FRENET TYPE FORMULAE FOR 2, 3-PLANES IN MINKOWSKI SPACE \mathbb{L}^6

Sung-Ho Park

ABSTRACT. We prove the Frenet type formulae for smooth one-parameter family of 2-planes or 3-planes in the Lorentz-Minkowski space \mathbb{L}^6 . We consider two cases separately: the planes are spacelike or the planes are timelike.

1. Introduction

The 6-dimensional Lorentz-Minkowski space \mathbb{L}^6 is \mathbb{R}^6 endowed with the Lorentzian metric

$$g(u,v) = \sum_{i=1}^{5} u_i v_i - u_6 v_6,$$

$$u = (u_1, \dots, u_6), v = (v_1, \dots, v_6).$$

A vector $u \in \mathbb{L}^6$ is spacelike if g(u,u) > 0, timelike if g(u,u) < 0 and null or lightlike if g(u,u) = 0 [3]. For a smooth one-parameter family of 2 or 3-planes P_t in \mathbb{L}^6 , we prove Frenet type formulae for a basis of \mathbb{L}^6 which includes the basis of P_t . We consider three cases separately: I) P_t is spacelike, that is, $g|_{P_t}$ is positive definite, II) P_t is timelike, that is, $g|_{P_t}$ is nondegenerate but not positive definite and III) P_t is null, that is, $g|_{P_t}$ is degenerate.

Received September 6, 2018. Revised December 24, 2019. Accepted December 25, 2019.

²⁰¹⁰ Mathematics Subject Classification: 53A35, 53B30.

Key words and phrases: Frenet type Formulae, Minkowski space.

This work was supported by Hankuk University of Foreign Studies Research Fund.

[©] The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The Frenet formulae for a smooth regular curve in the 3-dimensional Euclidean space \mathbb{E}^3 says that

$$\begin{pmatrix} T \\ N \\ B \end{pmatrix}' = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix},$$

where ' denotes the differention with respect to the arclength, and T, N and B are the frenet frames, and κ is the curvature and τ is the torsion of the curve. We can use the Frenet formula in the study of ruled surfaces in \mathbb{E}^3 : If we consider T as the direction vector of the lines in the ruled surface, then the Frenet formulae gives a description of the behavior of the lines.

Generalizing the Frenet formulae, Frank and Giering studied the behavior of smooth one-parameter family of k-planes in the Euclidean space \mathbb{E}^n to classify (k+1)-dimensional minimal susbmanifolds in \mathbb{E}^n foliated by k-planes with k < n-1 [1]: Let P_t be a smooth one-parameter family of k-planes with orthonormal basis $\{f_1(t), f_2(t), \ldots, f_k(t)\}$ for k < n-1 and $t \in I$. The subspace

$$A(t) = Span\{f_1(t), \dots, f_k(t), f'_1(t), \dots, f'_k(t)\}\$$

is called the asymptotic bundle. Then $\dim A(t) = k + m$ with $0 \le m \le k$. Frank and Giering showed that there exists an orthonormal basis of \mathbb{R}^n

$$\{e_1(t),\ldots,e_k(t),e_{k+1}(t),\ldots,e_{k+m}(t),e_{k+m+1}(t),\ldots,e_n(t)\}$$

on some subinterval $J \subset I$, for which $Span\{e_1(t), \ldots, e_k(t)\} = Span\{f_1(t), \ldots, f_k(t)\}$, $A(t) = Span\{e_1(t), \ldots, e_k(t), e_{k+1}(t), \ldots, e_{k+m}(t)\}$ and the following equations hold (see Satz 5 in [1], [2]):

$$\begin{split} e_i' &= \alpha_i^j e_j + \kappa^i e_{k+i} \\ e_{m+\rho}' &= \alpha_{m+\rho}^l e_l \\ e_{k+i}' &= -\kappa^i e_i + \tau_i^l e_{k+l} + \omega^i e_{k+m+1} + \gamma_i^{\lambda} e_{k+m+\lambda} \\ e_{k+m+1}' &= -\omega^l e_{k+l} - \beta^{\lambda} e_{k+m+\lambda} \\ e_{k+m+\xi}' &= -\gamma_l^{\xi} e_{k+l} + \beta^{\xi} e_{k+m+1} + \beta_{\xi}^{\lambda} e_{k+m+\lambda}, \end{split}$$

where

$$\begin{aligned} \alpha_{j}^{h} &= -\alpha_{j}^{h}, \ \tau_{i}^{l} = -\tau_{l}^{i}, \ \beta_{\xi}^{\lambda} = -\beta_{\lambda}^{\xi} \\ i, l &= 1, 2, \dots, m \\ j, h &= 1, 2, \dots, k \\ \lambda, \xi &= 2, \dots, n - k - m \\ \rho &= 1, 2, \dots, k - m. \end{aligned}$$

