}_{p}.
Theorem 2.4 ([4]). $\mathcal{O}_{p^{r}}=\mathcal{O}_{p}[\zeta]$, where ζ is a primitive $\left(p^{r}-1\right)$ st root of unity.

Its unique maximal ideal is

$$
\mathcal{P}_{p^{r}}=(p)=\left\{a \in \mathbb{Q}_{p^{r}}| | a \mid<1\right\}
$$

and the residue field of $\mathbb{Q}_{p^{r}}$ is

$$
\mathcal{O}_{p^{r}} / \mathcal{P}_{p^{r}} \simeq \mathbb{F}_{p^{r}} .
$$

Theorem 2.5 ([4]). If $R=\left\{0, c_{1}, c_{2}, \cdots, c_{p^{r}-1}\right\}$ is a set of complete representatives of $\mathcal{O}_{p^{r}} / \mathcal{P}_{p^{r}}$, then every element of $\mathcal{O}_{p^{r}}$ can be written uniquely as

$$
a_{0}+a_{1} p+\cdots+a_{t} p^{t}+\cdots
$$

where $a_{i} \in R$.

Theorem 2.6 (Hensel's Lemma v1). Let $F(X) \in \mathcal{O}_{p^{r}}[X]$. Suppose that there exists an $\alpha_{1} \in \mathcal{O}_{p^{r}}$ such that

$$
F\left(\alpha_{1}\right) \equiv 0 \quad(\bmod p), \quad F^{\prime}\left(\alpha_{1}\right) \not \equiv 0 \quad(\bmod p)
$$

Then there exists a unique $\alpha \in \mathcal{O}_{p^{r}}$ such that $\alpha \equiv \alpha_{1}(\bmod p)$ and $F(\alpha)=0$.

Example 2.7. Consider $f(X)=X^{2}-2 \in \mathbb{Q}_{5}[X]$. It has a root $\bar{\alpha}$ in $\mathbb{F}_{25}=\mathcal{O}_{25} / \mathcal{P}_{25}$. Take $\alpha \in \bar{\alpha}$. Then $f(\alpha) \equiv 0(\bmod 5)$ and $f^{\prime}(\alpha)=2 \alpha \not \equiv$ $0(\bmod 5)$. Therefore $X^{2}-2$ has a root in \mathbb{Q}_{25}. Similarly, $X^{2}-3$ has a root in \mathbb{Q}_{25}. We note that this implies $\mathbb{Q}_{5}(\sqrt{2})=\mathbb{Q}_{25}=\mathbb{Q}_{5}(\sqrt{3})$.

We can also see from Hensel's Lemma that the set of all $\left(p^{r}-1\right)$ st root of unity in $\mathcal{O}_{p^{r}}$ together with 0

$$
T_{r}=\left\{0,1, \zeta, \cdots, \zeta^{p^{r}-2}\right\}
$$

is a complete set of coset representatives for $\mathcal{O}_{p^{r}} /(p)$.

3. Cyclic lifts

For each natural number e,

$$
\mathcal{O}_{p^{r}} /\left(p^{e}\right)=\mathcal{O}_{p}[\zeta] /\left(p^{e}\right)=\mathbb{Z}_{p^{e}}[\zeta] /\left(p^{e}\right)=G R\left(p^{e}, r\right) .
$$

We have a projective systems

On each of extensions in two fixed rows, we have the isomorphic cyclic Galois groups:

$$
\operatorname{Gal}\left(G R\left(p^{e}, r s\right) / G R\left(p^{e}, r\right)\right) \simeq \operatorname{Gal}\left(\mathcal{O}_{p^{r s}} / \mathcal{O}_{p^{r}}\right)
$$

generated by Fr^{r} determined by the property $\operatorname{Fr}^{r}(x) \equiv x^{p^{r}}(\bmod p)$. More precisely,

$$
\operatorname{Fr}^{r}\left(a_{0}+a_{1} p+\cdots+a_{t} p^{t}+\cdots\right)=a_{0}^{p^{r}}+a_{1}^{p^{r}} p+\cdots+a_{t}^{p^{r}} p^{t}+\cdots
$$

where $a_{i} \in T_{r}$. In particular, if α is any nth of unity in $\mathcal{O}_{p^{r s}}$, where $n \mid p^{r s}-1$, then

$$
\operatorname{Fr}^{r}(\alpha)=\alpha^{p^{r}}
$$

Theorem 3.1 (Hensel's Lemma v2). Let $f(X) \in \mathcal{O}_{p^{r}}[X]$ and assume that there exist $g_{1}(X), h_{1}(X) \in \mathcal{O}_{p^{r}}[X]$ such that