In the case of lines in \mathbb{R}^3 , the equation is

$$\begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}' = \begin{pmatrix} 0 & \kappa^1 & 0 \\ -\kappa^1 & 0 & \omega^1 \\ 0 & -\omega^1 & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}.$$

We obtain analogous formulae for 2-planes or 3-planes in \mathbb{L}^6 . The results in this paper can be easily generalized and used in the study of ruled k-dimensional minimal submanifolds in \mathbb{L}^n for k < n-1 and ruled minimal submanifolds in the n-dimensional hyperbolic space \mathbb{H}^n .

2. The behavior of 2-planes in \mathbb{L}^6

In [4], the author gave a detailed proof of the Frenet type formulae for smooth one-parameter family of 2-planes in \mathbb{R}^4 . We first consider smooth one-parameter family of spacelike 2-planes in \mathbb{L}^4 . The case of \mathbb{L}^6 is a straightforward generalization (cf. Remark 1).

THEOREM 1. Let $\{P_t\}$ be a smooth one-parameter family of spacelike non-parallel planes in \mathbb{L}^4 passing through the origin. Locally, there is a one-parameter family of orthonormal frame $\{e_1(t), e_2(t), \ldots, e_4(t)\}$ of \mathbb{L}^4 such that $e_1(t)$ and $e_2(t)$ span P_t and one of the following holds with $t = \frac{d}{dt}$.

I) A(t) is spacelike or timelike with $A(t) = Span\{e_1(t), e_2(t), e_3(t)\}$, and the following equations hold:

$$e_1' = \alpha e_2 + \kappa e_3, \quad e_2' = -\alpha e_1, \quad e_3' = -\kappa e_1 + \eta e_4, \quad e_4' = -\eta e_3,$$

for smooth α and κ , or

II) dim
$$A(t) = 4$$
 and

$$e_1' = \alpha e_2 + \kappa e_3, \ e_2' = -\alpha e_1 + \tau e_4, \ e_3' = -\kappa e_1 + \eta e_4, \ e_4' = -\tau e_2 - \eta e_3,$$

for smooth α , κ , τ and η .

The proof is similar to that of Theorem A in [4]. The case of 2-planes in \mathbb{L}^6 is a straightforward generalization.

Proof. Let $\{f_1(t), f_2(t)\}$ be an orthonormal basis of $\{P_t\}$ smooth in t. For $f(t) = \sum_{i=1,2} \gamma_i(t) f_i(t)$ with $\gamma_1(t)$ and $\gamma_2(t)$ smooth and $\gamma_1(t)^2 + 1$

$$\gamma_2(t)^2 = 1$$
, let

(1)
$$\mathring{f}(t) = f'(t) - \sum_{i=1,2} g(f'(t), f_i(t)) f_i(t)$$

the projection of f'(t) onto P_t^{\perp} . Note that P_t^{\perp} is timelike. Omitting t for simplicity, we have

$$\mathring{f}_{1} = f'_{1} - g(f'_{1}, f_{2}) f_{2}, \quad \mathring{f}_{2} = f'_{2} - g(f'_{2}, f_{1}) f_{1}.$$

Hence

$$\overset{\circ}{f} = f' - \sum_{i=1,2} g(f', f_i) f_i = \sum_{i=1,2} \gamma_i \left(f'_i - \sum_{j=1,2} g(f'_i, f_j) f_j \right) = \sum_{i=1,2} \gamma_i \overset{\circ}{f_i}.$$

Therefore

$$g\left(\stackrel{\circ}{f},\stackrel{\circ}{f}\right) = \sum_{i,j=1,2} \gamma_i \gamma_j \ g\left(\stackrel{\circ}{f_i},\stackrel{\circ}{f_j}\right).$$

Note that, for fixed t, $g\left(f, f\right)$ is a quadratic form in γ_1 and γ_2 . We have three possibilities for all $t \in I$ (if necessary, we replace I with a suitable subinterval): i) A(t) is spacelike and dim A(t) = 3, or ii) A(t) is timelike and dim A(t) = 3, or iii) dim A(t) = 4.