1. $g_{1}(X)$ is monic
2. $g_{1}(X)$ and $h_{1}(X)$ are relatively prime modulo p
3. $f(X) \equiv g_{1}(X) h_{1}(X)(\bmod p)$

Then there exist unique $g(X), h(X) \in \mathcal{O}_{p^{r}}$ such that

1. $g(X)$ is monic (so $\operatorname{deg} g=\operatorname{deg} g_{1}$)
2. $g(X) \equiv g_{1}(X)(\bmod p), h(X) \equiv h_{1}(X)(\bmod p)$
3. $f(X)=g(X) h(X)$.

Proof. (Constructive proof) We construct inductively two sequences g_{n} and h_{n} such that

1. g_{n} is monic of the same degree as g_{1}
2. $g_{n+1} \equiv g_{n}\left(\bmod p^{n}\right), h_{n+1} \equiv h_{n}\left(\bmod p^{n}\right)$
3. $f \equiv g_{n} h_{n}\left(\bmod p^{n}\right)$

We follow the following steps:

1. Assume g_{n}, h_{n} are constructed. Let $f-g_{n} h_{n}=p^{n} k_{n}$.
2. There are $a, b \in \mathcal{O}_{p^{r}}[X]$ such that $1 \equiv a g_{n}+b h_{n}(\bmod p)$, hence $k_{n} \equiv\left(a k_{n}\right) g_{n}+\left(b k_{n}\right) h_{n}(\bmod p)$.
3. Let $b k_{n}=g_{n} q_{n}+r_{n}$ with $\operatorname{deg} r_{n}<\operatorname{deg} g_{n}=\operatorname{deg} g_{1}$. Let $s_{n}=$ $\left(a k_{n}\right)+h_{n} q_{n}$. Then $r_{n} h_{n}+s_{n} g_{n} \equiv k_{n}(\bmod p)$
4. Now set $g_{n+1}=g_{n}+p^{n} r_{n}, h_{n+1}=h_{n}+p^{n} s_{n} .\left(\operatorname{deg} g_{n+1}=\operatorname{deg} g_{n}\right)$
5. Then $f \equiv g_{n+1} h_{n+1}\left(\bmod p^{n+1}\right)$.

Since any cyclic code of length n over $\mathbb{F}_{p^{r}}=\mathcal{O}_{p^{r}} /(p)$ is generated by a monic factor $g_{1}(X)$

$$
X^{n}-1=g_{1}(X) h_{1}(X)
$$

of $X^{n}-1$, Hensel's Lemma v2 provides a mechanism for generalizing any class of cyclic codes from $\mathbb{F}_{p^{r}}$ to $\mathcal{O}_{p^{r}} /\left(p^{e}\right)=G R\left(p^{e}, r\right)$ by

$$
X^{n}-1 \equiv g_{e}(X) h_{e}(X) \quad\left(\bmod p^{e}\right)
$$

and to $\mathcal{O}_{p^{r}}$ by

$$
X^{n}-1=g(X) h(X)
$$

4. Examples

We consider the case $q=4=2^{2}$ so that $p=2$ and $r=2$. We have that

$$
\mathbb{F}_{4}=\{0,1, \omega, 1+\omega\}=\left\{0,1, \omega, \omega^{2}\right\}
$$