If i) holds, then $g\left(\overset{\circ}{f},\overset{\circ}{f}\right) \geq 0$. Fot a fixed $t_0 \in I$, we may assume that $g\left(\overset{\circ}{f}(t_0),\overset{\circ}{f}(t_0)\right)$ attains maximum at $(\gamma_1(t_0),\gamma_2(t_0))=(1,0)$. Then $g\left(\overset{\circ}{f}_2(t_0),\overset{\circ}{f}_2(t_0)\right)=0$. Hence $\overset{\circ}{f}_2(t_0)=f'_2(t_0)-g\left(f'_2(t_0),f_1(t_0)\right)f_1(t_0)=0$.

To find $e_1(t)$ and $e_2(t)$, first let $e_1(t)$ be the unit vector maximizing $g\left(\stackrel{\circ}{f}(t), \stackrel{\circ}{f}(t)\right)$ for each $t \in I$. Then $e_1(t)$ is smooth in t and $g\left(\stackrel{\circ}{e}_1(t), \stackrel{\circ}{e}_1(t)\right)$ > 0. Choose e_2 in such a way that $\{e_1(t), e_2(t)\}$ is an orthonormal basis of P_t smooth in t. Then e_2 is the unit vector minimizing $g\left(\stackrel{\circ}{f}(t), \stackrel{\circ}{f}(t)\right)$, whose value is 0. Define e_3 by

$$g\left(\stackrel{\circ}{e}_{1},\stackrel{\circ}{e}_{1}\right)^{\frac{1}{2}}e_{3}:=\stackrel{\circ}{e}_{1}=e'_{1}-g\left(e'_{1},e_{2}\right)e_{2}.$$

Then an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of \mathbb{L}^4 , smooth in t, satisfies

(2)
$$e'_{1} = g(e'_{1}, e_{2}) e_{2} + g(\mathring{e}_{1}, \mathring{e}_{1})^{\frac{1}{2}} e_{3},$$

$$e'_{2} = g(e'_{2}, e_{1}) e_{1} = -g(e'_{1}, e_{2}) e_{1},$$

$$e'_{3} = g(e'_{3}, e_{4}) e_{4} - g(\mathring{e}_{1}, \mathring{e}_{1})^{\frac{1}{2}} e_{1},$$

$$e'_{4} = -g(e'_{3}, e_{4}) e_{3}.$$

If ii) holds, then then $g\left(\mathring{f},\mathring{f}\right) \leq 0$. For each $t \in I$, let e_1 be the unit vector minimizing $g\left(\mathring{f},\mathring{f}\right)$, and let $\{e_1,e_2\}$ be an orthonormal basis of P_t smooth in t. Then $g\left(\mathring{e}_1,\mathring{e}_1\right) < 0$ and $g\left(\mathring{e}_2,\mathring{e}_2\right) = 0$. Define e_3 by

$$\left(-g\left(\stackrel{\circ}{e}_{1},\stackrel{\circ}{e}_{1}\right)\right)^{\frac{1}{2}}e_{3}:=\stackrel{\circ}{e}_{1}=e'_{1}-g\left(e'_{1},e_{2}\right)e_{2}.$$

Choose e_4 so that $\{e_1, e_2, e_3, e_4\}$ is an orthonormal basis of \mathbb{L}^4 smooth in t. Then e_1, e_2, e_3 and e_4 satisfies (2). This completes the proof of I).

If iii) holds, then $g\left(\stackrel{\circ}{f},\stackrel{\circ}{f}\right)$ has positive maximum and negative minimum for each fixed t. Let e_1 be the unit vector maximizing $g\left(\stackrel{\circ}{f},\stackrel{\circ}{f}\right)$, and let e_2 be the unit vector minimizing $g\left(\stackrel{\circ}{f},\stackrel{\circ}{f}\right)$ for each t. Since $g\left(\stackrel{\circ}{f},\stackrel{\circ}{f}\right)$ is a quadratic form in γ_1 and γ_2 , we have $g\left(\stackrel{\circ}{e_1},\stackrel{\circ}{e_2}\right)=0$. Let e_3 and e_4 be defined by

$$g\left(\stackrel{\circ}{e}_{1},\stackrel{\circ}{e}_{1}\right)^{\frac{1}{2}}e_{3}:=\stackrel{\circ}{e_{1}}=e_{1}'-g\left(e_{1}',e_{2}\right)e_{2}$$
$$\left(-g\left(\stackrel{\circ}{e}_{2},\stackrel{\circ}{e}_{2}\right)\right)^{\frac{1}{2}}e_{4}:=\stackrel{\circ}{e_{2}}=e_{2}'-g\left(e_{2}',e_{1}\right)e_{1}.$$

Then the orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of \mathbb{L}^4 satisfies

$$e'_{1} = g(e'_{1}, e_{2}) e_{2} + g(\mathring{e}_{1}, \mathring{e}_{1})^{\frac{1}{2}} e_{3},$$

$$e'_{2} = -g(e'_{1}, e_{2}) e_{1} + \left(-g(\mathring{e}_{2}, \mathring{e}_{2})\right)^{\frac{1}{2}} e_{4},$$

$$e'_{3} = -g(\mathring{e}_{1}, \mathring{e}_{1})^{\frac{1}{2}} e_{1} + g(e'_{3}, e_{4}) e_{4},$$

$$e'_{4} = -\left(-g(\mathring{e}_{2}, \mathring{e}_{2})\right)^{\frac{1}{2}} e_{2} - g(e'_{3}, e_{4}) e_{3}.$$

This completes the proof.

REMARK 1. The generalization of the above theorem to \mathbb{L}^6 is straightforward. For example, in the case of spacelike 2-planes in \mathbb{L}^6 , first we define f for a given orthonormal basis $\{f_1, f_2\}$ of P_t as above. If dim A=4 and A is spacelike, then we find e_1, e_2, e_3 and e_4 as above, and choose e_5 and e_6 so that $\{e_1, \ldots, e_6\}$ is a smooth orthonormal basis of \mathbb{L}^6 . Then we have

$$e'_{1} = g(e'_{1}, e_{2}) e_{2} + g(\mathring{e}_{1}, \mathring{e}_{1})^{\frac{1}{2}} e_{3},$$

$$e'_{2} = -g(e'_{1}, e_{2}) e_{1} + g(\mathring{e}_{2}, \mathring{e}_{2})^{\frac{1}{2}} e_{4}.$$

Moreover.

$$\begin{aligned} e_3' &= -g \left(\stackrel{\circ}{e}_1, \stackrel{\circ}{e}_1 \right)^{\frac{1}{2}} e_1 + g \left(e_3', e_4 \right) e_4 + g \left(e_3', e_5 \right) e_5 + g \left(e_3', e_6 \right) e_6, \\ e_4' &= -g \left(\stackrel{\circ}{e}_2, \stackrel{\circ}{e}_2 \right)^{\frac{1}{2}} e_2 + g \left(e_4', e_3 \right) e_3 + g \left(e_4', e_5 \right) e_5 + g \left(e_4', e_6 \right) e_6, \\ e_5' &= g \left(e_5', e_3 \right) e_3 + g \left(e_5', e_4 \right) e_4 + g \left(e_5', e_6 \right) e_6, \\ e_6' &= g \left(e_6', e_3 \right) e_3 + g \left(e_6', e_4 \right) e_4 + g \left(e_6', e_5 \right) e_5. \end{aligned}$$

The remaining cases can be dealt with similarly. The case that P_t are timelike is similar, and we consider the proof only in \mathbb{L}^4 .