where ω is a root of the polynomial $\bar{h}(X)=X^{2}+X+1 \in \mathbb{F}_{2}[x]$ of degree 2 and that $\mathbb{F}_{4}=\mathbb{F}_{2}(\omega)$. We lift $\bar{h}(X)$ to \mathcal{O}_{2} as $h(X)=X^{2}+X+1$. This is irreducible over \mathcal{O}_{2} and over \mathbb{Q}_{2}. Let ζ be a root of $h(X)$, so that $\mathbb{Q}_{2}(\zeta)=\left\{a+b \zeta \mid a, b \in \mathbb{Q}_{2}\right\}$ is the extension of degree 2. Since we may take $\zeta \equiv \omega(\bmod 2)$, we will replace ω with ζ. This way, we have that

$$
\mathbb{F}_{4}=\mathbb{F}_{2}[\zeta], \quad \mathcal{O}_{4}=\mathcal{O}_{2}(\zeta), \quad \mathbb{Q}_{4}=\mathbb{Q}_{2}[\zeta] .
$$

In general we will simply write ζ for $\zeta\left(\bmod p^{e}\right)$.
We will consider cyclic codes of length 11 . First we compute the cyclotomic cosets $\bmod n=11$ over \mathbb{F}_{4} of s :

$$
C_{s}=\left\{s, s q, s q^{2}, \cdots, s q^{m_{s}-1}\right\}
$$

where $s q^{m_{s}} \equiv 1(\bmod n)$. In our case, we have three cosets

$$
C_{0}=\{0\}, \quad C_{1}=\{1,4,5,9,3\}, \quad C_{2}=\{2,8,10,7,6\} .
$$

Thus $X^{11}-1$ splits into linear factors in $\mathbb{F}_{4^{5}}$, where $5=\left|C_{1}\right|$. Let $\alpha \in \mathbb{F}_{4^{6}}$ be a $11^{\text {th }}$ root of unity. Then $X^{11}-1$ factors in \mathbb{F}_{4} as

$$
X^{11}-1=(X-1) g(X) h(X)
$$

where $g(X)=(X-\alpha)\left(X-\alpha^{4}\right)\left(X-\alpha^{5}\right)\left(X-\alpha^{9}\right)\left(X-\alpha^{3}\right)$ and $h(X)=$ $\left(X-\alpha^{2}\right)\left(X-\alpha^{8}\right)\left(X-\alpha^{10}\right)\left(X-\alpha^{7}\right)\left(X-\alpha^{6}\right)$ in $\mathbb{F}_{4}[X]$. Actually, we have that

$$
\begin{aligned}
& g(X)=X^{5}+\zeta X^{4}+X^{3}+X^{2}+\zeta^{2} X+1 \\
& h(X)=X^{5}+\zeta^{2} X^{4}+X^{3}+X^{2}+\zeta X+1
\end{aligned}
$$

We will lift the cyclic code $\langle g(X)\rangle$ to $G R\left(2^{e}, 2\right)$, and hence we would like to find $g_{e}(X), h_{e}(X) \in G R\left(2^{e}, 2\right)[X]=\mathbb{Z}_{2^{e}}[\zeta][X]$ for all $e=2,3, \cdots$ such
that $X^{11}-1=(X-1) g_{e}(X) h_{e}(X)$. We list first few lifts for $e=2,3,4$:

$$
\begin{aligned}
& g_{2}(X)=X^{5}+(-\zeta+2) X^{4}-X^{3}+X^{2}+(-\zeta+1) X-1 \\
& g_{3}(X)=X^{5}+(3 \zeta-2) X^{4}-X^{3}+X^{2}+(3 \zeta-3) X-1 \\
& g_{4}(X)=X^{5}+(-5 \zeta-2) X^{4}-X^{3}+X^{2}+(-5 \zeta-3) X-1 \\
& h_{2}(X)=X^{5}+(\zeta-1) X^{4}-X^{3}+X^{2}+(\zeta+2) X-1 \\
& h_{3}(X)=X^{5}+(-3 \zeta+3) X^{4}-X^{3}+X^{2}+(-3 \zeta+2) X-1 \\
& h_{4}(X)=X^{5}+(5 \zeta+3) X^{4}-X^{3}+X^{2}+(5 \zeta+2) X-1
\end{aligned}
$$