THEOREM 2. Let $\{P_t\}$ be a smooth one-parameter family of timelike non-parallel planes in \mathbb{L}^4 passing through the origin. There is a oneparameter family of orthonormal frame $\{e_1(t), e_2(t), e_3(t), e_4(t)\}$ of \mathbb{L}^4 such that $e_1(t)$ and $e_2(t)$ span P_t and the following equations hold:

$$e_1' = \alpha e_2 + \kappa e_3, \ e_2' = -\alpha e_1 + \tau e_4, \ e_3' = -\kappa e_1 + \eta e_4, \ e_4' = -\tau e_3 + \eta e_3,$$

for smooth α , κ , τ and η . Furthermore, if dim A(t) = 3 then $\tau = 0$.

Proof. Let $\{f_1, f_2\}$ be a smooth one-parameter family of orthonormal basis of P_t . Let $f = \sum_{i=1,2} \gamma_i f_i$ for smooth γ_1 and γ_2 satisfying $\gamma_1^2 + \gamma_2^2 = 1$. Then $g\left(\mathring{f}, \mathring{f}\right) \geq 0$. Let e_1 be the unit vector maximizing $g\left(\mathring{f}, \mathring{f}\right)$,

and let e_2 be unit vector minimizing $g\left(\stackrel{\circ}{f},\stackrel{\circ}{f}\right)$. Then $\{e_1,e_2\}$ spans P_t .

If dim
$$A(t) = 3$$
, then $g(\mathring{e}_2, \mathring{e}_2) = 0$. Define e_3 by

$$g\left(\stackrel{\circ}{e}_{1},\stackrel{\circ}{e}_{1}\right)^{\frac{1}{2}}e_{3}:=\stackrel{\circ}{e_{1}}=e_{1}'-g\left(e_{1}',e_{2}\right)e_{2},$$

and let e_4 be a smooth unit vector field perpendicular to e_1 , e_2 and e_3 .

If dim A(t) = 4, then $g(\mathring{e}_2, \mathring{e}_2) \neq 0$. Define e_3 and e_4 by

$$g\left(\stackrel{\circ}{e}_{1},\stackrel{\circ}{e}_{1}\right)^{\frac{1}{2}}e_{3} := \stackrel{\circ}{e}_{1} = e'_{1} - g\left(e'_{1},e_{2}\right)e_{2}$$
$$g\left(\stackrel{\circ}{e}_{2},\stackrel{\circ}{e}_{2}\right)^{\frac{1}{2}}e_{4} := \stackrel{\circ}{e}_{2} = e'_{2} - g\left(e'_{2},e_{1}\right)e_{1}.$$

Then we have

$$e'_{1} = g(e'_{1}, e_{2}) e_{2} + g(\mathring{e}_{1}, \mathring{e}_{1})^{\frac{1}{2}} e_{3},$$

$$e'_{2} = -g(e'_{1}, e_{2}) e_{1} + g(\mathring{e}_{2}, \mathring{e}_{2})^{\frac{1}{2}} e_{4},$$

$$e'_{3} = -g(\mathring{e}_{1}, \mathring{e}_{1})^{\frac{1}{2}} e_{1} + g(e'_{3}, e_{4}) e_{4},$$

$$e'_{4} = -g(\mathring{e}_{2}, \mathring{e}_{2})^{\frac{1}{2}} e_{2} - g(e'_{3}, e_{4}) e_{3}.$$

This completes the proof.

3. The behavior of 3-planes in \mathbb{L}^6

We state the result in full generality, that is, dim A=6. If dim A=4, then $\kappa_2=0$ and $\kappa_3=0$, and if dim A=5, then $\kappa_3=0$ in the following theorem.

THEOREM 3. Let $\{P_t\}$ be a smooth one-parameter family of spacelike or timelike non-parallel 3-planes in \mathbb{L}^6 passing through the origin. There is a one-parameter family of orthonormal frame $\{e_1(t), \ldots, e_6(t)\}$ of \mathbb{L}^6 such that $e_1(t), e_2(t)$ and e_3 span P_t and the following equations hold:

$$e'_{1} = \alpha_{1}^{2}e_{2} + \alpha_{1}^{3}e_{3} + \kappa_{1}e_{4}, \quad e'_{2} = -\alpha_{1}^{2}e_{1} + \alpha_{2}^{3}e_{3} + \kappa_{2}e_{5},$$

$$e'_{3} = -\alpha_{1}^{3}e_{1} - \alpha_{2}^{3}e_{2} + \kappa_{3}e_{6}, \quad e'_{4} = -\kappa_{1}e_{1} + \eta_{4}^{5}e_{5} + \eta_{4}^{6}e_{6},$$

$$e'_{5} = -\kappa_{2}e_{2} - \eta_{4}^{5}e_{4} + \eta_{5}^{6}e_{6}, \quad e'_{6} = -\kappa_{3}e_{3} - \eta_{4}^{6}e_{4} - \eta_{5}^{6}e_{5},$$

where α_i^j , κ_i and η_{3+i}^{3+j} , for i, j = 1, 2, 3, are smooth.

The proof is a straightforward generalization of the proof of Theorem 1.

Proof. We give the proof only for the case that P_t is spacelike. The proof for the case that P_t is timelike is similar. Let $\{f_1(t), f_2, f_3(t)\}$ be an orthonormal basis of P_t smooth in $t \in I$. Let $f = \sum_{i=1}^3 \gamma_i f_i$ for smooth γ_i satisfying $\gamma_1^2 + \gamma_2^2 + \gamma_3^2 = 1$. Let

$$\overset{\circ}{f} = f' - \sum_{i=1}^{3} g(f', f_i) f_i = \sum_{i=1}^{3} \gamma_i \overset{\circ}{f_i}.$$

Then

$$g\left(\overset{\circ}{f},\overset{\circ}{f}\right) = \sum_{i,j=1}^{3} \gamma_i \gamma_j g\left(\overset{\circ}{f}_i,\overset{\circ}{f}_j\right)$$

is a quadratic from in γ_i , i=1,2,3. Since $(\gamma_1,\gamma_2,\gamma_3)\in\mathbb{S}^2$, $g\left(\overset{\circ}{f},\overset{\circ}{f}\right)$ attains positive maximum and negative minimum for each fixed t. Let e_1 and e_3 be the unit vector maximizing and minimizing $g\left(\overset{\circ}{f},\overset{\circ}{f}\right)$ respectively. Let e_2 be the remaining eigenvector of the symmetric matrix $g\left(\overset{\circ}{f},\overset{\circ}{f}\right)_{ij}$, for i,j=1,2,3. Since P_t^{\perp} is timelike, $g\left(\overset{\circ}{e_3},\overset{\circ}{e_3}\right)<0$ and

$$g\left(\stackrel{\circ}{e_{2}},\stackrel{\circ}{e_{2}}\right) > 0. \text{ Define } e_{4}\text{m } e_{5} \text{ and } e_{6} \text{ by}$$

$$g\left(\stackrel{\circ}{e_{1}},\stackrel{\circ}{e_{1}}\right)^{\frac{1}{2}} e_{4} : = \stackrel{\circ}{e_{1}} = e'_{1} - g\left(e'_{1},e_{2}\right) e_{2} - g\left(e'_{1},e_{3}\right) e_{3}$$

$$g\left(\stackrel{\circ}{e_{2}},\stackrel{\circ}{e_{2}}\right)^{\frac{1}{2}} e_{5} : = \stackrel{\circ}{e_{2}} = e'_{2} - g\left(e'_{2},e_{1}\right) e_{1} - g\left(e'_{2},e_{3}\right) e_{3}$$

$$\left(-g\left(\stackrel{\circ}{e_{3}},\stackrel{\circ}{e_{3}}\right)\right)^{\frac{1}{2}} e_{6} : = \stackrel{\circ}{e_{3}} = e'_{3} - g\left(e'_{3},e_{1}\right) e_{1} - g\left(e'_{3},e_{2}\right) e_{2}.$$

Then $\{e_1, \ldots, e_6\}$ is the desired orthonormal basis of \mathbb{L}^6 .

References

- H. Frank and O. Giering, Verallegemeinerte Regelflächen. Math. Z. 150 (1976), 261–271.
- [2] H. Hagen, Die minimalen (k+1)-Regelflaechen. Arch. Math. 42, (1984), 76–84.
- [3] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York-London, 1983.
- [4] S. Park, Minimal and Constant mean curvature surfaces in S³ foliated by circles, preprint.

Sung-Ho Park

Major in Mathematics, Graduate School of Education Hankuk University of Foreign Studies, Seoul, 02450, Korea

E-mail: sunghopark@hufs.ac.kr