From these lifts we conjecture that the q-adic lifts have the form

$$
\begin{align*}
& g_{\infty}(X)=X^{5}+\lambda X^{4}-X^{3}+X^{2}+(\lambda-1) X-1 \tag{1}\\
& h_{\infty}(X)=X^{5}+(1-\lambda) X^{4}-X^{3}+X^{2}-\lambda X-1
\end{align*}
$$

for some $\lambda \in \mathcal{O}_{4}$. We must have that

$$
\begin{equation*}
g_{\infty}(X) h_{\infty}(X)=1+x+x^{2}+\cdots+x^{10} \tag{3}
\end{equation*}
$$

in $\mathcal{O}_{4}[X]$. By expanding $g_{\infty}(X) h_{\infty}(X)$ out with Equations (1) and (2), it is easy to see that Equation (3) is equivalent to

$$
\begin{equation*}
\lambda^{2}-\lambda+3=0 . \tag{4}
\end{equation*}
$$

Now we finally obtain the factorization $X^{11}-1$ in $\mathcal{O}_{4}[X]$ as

$$
X^{11}-1=(X-1) g_{\infty}(X) h_{\infty}(X) .
$$

Consequently, we can obtain all the cyclic lifts to $G R\left(2^{e}, 2\right)$ for all e by solving the Equation (4) modulo 2^{e}.

By the same method explained above, we found a list of factorizations of $x^{n}-1$ for q-adic cyclic codes of small length n :

$$
\begin{aligned}
& x^{3}-1=(x-1)(x-\zeta)\left(x-\zeta^{2}\right) \\
& x^{5}-1=(x-1)\left(x^{2}+\lambda x+1\right)\left(x^{2}+(1-\lambda) x+1\right), \\
& \quad \text { where } \lambda^{2}-\lambda-1=0 \\
& x^{7}-1=(x-1)\left(x^{3}+\lambda x^{2}+(\lambda-1) x-1\right)\left(x^{3}-(\lambda-1) x^{2}-\lambda x-1\right), \\
& \quad \text { where } \lambda^{2}-\lambda+2=0 \\
& x^{9}-1=(x-1)(x-\zeta)\left(x+\zeta^{2}\right)\left(x^{3}-\zeta\right)\left(x^{3}+\zeta^{2}\right) \\
& x^{13}-1=(x-1)\left(x^{6}+\lambda x^{5}+2 x^{4}+(\lambda-1) x^{3}+2 x^{2}+\lambda x+1\right) . \\
&\left(x^{6}+(1-\lambda) x^{5}+2 x^{4}-\lambda x^{3}+2 x^{2}+(1-\lambda) x+1\right), \\
& \quad \quad \text { where } \lambda^{2}-\lambda-3=0 .
\end{aligned}
$$

These factorizations give the lifts of cyclic codes of odd lengths ≤ 13 to the Galois rings $G R\left(2^{e}, 2\right)$.

References

[1] A.R.Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, Des. Codes. Cryptogr. 6 (1995), 21-35.
[2] S.T. Dougherty, S.Y. Kim and Y.H. Park, Lifted codes and their weight enumerators, Discrete Math. 305 (2005), 123-135.
[3] S.T. Dougherty and Y.H. Park, Codes over the p-adic integers, Des. Codes. Cryptogr. 39 (2006), 65-80.
[4] F. Q. Gouvêa, p-adic numbers. An introduction, Springer, 2003.
[5] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003.
[6] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
[7] Y.H. Park, Modular independence and generator matrices for codes over \mathbb{Z}_{m}, Des. Codes. Cryptogr. 50 (2009), 147-162.

Young Ho Park

Department of Mathematics
Kangwon National University
Chuncheon 24341, Korea
E-mail: yhpark@kangwon.ac.kr

[^0]: Received August 6, 2018. Revised September 10, 2018. Accepted September 12, 2018.

 2010 Mathematics Subject Classification: 94B05, 11 T 71.
 Key words and phrases: codes over rings, lifting, p-adic codes, Galois rings.
 This work was supported by 2016 Research Grant from Kangwon National University (No. 520160208).
 (c) The Kangwon-Kyungki Mathematical Society, 2018.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

